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Abstract. Many models of visual attention have been proposed in the
past, and proved to be very useful, e.g. in robotic applications. Recently
it has been shown in the literature that not only single visual features,
such as color, orientation, curvature, etc., attract attention, but com-
plete objects do. Symmetry is a feature of many man-made and also
natural objects and has thus been identified as a candidate for atten-
tional operators. However, not many techniques exist to date that exploit
symmetry-based saliency. So far these techniques work mainly on 2D
data. Furthermore, methods, which work on 3D data, assume complete
object models. This limits their use as bottom-up attentional operators
working on RGBD images, which only provide partial views of objects. In
this paper, we present a novel local symmetry-based operator that works
on 3D data and does not assume any object model. The estimation of
symmetry saliency maps is done on different scales to detect objects of
various sizes. For evaluation a Winner-Take-All neural network is used
to calculate attention points. We evaluate the proposed approach on two
datasets and compare to state-of-the-art methods. Experimental results
show that the proposed algorithm outperforms current state-of-the-art
in terms of quality of fixation points1.

1 Introduction

Attention has been studied extensively for many years [1–4]. The value of at-
tention, e.g. for robotic applications, has been demonstrated by Aloimonos et
al. [5]. Many attentional systems concentrate on pre-attentive features, such as
color contrast, orientation, curvature, etc. It has been shown, however, that not
only single popping out features attract bottom-up attention, but also complete
objects do [6, 7].

Symmetry is one of the characteristics of human-made and natural objects,
and thus can be seen as an objectness measure. Kootstra et al. [8] showed that
human eye fixations can be predicted well by symmetry. Many symmetry opera-
tors exist [9–13], which can be divided into two major groups: operators working
on 2D data, and operators working on 3D data. Among the 2D operators one
well-known operator was developed by Reisfeld et al. [9] which detects context-
free generalized symmetry based on magnitude orientations of image gradients.

1 The research leading to these results has received funding from the Austrian Science
Fund (FWF) under project TRP 139-N23 InSitu



2 Ekaterina Potapova, Michael Zillich, Markus Vincze

This symmetry operator was extended by Heidemann et al. [10] to a local color
symmetry operator. Loy and Zelinsky [11] proposed to detect local radial sym-
metries in an image using a special transform. Kootstra et al. [14] proposed a
2D symmetry saliency operator based on the symmetry operator by Reisfeld et
al. [9]. This saliency operator is able to detect symmetrical regions at different
scales. The basic idea is that symmetries are computed over multiple scales and
then summed in across-scale addition manner to obtain a master saliency map.
Kootstra et al. [14] showed that this approach works better than classical con-
trast model saliency [15]. Mitra et al. [16] gave an extensive overview of the exist-
ing methods to detect different types of symmetries in 3D geometries. Methods
based on search in oriented histograms [17], spectral analysis [12], feature-graph
matching [13] and many others were indicated. The majority of 3D algorithms
work on a complete 3D model of an object to detect symmetries. This property
limits their use as bottom-up attentional operators working on RGBD images,
i.e. partial views of objects.

In this paper, we propose a new 3D symmetry-based saliency operator, calcu-
lating a measure of context-free local symmetry from a 3D point cloud. The pro-
posed symmetry operator is used to predict fixation points for further attention-
driven segmentation or detailed exploration of the scene. We show that a 3D
symmetry-based saliency operator reflects the notion of objectness better than
the currently existing 2D symmetry-based saliency operator by Kootstra et al.
[14] and the classical saliency operator by Itti et al. [15]. We extensively eval-
uated both methods on two databases. The first database consists of images
showing table scene, and the second one of scenes of complete rooms. Both in
quantity and quality of fixations, the proposed algorithm outperforms previous
work.

The paper is structured as follows: In Section 2, we describe our proposed
3D symmetry-based saliency operator. Section 3 presents the evaluation results
to demonstrate our approach. We compare our methods to Kootstra et al. [14]
and Itti et al. [15]. Section 4 concludes the paper.

2 Method

In this section, we describe the method for calculating local symmetries in 3D.
The algorithm is based on detecting reflective symmetries using principal axes
of Extended Gaussian Images built from patches’ normals.

