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Combined Path Following and Compliance Control with Application to

a Biaxial Gantry Robot

Stefan Flixeder1, Tobias Glück1, Martin Böck1, and Andreas Kugi1

Abstract— This work presents an approach to simultaneously,
but independently control the compliance of a robotic system
transversal and tangential to a given curve. Therefore, a
path following control concept known as transverse feedback
linearization and a compliance control concept known as ad-
mittance control are combined. The subordinate path following
controller transforms the nonlinear dynamics into a linear
system with decoupled transversal and tangential dynamics
via a coordinate and feedback transformation. The outer
control loop utilizes admittance control to obtain the desired
target compliance in the respective transformed coordinates.
The proposed approach is applied to a biaxial gantry robot.
Experimental results underline the feasibility of the proposed
concept.

I. INTRODUCTION

The traditional way of planning an automated machining

task, such as milling, grinding, deburring or saw cutting, is

to define a specific path and a speed parametrization which is

subsequently tracked using standard position control. Recent

developments in robotized machining processes, see [1] for

an overview, make also use of force control [2]. By control-

ling the material removal rate that depends on the counter

force it is possible to react to material inhomogeneities

and thus to improve the machining performance. Classical

approaches either control the contact force perpendicular to

the surface [3] or the feed force — and hence the material

removal rate — along the machining path [4]. To the authors

knowledge, no attempt has been made so far to independently

control both, the force transversal and tangential to the

machining path. For this purpose, the authors make use of

recent advances in path following control, see, e.g., [5], [6],

[7] and well known concepts of compliance control, see, e.g.,

[8], [9], [10]. By successfully combining these approaches,

the proposed control strategy is capable of

• approaching the path from a given starting point,

• controlling the force perpendicular to the path while

tracking a given trajectory along the path,

• controlling the force/position perpendicular to the path

while manually guiding the position along the path by

a human operator,

• controlling the feed force along the path while stabiliz-

ing and/or tracking a given trajectory perpendicular to

the path and any combination of the previous.

This paper is organized as follows: Section II provides an

introduction of the test setup of a two-degree-of-freedom (2-

*This work was supported by FESTO AG & CO. KG
1The authors are with the Automation and Control Institute

(ACIN), Vienna University of Technology, 1040 Vienna, Austria
{flixeder;glueck;boeck;kugi}@acin.tuwien.ac.at
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Fig. 1. Schematic diagram of the 2-DOF gantry robot.

DOF) gantry robot. Moreover, an appropriate mathematical

model is developed. Section III briefly summarizes the

path following methodology, denoted as transverse feedback

linearization, and applies it to the system under considera-

tion. Section IV introduces admittance control, the utilized

compliance control concept, and combines it with the trans-

verse feedback linearization. Section V presents experimental

results performed on the test setup.

II. EXPERIMENTAL SETUP AND MATHEMATICAL

MODEL

Consider the schematic diagram of a linear 2-DOF gantry

robot depicted in Fig. 1. Each linear drive consists of a servo

motor and a ball screw drive. The ball screw drives convert

the applied torques into a translational motion of the slides.

The coupling between the motor, the ball screw and the slide

as well as the mechanic connection of the y- and z-axis is

considered stiff and backlash-free. Hence, the dynamics of

the two linear axes are decoupled. The servo motors are

equipped with fast current controllers allowing to use the

actual motor torques τi, i ∈ {y,z} as control inputs of the

system. In order to measure the external load forces FL,i

acting on the end effector, the test setup is equipped with

a triaxial force sensor based on strain gauge technology. Let

sT =
[
sy sz

]
be the position of the end effector with respect

to the reference frame (y0,z0), mt,i be the moved translational

mass, ki be the spindle pitch and mJ,i =
(
Jsm,i + Jbs,i

)
/k2

i

be the equivalent mass of the inertia of the servo motor
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Jsm,i and the ball screw Jbs,i, respectively. Newtons second

