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Trajectory optimization for soft landing of
fast-switching electromagnetic valves

T. Glück ∗ W. Kemmetmüller∗ A. Kugi ∗

∗ Automation and Control Institute, Vienna University of Technology,
Gusshausstrasse 27–29, 1040 Vienna, Austria

(e-mail: {glueck, kemmetmueller, kugi}@acin.tuwien.ac.at)

Abstract: The design of a feedforward controller that facilitates soft landing and time
optimality of a fast-switching electromagnetic valve is presented. In particular, a mathematical
model of the considered pneumatic switching valve is developed and parametrized by means
of nonlinear parameter identification. Based on this model, the input constrained point-to-
point quasi-time-optimal control problem is formulated and the resulting two-point boundary
value problem is numerically solved. Due to the input constraints, the quasi-time-optimal
control trajectories show bang-bang behavior. The performance of the numerically determined
trajectories are demonstrated by means of measurement results on an experimental test bench.

Keywords: electromagnetic valve, fast-switching valve, soft landing, feedforward design,
optimal control

1. INTRODUCTION

Fast-switching solenoid valves are used in various fields of
applications. For instance in the manufacturing industry,
fast sorting tasks are performed by means of short air
pulses. In automation applications, pneumatic piston ac-
tuators are often controlled by means of pneumatic pulse-
width modulation and in the automotive industry, internal
combustion engines are controlled by variable gas exchange
timings. Common requirements of these applications are
short switching times and minimal impact velocities of
the plunger in order to eliminate acoustic noise, to avoid
damage of mechanical components or at least to reduce
mechanical wear. Different approaches reported in the
literature address the soft landing problem, covering cycle
adaptive controllers such as repetitive learning control (Tai
et al., 2001), iterative learning control (Hoffmann et al.,
2003) and extremum seeking (Peterson and Stefanopoulou,
2004). Feedback control strategies using state observers
have been reported by Eyabi and Washington (2006);
Peterson et al. (2006). Koch et al. (2002); Chung et al.
(2007); Chladny and Koch (2008) enhanced these concepts
by feedforward controllers, which are designed by exploit-
ing the differential flatness properties of the underlying
mathematical model. In order to minimize the transition
time of the plunger from one valve seat to the other,
the allowed input voltage range should be fully utilized.
The flatness-based design methodology, however, does not
allow to incorporate these constraints. One possibility of
considering the input constraints in the flatness-based
design is to assume a specific smooth trajectory shape,
cf. Petit et al. (2001); Chung et al. (2007).

In this work, a feedforward controller for a fast-switching
solenoid valve is designed by point-to-point quasi-time-
optimal control, which enables the incorporation of input
constraints in a direct way. The work is structured as
follows: In Section 2, a mathematical model of the consid-

ered solenoid valve is developed, which is parametrized by
nonlinear dynamic least-squares identification in Section 3.
The optimal control problem is formulated in Section 4
and numerical results are shown in Section 5. Measure-
ment results from an experimental test bench are given in
Section 6.

2. MATHEMATICAL MODEL

The mathematical model of the considered fast-switching
valve can be separated into three subsystems: the model of
the electromagnetic subsystem, the mechanical subsystem
and the pneumatic subsystem. Since measurement results
of the considered fast-switching valve confirm that the
valve is pressure-balanced, the pressure forces acting on
the plunger will be neglected. In addition, it will be
assumed that the flow force is small in comparison to
the magnetic force. Since no internal feedback from the
pneumatic dynamics to the electromechanical subsystem is
considered, the optimal control problem can be formulated
with the pneumatic subsystem being neglected.

2.1 Electromagnetic subsystem

In Figure 1, the equivalent magnetic circuit of the fast-
switching valve is given. It comprises the flux-dependent
effective core reluctance Rfc(Φfc), the effective reluctance
Rfp of the plunger, the effective reluctanceRg(s) of the air
gap between the core and the plunger, and the reluctance
Rl which accounts for the leakage fluxes. The reluctances
are modeled as

Rfc(Φfc) =
lfc

µ0µfc(Φfc)Afc
, Rfp =

lfp
µ0µfpAfp

,

Rl =
ll

µ0Al
, Rg(s) =

2s

µ0Ag
.

(1)

Here, lfc, lfp, and ll are the effective lengths of the core,
the plunger, and the leakage flux lines, respectively. Afc,
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Fig. 1. Reluctance model of the fast-switching valve.