2.1 3D Symmetry Model

The 3D reflective symmetry is calculated from a depth image D (Fig. 1). Based
on the depth image D, we create a point cloud P , so that ∀p (r, c) ∈ P :

p (r, c) = (x, y, z) (1)

where (r, c) are row-column coordinates in the depth image, (x, y, z) are 3D point
coordinates. For each point p a normal np is estimated. The normal to a point in
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(a) (b)

Fig. 1. The depth image of a cylinder (artificial data) is shown on Figure 1(a), with
the point p(r, c) for which the symmetry is calculated (highlighted in red), and the
kernel Φ(p) shown as a black square. The subset of points {p} = Φ(p)

⋂
P is shown in

3D on the right side. Subsets {p′i} and {p′′i } are shown in yellow and blue respectively,
with the reflective plane χi between the two point subsets. Normals np are shown as
black lines. In Figure 1(b) examples of p′i,n

′
i and p′′i ,n

′′
i are shown in yellow and blue

respectively.

Fig. 2. Visual illustration for the calculation of angles α′
i and α′′

i . l is the line connecting
the two mean points p′i and p′′i . α′ is the angle between mean normal n′

i and l, and α′′

is the angle between mean normal n′′
i and l.

the point cloud is estimated as the normal of a plane tangent to the neighboring
surface [18].

Φ(p) defines the symmetry kernel as a squared patch, centered around p
(Fig. 1) with side length k. The amount of 3D symmetry at the given location
p (r, c) is estimated on the subset of points {p} = Φ(p)

⋂
P .

Sun et al. [17] proposed to use an Extended Gaussian Image built from point
normals to detect symmetries of a model. Minovic et al. [19] proved that planes
of reflective symmetries are perpendicular to the directions of the principal axes.
Thus, to detect planes of reflective symmetries from the patch we build an
Extended Gaussian Image from the patch’s point normals, and calculate the
principal axes γ = {γ1, γ2.γ3} of the Extended Gaussian Image using Principal
Component Analysis (PCA). The corresponding symmetry reflective planes χi

(i = 1, 2, 3) are defined as planes going through the point p (r, c) with the plane
normal equal to the corresponding principal axis γi.
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For a given reflective plane χi the point set {p} is divided into two subsets
{p′i} and {p′′i }, so that ∀p ∈ {p}:

p ∈

{
{p′i} if dH (p, χi) > 0

{p′′i } if dH (p, χi) < 0
(2)

where dH (p, χi) is the signed Euclidean distance from point p to the plane χi

(Fig. 1). The signed Euclidean distance is the distance from the plane according
to the Hessian normal form.

The amount of 3D reflective symmetry is relative to a given plane χi for a
given subset of points {p} and defined as:

Ωi (Φ (p)) = exp (−4Di) · exp (−4 di) · ω1 · ω2 (3)

The multiplication of all four components reflects the fact, that we are search-
ing for patches that are symmetrical in all four aspects (see below).
4Di represents the difference in depth values between mean points:

4Di =
∣∣∣D (p′i)−D (p′′i )∣∣∣ (4)

p′i =
1

N ′

∑
pj∈{p′

i}
pj (5)

p′′i =
1

N ′′

∑
pj∈{p′′

i }
pj (6)

where N ′ and N ′′ are numbers of points in the subsets {p′} and {p′′} respectively,
and p′ and p′′ are mean points of the respective subsets. 4Di reflects the fact,
that we are only interested in symmetries, that are facing our view point.
4di represents the difference in distances from mean points p′ and p′′ to the

reflective plane χi:

4di =
∣∣∣d(p′i, χi

)
− d

(
p′′i , χi

)∣∣∣ (7)

where d (p, χi) is the unsigned Euclidean distance from the point p to the plane
χi. 4di reflects the fact that we are not only searching for patches with symmet-
rical orientations, but also for patches that can be divided into two subpatches,
which are equally sized and symmetrically positioned in 3D space.