law yields the equations of motion (mt,i +mJ,i)s̈i = FM,i −
FF,i −FG,i −FL,i, where FM,i = τi/ki is the equivalent motor

force, FG,y = 0, and FG,z = gmt,z are the gravitational forces,

with g = 9.81m s−2. The precision of the ball screw drives

comes at the expense of high internal friction forces, which

are approximated by FF,i(ṡi) = Fc,i tanh(ṡi/w) + cv,i ṡi, with

w ≪ 1 and the coefficients cv,i > 0 and Fc,i > 0 of the

viscous and Coulomb friction, respectively. By introducing

the state vector xT =
[
xT

c xT
v

]
∈R4 with xT

c =
[
sy sz

]
and

xT
v =

[
ṡy ṡz

]
, the input vectors uT =

[
FM,y FM,z

]
∈ R2

and dT =
[
FL,y FL,z

]
∈R2, the equations of motion can be

written in the input affine form

ẋ =

[
xv

fv(xv)

]
+

[
02×2

Gv(xc)

]
u+

[
02×2

−I2×2

]
d (1)

with

fv(xv) =




−FF,y(ṡy)
mt,y+mJ,y

−FF,z(ṡz)−gmt,z

mt,z+mJ,z


,Gv(xc) =

[
1

mt,y+mJ,y
0

0 1
mt,z+mJ,z

]
.

(2)

Moreover, the class of outputs y is restricted to smooth

functions of the configuration states xc given by

y = h(xc) = xc , y ∈R2. (3)

III. PATH FOLLOWING CONTROL

The objective of the path following problem is to design

a smooth feedback control law that makes the system output

(3) approach and move along a path γ where no a priori

time parametrization is associated with the movement on the

path. The approach utilized in this paper was introduced as

transverse feedback linearization in, e.g., [5] and restricted

to the class of mechanical systems in [7]. In the following

section, this concept is revisited and applied to the considered

2-DOF gantry robot.

A. Path Assumptions

Suppose the path γ is given as a smooth parametrized

curve σ̂σσ (·) : R→ R2 — not necessarily with a unit speed

parametrization1
∥∥σ̂σσ ′(·)

∥∥ = 1 — and the geometric restric-

tions on the class of curves imposed in [5] and [11]:

Assumption 1: The parametrization σ̂σσ(·) is an embedded

submanifold of R2, which implies that γ has no self-

intersections.

Assumption 2: There exists a smooth map δ (·) : R2 → R

such that the path γ can be represented as the zero-level set

of δ in the output space (3) of (1).

Approaching and following the path γ is equivalent to

stabilize the submanifold Γ := {x ∈ R4 : δ ◦ h(xc) = 0}.

However, in [5], [7] it is shown that in general Γ is not

invariant2 and thus only the stabilization of the largest

controlled invariant subset Γ∗ of Γ can be asked for the path

following control design. Γ∗ can be interpreted as the set of

1In the following, ‖·‖ refers to the Euclidean norm and σ̂σσ ′(θ̂
)
= dσ̂σσ

dθ̂
.

2A set of states Γ ⊆R4 of the system (1) is called an invariant set of (1)
if for all x(0) ∈ Γ and for all t ≥ 0, x(t) ∈ Γ.

σσσ ′(θ ∗)

κκκ(θ ∗)

z0

y0 θ̂ = 0

θ̂ = θ̂ ∗

y = h(xc)

y∗ = σ̂
(
θ̂ ∗)

‖δ (y
)‖

path γ

Fig. 2. Path illustration.

all trajectories for which the output y according to (3) can be

forced to stay on γ for all times by a suitable control input

u. It can also be interpreted as the zero-dynamics manifold

of (1) with the output λ (xc) = δ ◦h(xc). For more details,

the reader is kindly referred to [5], [6], [7].