Afp, and Al are the corresponding effective areas. The
effective length of the air gap is 2s, since there are two
air gaps between the core and the plunger, cf. Figure 2.
The corresponding area is denoted by Ag. Furthermore, µ0

denotes the permeability of air. The relative permeability
µfp of the plunger is assumed to be constant. However,
saturation of the core is phenomenologically modeled as

µfc(Φfc) =

(
k1

( |Φfc|
Afc

)
e
k2

|Φfc|
Afc + k3

)−1

, (2)

with the constant parameters ki, i ∈ {1, 2, 3}. From the
magnetomotive force Θ = Ni, where i is the current and
N is the number of windings, the flux Φfc through the coil
is given in the form

Φfc =
Θ

R . (3)

Here, the equivalent reluctance R of the overall system
reads as

R(s,Φfc) = Rfc(Φfc) +
Rl (Rg(s) +Rfp)

Rl +Rg(s) +Rfp
. (4)

Based on the flux linkage ψ = NΦfc of the coil, Faraday’s
law yields

d

dt
ψ = −Ri+ v, (5)

where R is the electric resistance and v is the voltage
applied to the coil. The coil current i can be expressed
in terms of the flux linkage and the air gap as

i =
R(s, ψ)

N2
ψ. (6)

From the magnetic energy

Wm =

∫ ψ

0

i(s, ψ̄)dψ̄

=

∫ ψ

0

Rfc(ψ̄)

N2
ψ̄dψ̄ +

1

2N2

Rl (Rg(s) +Rfp)

Rl +Rg(s) +Rfp
ψ2

(7)

the magnetic force fm (see Figure 2) can be deduced as

fm(s, ψ) =
∂Wm

∂s

=
1

2N2

R2
l

(Rl +Rg(s) +Rfp)
2

∂Rg(s)

∂s
ψ2.

(8)

2.2 Mechanical subsystem

The overall mathematical model is completed by the
mass balance of the plunger. Figure 2 shows a schematic

su

sl

magnet

s, w

fm

fc

cv dv

mv

v

i

plunger

dc,lcc,l

dc,ucc,u

cushioned
limit stops

Fig. 2. Schematic diagram of the valve.

diagram of the fast-switching valve. Here, w is the plunger
velocity. The mass of the plunger is denoted by mv, the
stiffness of the load spring by cv, and the viscous damping
coefficient due to the friction of the housing and the sealing
elements by dv. The plunger is loaded by the magnetic
force fm(s, ψ) and a contact force fc(s, w). The latter
models the contact of the plunger with the lower and
upper limit stops, which are reached at s = sl and s = su,
respectively. That is, fc(s, w) = 0 ∀s = [sl, su]. The mass
balance of the plunger reads as

d

dt
s = w (9a)

d

dt
w =

1

mv
(−fm(s, ψ) + fc(s, w) − cv (s− lc0)− dvw) .

(9b)

Herein, cvlc0 denotes the preloading force resulting from
the load spring. The limit stops of the plunger are cush-
ioned by viscoelastic sealings, which can be described by
means of a linear Kelvin-Voigt model

fc(s, w) =





−cc,u (s− su)− dc,uw for s > su
−cc,l (s− sl)− dc,lw for s < sl
0 else.

(10)

Strictly speaking, the limit stop would entail a switched
system with switching conditions at s = sl and s = su. The
switching structure, however, may inordinately complicate
the optimal control problem. Alternatively, the contact
characteristics is smoothed a by tanh-function, i.e.,

fc(s, w) = (αl − βlw)
1

2
(− tanh(ηl(s− sl)) + 1)

+ (αu + βuw)
1

2
(− tanh(ηu(s− su))− 1) .

(11)

The steepness of fc(s, w) can be adjusted by the param-
eters ηl and ηu. Moreover, βl and βu denote the viscous
damping coefficients. In order to approximately follow the
linear spring characteristics at the contact points, the
stipulation

∂fc
∂s

∣∣∣∣
s=si,w=0

= −cc,i ≈ −1

2
αiηi, i ∈ {l, u} (12)

is made. The parameters αl and αu determine the maximal
spring forces of the contact model. Figure 3 shows the
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Fig. 3. Static contact force model.

smoothed contact characteristics (11) for the parameters
βu = βl = 0 and ηu = ηl = 1061/m.