ω1 is a coefficient measuring the co-planarity between the line l connecting
p′i and p′′i and the two mean normals n′

i and n′′
i (Fig. 2):

ω1 = |[n′
i × n′′

i ]× l| (8)

l =
p′i − p′′i
||p′i − p′′i ||

(9)

n′
i =

∑
pi∈{p′

i}
npi

||
∑

pi∈{p′
i}

npi
||

(10)
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n′′
i =

∑
pi∈{p′′

i }
npi

||
∑

pi∈{p′′
i }

npi
||

(11)

where p′i and p′′i are mean points of the subsets {p′i} and {p′′i } respectively,
and n′ and n′′ are mean normals.

ω2 shows the similarity between mean normal directions based on the sym-
metry operator from Reisfeld et al. [9] and is calculated as following:

ω2 = (1− cos (α′ + α′′)) · (1− cos (α′ − α′′)) (12)

where α′ is the angle between mean normal n′
i and l, and α′′ is the angle between

mean normal n′′
i and l. Basically this operator gives the largest value to regions,

where normals are oriented completely opposite and the smallest value to regions,
where normals have the same orientation (i.e. flat surfaces).

Ideally the factors 4Di, ω2 and ω2 should be calculated on each pair of
opposite points and then summed up after multiplication. Due to small errors
in the calculation of normals this approach is not very robust. Moreover, it is
computationally expensive. Using only the mean points and normals to represent
subpatches is a common approximation which proved to be accurate enough for
our computations.

The amount of 3D symmetry s (x, y) at a given pixel p (r, c) is equal to:

s (r, c) =

{
0 if D (r, c) = 0

maxi=1,2,3{Ωi (Φ (p (r, c)))} if D (r, c) > 0
(13)

where D (r, c) = 0 means that no depth information is available at this point.
Due to the nature of the 3D symmetry operator convex and concave regions

will obtain the same symmetry values. While in everyday scenarios the majority
of objects, that are claimed to be symmetric by humans, are rarely concave. To
eliminate concave regions the following equation is applied:

s (r, c) =

{
0 if (α′ > π/2 and α′′ < π/2) or (α′ < π/2 and α′′ > π/2)

s (r, c) otherwise

(14)

2.2 Multi-Scale Symmetry-Based Saliency Map

To calculate a multi-scale symmetry-based saliency map a Gaussian pyramid
of depth images is created. For each depth map the respective point cloud is
calculated. 3D based symmetry maps sl are calculated on every scale l of the
pyramid. This results in a pyramid of symmetry maps. A master saliency map
S is obtained by across scale addition [15] of the symmetry pyramid:

S(r, c) =

L2⊕
l=L1

sl(r, c) (15)

where L1 is the finest scale and L2 is the coarsest scale. The calculation on
different scales allows to detect symmetries of different sizes in a computationally
effective manner.
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(a) (b) (c) (d)

Fig. 3. Examples of symmetry maps calculated on artificial data. In the first row
artificially created depth images of a cone, a rotated cube, a rotated cylinder and a
sphere are shown in columns (a), (b), (c), (d) respectively. The second row shows the
corresponding 3D symmetry-based maps calculated using only one scale l = 0 and
kernel size k = 30.

2.3 Attention Points

The multi-scale symmetry-based saliency map S is used as input to the Winner-
Take-All (WTA) neural network [20] to calculate attention points. Attention
points can be used as seed points for attention-driven segmentation [21] or as
fixations for further investigation of the region like zooming in or foveation. This
approach for scene investigation is highly useful in such applications as robot
navigation, robot localization and object detection. It can significantly reduce
the search space and automatically point to interesting objects or areas, without
exhaustive and computationally expensive exploration of the whole scene.

3 Evaluation

The quality of symmetry-based saliency maps was evaluated on artificial data,
as well as on real data. Usually saliency operators are evaluated by comparing
saliency results with eye-tracking data. This approach is useful when the task
on hand is to build a system that tries to explain the human visual attention
system. Since our task is to build an attention system that can be useful in
robotic tasks, we chose a different approach for evaluation.

Our evaluation consists of several parts. At first, we evaluated the quality of
attention points by detecting how many different objects were covered by the
attention system with a given number of fixations, the so-called Hit Ratio (HR).
Secondly, because our algorithm depends on the size of the kernel, we evaluate
the variance of the fixation results under different kernel sizes.