B. Transverse and Tangential Feedback Linearization

The fundamental idea of the transverse feedback lin-

earization concept is to find a coordinate transformation

T : x 7→ (ηηη ,ξξξ ), defined in a neighborhood of γ , and a

feedback transformation such that the system (1) transforms

and decomposes into a tangential ηηη- and a transversal ξξξ -

subsystem with respect to γ . Following Theorem 3.2 of [7],

the system (1)-(3) is locally transverse feedback linearizable.

Subsequently, the derivation of the coordinate transformation

T : x 7→ (ηηη ,ξξξ ) for a given curve σ̂σσ(·) will be shown in detail.

Therefore, a projection operator ϖ̂ that maps each point

y ∈ γε in a tubular neighborhood γε of the closed curve3 to

a unique parameter θ̂ ∗ ∈ [0, L̂), with σ̂σσ
(
θ̂ ∗+ L̂

)
= σ̂σσ

(
θ̂ ∗) is

introduced. In order to calculate the point y∗ = σ̂σσ
(
θ̂ ∗) on

the path γ that is closest to y in the sense of a given metric,

the minimization problem

θ̂ ∗ = ϖ̂(y) := arg min
θ̂∈[0,L̂)

∥∥y− σ̂σσ
(
θ̂
)∥∥

(4)

has to be solved [6]. The tangential state η1 =π(xc) is chosen

as η1 = g ◦h(xc) with

θ ∗ = g(y) =

(∫ θ̂∗

0

∥∥σ̂σσ ′(τ)
∥∥dτ

)∣∣∣∣
θ̂∗=ϖ̂(y)

. (5)

Clearly, the tangential unit vector on the path reads as

σσσ ′(θ ∗) = σ̂σσ ′(θ̂ ∗)/
∥∥σ̂σσ ′(θ̂ ∗)∥∥. The transversal unit vector

κκκ(θ ∗) is obtained by a counter clockwise rotation of π/2,

i.e., κκκ(θ ∗) = Rπ/2σσσ ′(θ ∗) with the associated rotation matrix

Rπ/2. See Fig. 2 for a graphic representation. Since y−
σ̂σσ
(
θ̂ ∗) is parallel to κ̂κκ

(
θ̂ ∗) = Rπ/2σ̂σσ ′(θ̂ ∗)/

∥∥σ̂σσ ′(θ̂ ∗)∥∥, the

output may be written in the form y = σ̂σσ
(
θ̂ ∗)+ κ̂κκ

(
θ̂ ∗)δ (y)

and solved for

δ (y) =
1∥∥σ̂σσ ′(θ̂ ∗)∥∥

(
Rπ/2σ̂σσ ′(θ̂ ∗))T(

y− σ̂σσ
(
θ̂ ∗))

∣∣∣∣
θ̂∗=ϖ̂(y)

.

The length of δ (y) is exactly the measure of the distance

of the point y to the corresponding point y∗ = σσσ(θ ∗) on the

curve γ . Thus, we choose ξ1 = λ (xc) = δ ◦h(xc) as the first

transversal state.

3See [11] for non-closed curves.
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For the coordinate transformation T : x 7→ (ηηη ,ξξξ ) the time

derivatives of η1 and ξ1 are required. Although in general

θ̂ ∗ from (4) can only be calculated numerically, an analytical

expression can be found for its time derivative based on the

necessary optimality condition of (4), i.e.,

(
y− σ̂σσ

(
θ̂ ∗))T

σ̂σσ ′(θ̂ ∗)= 0. (6)

Performing the time derivative of (6) yields

(
ẏ− σ̂σσ ′(θ̂ ∗) ˙̂θ ∗

)T

σ̂σσ ′(θ̂ ∗)+
(
y− σ̂σσ

(
θ̂ ∗))T

σ̂σσ ′′(θ̂ ∗) ˙̂θ ∗ = 0

and with y− σ̂σσ
(
θ̂ ∗) = Rπ/2σ̂σσ ′(θ̂ ∗)/

∥∥σ̂σσ ′(θ̂ ∗)∥∥δ (y) we get

from (5)