3. PARAMETER IDENTIFICATION AND MODEL
VALIDATION

Several parameters of the mathematical model cannot
be directly determined from data sheets. Therefore, a
parameter identification of the overall model is performed
in order to fit the derived model to measurement results.
First the electromagnetic subsystem is parametrized. For
this, the reluctance (4) is reformulated in the structural
equivalent form

R(s, ψ) = p1|ψ|ep2|ψ| + p3 +
p4(p5s+ p6)

p4 + p5s+ p6
, (13)

with the parameters

p1 =
k1lfc

µ0NA2
fc

, p2 =
k2

NAfc
, p3 =

k3lfc
µ0Afc

,

p4 = Rl, p5 =
2

µ0Ag
, p6 = Rfp.

(14)

The unknown parameters θ ∈ {R, p1, p2, p3, p4, p5, p6},
with the electric resistance R from (5), are found from
the nonlinear dynamic least-squares identification task

min
θ

1

T

∫ T

0

(i− im)
2
dt

s.t.
d

dt
ψ =v −R i, ψ(0) = ψ0

i =
R(sm, ψ)

N2
ψ.

(15)

Here, im and sm are the measurements of the current and
the plunger position, respectively. The measurements were
carried out during the time interval t ∈ (0, T ) for different
steps in the input voltage v.

Figure 4 shows results of the parametrized model for two
different voltage steps v. The results confirm that the
reluctance model (4) is capable of approximating the real
electromagnetic behavior of the valve in an excellent way.
The effect of saturation is negligible for small current
values, cf. Figure 4(a). However, for large currents, Fig-
ure 4(b) clearly demonstrates the necessity of modeling
the nonlinear saturation phenomena. In addition, the in-
ductance L = R(s, ψ)/N2 is shown in Figure 4.

The magnetic force fm is calculated from the identified
reluctance model according to (8). Due to temperature
dependency and the presence of hysteresis of the viscoelas-
tic material, the proposed force model (11) is only an

approximation of the real viscoelastic behavior. Thus, the
identification of the mechanical parameters from the mass
balance (9) by applying again nonlinear dynamic least-
squares identification fails. In fact, the spring constant cv
as well as the preloading force cvlc0 were obtained from
measurements in stationary conditions. The parameters
of the contact model and the viscous damping coefficient
dv were adjusted in order to approximately reproduce the
contact behavior with the sealing. Based on the developed
model, the optimal control problem is formulated in the
next section.

4. OPTIMAL CONTROL PROBLEM

The mathematical model (5) and (9) with the state vector

x = [s, w, ψ]
T ∈ R3 with the constrained affine input

u = v ∈ R can be written in the form
d

dt
x = f(x) + bu, x(0) = x0, (16)

with the initial condition x0 ∈ R3. The control objective
is to find an optimal control u∗ ∈ U =

[
u−, u+

]
that

guarantees a minimal transition time Tf for a set-point
change

(u0,x0) → (uf ,xf ), t ∈ (0, Tf), (17)

with
u(0) = u0, 0 = f(x0) + bu0,

u(Tf ) = uf , 0 = f(xf ) + buf
(18)

and the terminal condition x(Tf) = xf ∈ R3. Therefore,
the input-constrained point-to-point optimal control prob-
lem

min
u∈U

J(u) = ϕ(Tf ) +

∫ Tf

0

l(u)dt

s.t.
d

dt
x = f(x) + bu, x(0) = x0, x(Tf) = xf ,

u ∈ U =
[
u−, u+

]
(19)

has to be solved. The summand ϕ(Tf ) = Tf of the cost
functional J(u) represents the time optimality, whereas
the integral term l(u) = ru2/2, with r > 0, serves
as a regularization in order to avoid singular arcs in
the quasi-time-optimal control problem. Introducing the
Hamiltonian (Bryson and Ho, 1975)

H(x, u,λ) = l(u) + λT (f(x) + bu) , (20)

with the adjoint states λ ∈ R3, and applying a time
transformation t = Tf τ that maps the time interval
t ∈ (0, Tf) onto τ ∈ (0, 1), the optimal control problem
can be reformulated by means of Pontryagin’s maximum
principle (Athans and Falb, 1966) in form of a two-point
boundary value problem, i.e.

d

dτ
x∗ = Tf (f(x

∗) + bu∗) (21a)

d

dτ
λ∗ = −Tf

(
∂

∂x
f

)T
(x)