η̇1 =
∥∥σ̂σσ ′(θ̂ ∗)∥∥ ˙̂θ ∗ =

1

1−ϕ ′δ (y)

(
σ̂σσ ′(θ̂ ∗))T

∥∥σ̂σσ ′(θ̂ ∗)∥∥

∣∣∣∣
θ̂∗=ϖ̂(y)︸ ︷︷ ︸

dη1

ẏ

︸︷︷︸
dh xv

with η̇1 = η2 and

ϕ ′ =

(
Rπ/2σ̂σσ ′(θ̂ ∗))T

σ̂σσ ′′(θ̂ ∗)
∥∥σ̂σσ ′(θ̂ ∗)∥∥3

∣∣∣∣
θ̂∗=ϖ̂(y)

, dh =
∂h(xc)

∂xc

.

Analogously, it can be shown that the time derivative of ξ1

reads as

ξ̇1 = ξ2 =

(
Rπ/2σ̂σσ ′(θ̂ ∗))T

∥∥σ̂σσ ′(θ̂ ∗)∥∥

∣∣∣∣
θ̂∗=ϖ̂(y)︸ ︷︷ ︸

dξ1

ẏ

︸︷︷︸
dh xv

.

Thus, the coordinate transformation T takes the form



η1

η2

ξ1

ξ2


=




π(xc)
dπxv

λ (xc)
dλxv


=




g ◦h(xc)
dη1dh xv

δ ◦h(xc)
dξ1dh xv


, (7)

where dλ = ∂λ (xc)/∂xc and dπ = ∂π(xc)/∂xc. These re-

sults are also in accordance with [6]. Note that dλ and dπ ,

are given analytically and ‖dη1‖= ‖dξ1‖= 1 holds for any

point y∗ on the curve.

Along the lines of [7],

ỹ =

[
λ (xc)
π(xc)

]
=

[
δ ◦h(xc)
g ◦h(xc)

]
(8)

is chosen as a virtual output of (1). The feedback lineariza-

tion is inferred from the first and second total time-derivative

of (8), i.e.,

˙̃y =

[
dλ xv

dπxv

]
, ¨̃y =

[
ḋλxv + dλ fv

ḋπxv + dπfv

]

︸ ︷︷ ︸
b(x)

+

[
dλ Gv

dπGv

]

︸ ︷︷ ︸
Du(x)

u−
[

dλ
dπ

]

︸ ︷︷ ︸
Dd(x)

d. (9)

Introducing the new input vT =
[
v‖ v⊥

]
= ¨̃y and solving

(9) for u yields the input-output feedback linearization, see,

e.g., [12],

u = D−1
u (x)

(
−b(x)+Dd(x)d+ v

)
|x=T−1(ηηη,ξξξ ). (10)

Inserting the feedback transformation (10) with (7) into

(1) results in linear system dynamics of the form

ξ̇1 = ξ2, ξ̇2 = v⊥, η̇1 = η2, η̇2 = v‖. (11)

It is worth noting that the dynamics of the transformed

system are linear with respect to the nonlinear path γ . Thus,

the virtual input v⊥ can effectively be used to stabilize

the origin of the transverse ξξξ -subsystem and v‖ can be

utilized to control the motion along the path. The tracking

errors e
p
η = η1 −η p

1 and e
p

ξ
= ξ1 − ξ p

1 are introduced with

the sufficiently smooth path reference trajectories η p
1 and

ξ
p

1 along the path and transversal to the path, respectively.

Eventually, the control laws

v‖ = η̈ p
1 − aη,2ė

p
η − aη,1e

p
η − aη,0

∫ t

0
e

p
η dτ

v⊥ = ξ̈ p
2 − aξ ,2ė

p

ξ
− aξ ,1e

p

ξ
− aξ ,0

∫ t

0
e

p

ξ
dτ

(12)

yield the linear, exponentially stable error dynamics

(
e

p
η

)(3)
+ aη,2ë

p
η + aη,1ė

p
η + aη,0e

p
η = 0

(
e

p

ξ

)(3)
+ aξ ,2ë

p

ξ
+ aξ ,1ė

p

ξ
+ aξ ,0e

p

ξ
= 0

that can be arbitrarily assigned by means of the constants

al,k > 0 for l ∈ {η ,ξ}, k = 0,1,2. An anti-windup strategy

can be used to account for input constraints.

IV. COMPLIANCE CONTROL

Compliance control addresses a classical problem in

robotics of simultaneously controlling the position and the

interaction force with the environment. A well-known ap-

proach in literature, see, e.g., [8], is referred to as impedance

control. The fundamental idea of the concept is to design a

controller such that the system establishes a desired dynamic

relationship between an external (projected) force

F̄L =

[
F‖
F⊥

]
=

[
(σσσ ′(θ ))T

FL

(κκκ(θ ))T
FL

]
(13)

and the state errors ed
η = η1 −ηd

1 and ed
ξ = ξ1 −ξ d

1 and their

time derivatives. Herein, ηd
1 and ξ d

1 denote the transversal

and tangential reference trajectory, respectively. Typically,

this relationship is specified in a linear form

F̄L =

[
m‖ 0

0 m⊥

]

︸ ︷︷ ︸
Md

[
ëd

η

ëd
ξ

]
+

[
d‖ 0

0 d⊥

]

︸ ︷︷ ︸
Dd

[
ėd

η

ėd
ξ

]
+

[
k‖ 0

0 k⊥

]

︸ ︷︷ ︸
Kd

[
ed

η

ed
ξ

]
,

(14)

where the positive definite matrices Md , Dd , and Kd repre-

sent the desired inertia, damping, and stiffness, respectively.

If the matrices are diagonal, the compliances in tangential

and transversal direction are decoupled. Thus, m j > 0,d j > 0

and k j > 0 for j ∈ {‖,⊥} are the inertia, damping, and

stiffness in tangential and transversal direction.
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Fig. 3. Path following and compliance control scheme.

A. Admittance Control

In order to achieve a desired impedance behavior, the so-

called admittance control [10], often denoted as position-

based impedance control [13] or inner/outer impedance

control [14], approach is utilized. The compliant behavior

is realized by tracking the trajectory of a desired impedance

model using the transverse and tangential feedback lineariza-

tion in the inner loop and the admittance control in the outer

loop, see Fig. 3. Assuming perfect tracking performance of

the inner position controller, one may replace the actual

transverse and tangential state η1 and ξ1 in (14) with the

path reference trajectories η p
1 and ξ p

1 . Introducing the errors

e
pd
η = η p

1 −ηd
1 and e

pd

ξ
= ξ p

1 − ξ d
1 , the admittance control

laws read as

η̈ p
1 = η̈d

1 +
F‖
m‖

−
d‖
m‖

ė
pd
η −

k‖
m‖

e
pd
η , η̇ p

1 =

∫ t

0
η̈ p

1 dτ

ξ̈ p
1 = ξ̈ d

1 +
F⊥
m⊥

− d⊥
m⊥

ė
pd

ξ
− k⊥

m⊥
e

pd

ξ
, ξ̇ p

1 =
∫ t

0
ξ̈ p

1 dτ

η p
1 =

∫ t

0
η̇ p

1 dτ, ξ p
1 =

∫ t

0
ξ̇ p

1 dτ,

(15)

yielding the exponentially stable closed-loop dynamics in

tangential and transversal direction of the form

F‖ = m‖ë
pd
η + d‖ė

pd
η + k‖e

pd
η

F⊥ = m⊥ë
pd

ξ
+ d⊥ė

pd

ξ
+ k⊥e

pd

ξ
.