∣∣∣∣∣
x=x∗

λ∗ (21b)

u∗ = argmin
u∈U

H(x∗, u,λ∗) (21c)

with boundary conditions

x∗(0) = x0 and x∗(1) = xf (22)

and the transversality condition

H(x∗, u∗,λ∗)|τ=1 = −1 (23)

Post-print version of the article: T. Glück, W. Kemmetmüller, and A. Kugi, “Trajectory optimization for soft landing of fast-switching
electromagnetic valves”, in Proceedings of the 18th IFAC World Congress, vol. 18, Milano, Italy, Aug. 2011, pp. 11 532–11 537. doi:
10.3182/20110828-6-IT-1002.01822
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.3182/20110828-6-IT-1002.01822


100
150
200

50s m
in
µ
m

6

12

0ψ
in

m
V
s

0.2
0.4

0

i
in

A

24

28

20

L
in

H

0.2 0.4 0.6 0.8 1.00
normalized time

1
2
3

0v
in

V

(a) Set-point change of v = 2.5V.

50
100
150
200

0s m
in
µ
m

10
20

0ψ
in

m
V
s

1
2

0

i
in

A

28
36

12
20

L
in

H

0.2 0.4 0.6 0.8 1.00
normalized time

4
8
12

0

v
in

v
(b) Set-point change of v = 12V.

Simulation
Measurement

Fig. 4. Identification results for different voltage set-point changes. Measured air gap sm, simulated flux linkage ψ,
measured and simulated current im and i, and simulated inductance L.

150

200

100s∗
in
µ
m

−0.1

−0.2

0

w
∗
in

m
/
s

0.5 1.00
normalized time τ

6
12
18

0ψ
∗
in

m
V
s

(a) Optimal state trajectories.

50
100

−50
0λ

∗ 1

3

−3

0

λ
∗ 2

×10−3

0.5 1.00
normalized time τ

4

−4

−8

0

λ
∗ 3

×10−2

(b) Optimal adjoint state trajectories.

20

−20

0
v
∗
in

V

0.4

0.8

1.2

0

i∗
in

A

0.5 1.00
normalized time τ

4
8

−4
0f

∗
in

N

(c) Optimal voltage v∗, current i∗,
magnetic force f∗

m ( ),
contact force f∗

c ( ) and
sum force f∗

sum ( ).

Fig. 5. Numerical results of the time optimal control problem for the opening motion (su → sl).

resulting from the free end time Tf . The superscript ∗

refers to optimal variables. Owing to the input affine sys-
tem representation (16), the minimization problem (21c)
can be explicitly solved resulting in an optimal control
function

u∗ = ξ(λ) =





u− for u0 ≤ u−

u0 for u0 ∈
(
u−, u+

)

u+ for u0 ≥ u+,

(24)

with

u0 = −1

r
(λ∗)T b. (25)

Note that λTb = λ3. In the limit case for r → 0 each
time λ3 crosses zero, u∗ switches between the limits u−

and u+. Then, the solution of the optimal control problem
(19) is a bang-bang control, except for λ3 = 0. Also
note that for r = 0 the optimal control problem (19) is
singular (Bryson, 1999) since u can neither be derived
from the minimization problem (21c) nor from the related
first-order necessary condition ∂H/∂u = 0. Then, the
optimal control input may be deduced from some total
time derivatives of ∂H/∂u = 0, cf. Kelley et al. (1967).

Post-print version of the article: T. Glück, W. Kemmetmüller, and A. Kugi, “Trajectory optimization for soft landing of fast-switching
electromagnetic valves”, in Proceedings of the 18th IFAC World Congress, vol. 18, Milano, Italy, Aug. 2011, pp. 11 532–11 537. doi:
10.3182/20110828-6-IT-1002.01822
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.3182/20110828-6-IT-1002.01822


150

200

100s∗
in
µ
m

0.05
0.10
0.15

0w
∗
in

m
/
s

0.5 1.00
normalized time τ

6

12

0ψ
∗
in

m
V
s

(a) Optimal state trajectories.

−8

−6

−10

λ
∗ 1

3

6

−3

0

λ
∗ 2

×10−3

0.5 1.00
normalized time τ

3

6

−3
0λ

∗ 3

×10−2

(b) Optimal adjoint state trajectories.