Consequently, the compliance in transversal and tangential

direction of the path are now decoupled, can be chosen

independently, and do not depend on the position along the

curve. Moreover, as the transformed states (ηηη, ξξξ ) show the

property ‖dη1‖ = ‖dξ1‖ = 1 for y ∈ γ , no adjustment of

the desired impedance parameters is required when choosing

different paths.

In order to account for the velocity and the acceleration

limits of the physical system, conditional execution and

integration is performed to implement (15). Since system

model uncertainties are compensated by the inner position

control loop, this strategy provides high impedance tracking

accuracy in the non-contact case and greatly facilitates the

implementation on standard industrial manipulators with

high and/or unknown friction forces [9].

TABLE I

2-DOF GANTRY ROBOT COMPONENTS

component manufacturer type

y-axis ball screw FESTO EGC-80-BS-KF-1200

z-axis ball screw FESTO EGC-70-BS-KF-800

servo motor FESTO AS-55-M

force sensor ME-MESSSYSTEME K3D40

Note that the interaction with environment is not sys-

tematically considered yet and especially in case of stiff

environments the perfect tracking assumption may no longer

hold and impedance errors are likely to occur. These classical

robustness and stability issues of the admittance approach are

intensively studied in literature, see, e.g., [9], [15].

B. Force Tracking Control

Many applications do not ask for a desired impedance

behavior, but rather demand to maintain a desired interaction

force with an environment while following a reference tra-

jectory in the output space. Therefore, [16] suggests a control

law that is inferred from (14) by subtracting the desired force

F̄d
L from the measured load force F̄L and setting the stiffness

Kd to zero. Thus, the force tracking control law is equivalent

to (14), except that F‖ and F⊥ are replaced by F‖−Fd
‖ and

F⊥ −Fd
⊥ and k‖ = k⊥ = 0. Under the assumption that the

environment behaves like a nonlinear spring

F‖ =− f‖
(

ed
η

)
, F⊥ =− f⊥

(
ed

ξ

)
,

where ed
η f‖
(
ed

η

)
> 0 and ed

ξ f⊥
(

ed
ξ

)
> 0, and perfect tracking

performance of the inner position controller, the equilibrium

of the closed-loop dynamics

−Fd
‖ = m‖ë

pd
η + d‖ė

pd
η + f‖

(
e

pd
η

)

−Fd
⊥ = m⊥ë

pd

ξ
+ d⊥ė

pd

ξ
+ f⊥

(
e

pd

ξ

)

is asymptotically stable. Thus, the desired forces Fd
‖ and

Fd
⊥ serve as driving forces to exert specific forces on the

environment and in steady state condition, F‖ = Fd
‖ and

F⊥ = Fd
⊥ holds.

V. EXPERIMENTAL RESULTS

Measurement results of the 2-DOF gantry robot are shown

in this section. The servo motors as well as the ball

screw drives are from FESTO. The end effector position

and velocity are calculated from the measurements of the

integrated motor encoders. A triaxial force sensor form ME-

MESSSYSTEME is used to measure the external forces acting

on the end effector. Details on the components are listed

in Table I. The model parameters are either extracted from

data-sheets or measurements and are summarized in Table

II. The presented control algorithms are implemented and

executed using a real-time system DS1006 from DSPACE at
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TABLE II

2-DOF GANTRY ROBOT PARAMETERS

i-axis mt,i mJ,i Fc,i cv,i

y-axis 7.61 kg 29.26 kg 65.42 N 175.93 N s m−1

z-axis 4.41 kg 16.79 kg 37.69 N 62.83 N s m−1

TABLE III

DESIRED IMPEDANCE PARAMETERS

j-direction m j ζ j k j

⊥-direction 2.0 kg 0.3 200 N m−1

‖-direction 0.5 kg 0.6 10 N m−1

a sampling time of 1ms. For illustration purpose, the desired

path is chosen as an ellipse, which can be written as

σ̂σσ
(
θ̂
)
=

[
acos

(
θ̂
)
+ sy,o

bsin
(
θ̂
)
+ sz,o

]
, (16)

with the length of the major and minor axes a = 0.3m and

b = 0.15m, and its center coordinates sy,0 = 0.5m, sz,0 =
0.5m with respect to the reference frame. Note that (16) is

not in unit speed parametrization. Additionally, we want to

emphasize that more complicated paths such as splines can

be implemented with the same approach. In the following

experiments, the controller parameters al,k > 0 for l ∈ {η ,ξ},

k = 0,1,2 were chosen such that the eigenvalues of the

closed-loop error dynamics are p⊥,k = −40s−1 and p‖,k =
−20s−1 for k = 0,1,2. The desired impedance parameters in

tangential and transversal direction were selected according

to Table III, where ζ j represents the damping ratio and the

desired damping follows as d j = 2ζ j

√
m j/k j, for j ∈ {‖,⊥}.

A. Experiment A - Path Following Control

In a first experiment, only the path following concept

presented in Section III is investigated. Thus, solely the

performance of the inner position control loop is examined.

Fig. 4 shows the position of the end effector xc of the gantry

robot in the output space and the corresponding transformed

states ξ1 and η1. Starting from an initial position xc(0),
tracking errors in transversal and tangential direction are

quickly regulated to zero. Subsequently, set-point changes

in the transversal and tangential direction are performed.

Despite existing model inaccuracies, in particular in terms

of friction, the tracking performance is clearly satisfactory.

B. Experiment B - Path Following and Compliance Control

The second experiment combines the path following ap-

proach of Section III and the compliance control strategy

presented in Section IV. The path reference trajectories η p
1

and ξ p
1 of the inner path following controller are generated

by the admittance controllers in the outer loop, see Fig. 3.

The inner control loop tracks these generated path reference

trajectories and realizes the impedance behavior according

to (14) with the parameters listed in Table III. Starting from

an initial position xc(0), a position change along the path by

means of ηd
1 is accomplished, see Fig. 5. Accordingly, the
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Fig. 4. Experiment A: Following an elliptic path γ in the output space
according to the path reference trajectories η p

1 and ξ p
1 .
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Fig. 6. Experiment C: Combined path following and compliance control
for an elliptic path γ as forces are applied by a human operator.

system responds with the desired impedance behavior in path

direction. Next, a desired force Fd
⊥ = 5N is subtracted from

the (projected) measured force F⊥ in transversal direction.

Thus, the gantry robot reacts like an equivalent desired

damped system in the path normal direction. Subsequently,

a desired force Fd
‖ = 2N is applied in tangential direction

and causes the output to move in path direction. However,

ξ1 remains at its set point, as Fd
⊥ is constantly applied.

At last, the forces Fd
⊥ and Fd

‖ are changed simultaneously,

whereupon the system responds accordingly. The peaks in

the projected force signals result from the uncompensated

inertial force of the end effector acting on the force sensor

in case of dynamic position changes. The abrupt changes of

the transversal and tangential control inputs v⊥ and v‖ are

due to the not perfectly compensated Coulomb friction.

C. Experiment C - Path Following and Force Control

In the last experiment, presented in Fig. 6, the stiffness

k‖ of the tangential subsystem is set to zero and an external

force FL is manually applied. The applied force in transversal

direction is comparatively low at the first part of the exper-

iment, hence only movements along the path are induced.

In the second part, the human operator increases the force

in normal direction and therefore causes desired deviations

normal to the path. At last, forces are applied in transversal

and tangential direction resulting in a transversal deviation

and a guided motion along the path.

VI. CONCLUSIONS

This paper presents the design of a combined path fol-

lowing and compliance controller exemplarily applied to a

biaxial gantry robot. Although the proposed controller is

designed for a comparatively simple robotic manipulator,

we emphasize that the proposed concept is applicable to

any other industrial robot satisfying the assumptions of [7].

This approach may also greatly facilitate human machine

interaction, i.e., as the workspace of the robot can be limited

to a desired path, where the human operator controls the

motion along the path.
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