20

−20

0

v
∗
in

V

0.4

0.8

0

i∗
in

A

0.5 1.00
normalized time τ

2
4

−2
0f

∗
in

N

(c) Optimal voltage v∗, current i∗,
magnetic force f∗

m ( ),
contact force f∗

c ( ) and
sum force f∗

sum ( ).

Fig. 6. Numerical results of the time optimal control problem for the closing motion (sl → su).

5. NUMERICAL RESULTS OF THE OPTIMAL
CONTROL PROBLEM

Numerical solutions of the two-point boundary value prob-
lem (21)-(23) can be obtained using the Matlab function
bvp4c(), cf. Shampine et al. (2003). Figures 5 and 6
show numerical results of the time-optimal point-to-point
transition for the opening

(u0 = 0,x0 = [su, 0, 0]
T
) → (uf = vl,xf = [sl, 0, ψl]

T
)

and for the closing

(u0 = vl,x0 = [sl, 0, ψl]
T
) → (uf = vu,xf = [su, 0, ψu]

T
)

of the fast-switching valve within the normalized transition
time τ ∈ (0, 1). Here, vl and ψl denote the resulting
set-point voltage and flux linkage, respectively, cf. (18),
at the upper limit, and vu and ψu the set-point voltage
and flux linkage at the lower limit. Note that for all
numerical solutions outside the vertical dashed lines the
initial and final values are held constant for illustration
purposes only. The optimal state trajectories for opening
the valve are given in Figure 5(a). Figure 5(c) shows the
corresponding optimal voltage v∗, which is nearly bang-
bang because r in the penalty term is chosen very small
r = 10−81/V2. Moreover, Figure 5(c) contains the optimal
current i∗, the magnetic force f∗

m, the contact force f∗
c

and the sum of the forces f∗
sum acting on the plunger.

The optimal adjoint states are shown in Figure 5(b). They
exhibit oscillations at the beginning of the considered
time interval. Although the incorporation of the contact
model (11) results in a locally numerical stiff model, the
oscillation is not a numerical artifact but inherent to the
model. Numerical results for different contact stiffnesses
cci , i ∈ {u, l}, of the contact model confirm this statement.
Figure 6 shows analogous numerical results for closing the
valve with r = 10−81/V2. It is worth noting that in this
case the solution of the optimal control problem is not
purely bang-bang. Whenever λ∗3 vanishes (approximately
for τ ∈ [0.4, 0.6]), u∗ does so as well. This happens if f∗

m
vanishes, implying that only the spring force accelerates

the plunger. For confirming the numerical results of the
two-point boundary value problem, the optimal control
problem was additionally solved by full discretization with
SNOPT, see Gill et al. (2006), resulting in the same
optimal control trajectories.

6. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

The obtained numerical results were verified on an exper-
imental test bench. The power electronics used for driving
the magnetic valve allows the accurate measurement of the
current and the voltage. The position and velocity of the
plunger were obtained from a laser vibrometer (Polytec)
and the measuring and control system dSPACE 1005 was
utilized for data processing.

The experimental results revealed small model inaccura-
cies, which may be attributed to temperature dependency
of the coil resistance and of the contact behavior of the
limit stops and to stick-slip effects. However, by slightly
moving the switching-points of the input voltage, it is
possible to open and close the valve in minimal time and
with almost zero velocity at the limit positions. Figure 7
shows the measurement results for the opening and the
closing of the magnetic valve. For the opening scenario
in Figure 7(a), in contrast to the numerical results, the
normalized opening time of τm = 0.87τ was needed. It is
evident, that by applying the structural equivalent input
trajectory it is possible to minimize the impact velocity
at the seals. The same applies to the valve closing in
Figure 7(b). A normalized time ratio of τm = 0.84τ was
needed for the set-point change within minimal time.

7. CONCLUSION AND FUTURE WORK

In this work, time-optimal feedforward trajectories for
fast-switching valves are presented. Nonlinear dynamic
least-squares identification was performed to parametrize
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Fig. 7. Measurement results from an experimental test bench.

the developed mathematical model. The point-to-point
quasi-time-optimal control problem was reformulated by
means of Pontryagin’s maximum principle and numerically
solved by a direct approach. In the last part, the applicabil-
ity of the time-optimal feedforward trajectories is demon-
strated by means of measurement results. Future work
addresses the cycle-based adaption of the time-optimal
feedforward trajectory in order to account for time-varying
parameters and model mismatches.
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