Our experiments were done against the 2D symmetry saliency operator pro-
posed by Kootstra et al. [14] and against the orientation-contrast saliency oper-
ator proposed by Itti et al. [15].
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(a)

(b)

(c)

(d)

Fig. 4. Examples of images from the Table Objects Scene Database (TOSD) from Vi-
enna University of Technology. Row (a) shows examples of 2D symmetry-based maps
[14] overlaid with original images. Respective attention points calculated from 2D
symmetry-based maps using WTA are shown in row (b). 2D symmetry-based maps
were calculated on scales l = 1..5 using an external kernel k1 = 11 and an inter-
nal kernel k2 = 5 (for detailed parameters explanation see [14]). Row (c) shows 3D
symmetry-based maps calculated using the proposed method and overlaid with orig-
inal images. Respective attention points are shown in row (d). 3D symmetry-based
maps were calculated on scales l = 0..4 using kernel k = 15.

3.1 Evaluation on Artificial Data

To prove that our 3D symmetry operator is performing as expected, we have
tested it on artificially created data. Artificially created data was produced from
rendering mathematical models of different objects with known shape (i.e. cylin-
ders, cubes, spheres, cones). Results of symmetry operators are shown in Fig. 3.

From the presented results it is clearly visible that the proposed method
works perfectly for synthetic examples. However, the result for the sphere (Fig. 3,
(d)) visually does not look perfect, due to artifacts of the visualization process.
Symmetry values for the sphere are quite small (note that, as explained in Sec-
tion 2.1, surface patches, that are rather flat locally, result in small values of
ω2). For visualization in Fig. 3 values were normalized to a visible range, which
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(a)

(b)

(c)

(d)

Fig. 5. Examples of images from the New York University Depth Database (NYUDD).
Row (a) shows 2D symmetry-based maps [14] overlaid with original images. Respective
attention points calculated from 2D symmetry-based maps using WTA are shown in
row (b). 2D symmetry-based maps were calculated on scales l = 1..5 using an external
kernel k1 = 11 and an internal kernel k2 = 5 (for detailed parameters explanation see
[14]). Row (c) shows 3D symmetry-based maps calculated using the proposed method
and overlaid with original images. Respective attention points are shown in row (d).
3D symmetry-based maps were calculated on scales l = 0..4 using kernel k = 15.

in this case led to an amplification of small errors from the normal calculation
step.

3.2 Evaluation on Real Data

Symmetry-based saliency maps were evaluated on two RGB-D databases. The
first database is the Table Object Scene Database (TOSD) from Vienna Univer-
sity of Technology2. The database consists of 244 different table scenes including
free-standing objects, multiple occluded objects and piles of objects. All objects
in the TOSD were hand-labeled with outlining polygons. Examples of images
from the database and respective saliency maps are shown in Fig. 4.

2 https://repo.acin.tuwien.ac.at/tmp/permanent/TOSD.zip
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Fig. 6. Hit Ratio (HR) against the total number of calculated attention points for
kernel sizes k = 10, k = 20, k = 30. As can be seen from the plot the kernel size does
not have a big influence on the performance of the proposed algorithm when the total
number of calculated attention points is smaller than 30.

The second database on which we evaluated our results was the New York
University Depth Dataset (NYUDD)3 which consists of more than 1000 densely
labeled images of more that 400 different indoor scenes (Fig. 5).

From symmetry-based saliency maps attention points were calculated using
the Winner-Take-All neural network. Attention points are evaluated with respect
to the Hit Ratio (HR).

The Hit Ratio (HR) shows the percentage of unique attention points being
situated inside different objects:

HR =
n

N
(16)

where N is the total number of calculated attention points and n is the number
of different attended objects. A perfect attention mechanism will hit every object
exactly once, resulting in a HR equal to one.

3.3 Choosing the Size of the Kernel

Our algorithm depends on exactly one settable parameter - the kernel size k.
We have evaluated the performance of the proposed method with different kernel

3 http://cs.nyu.edu/ silberman/datasets/nyu depth v2.html
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Fig. 7. Comparison plot of the Hit Ratio (HR) against the total number of calculated
attention points for the Table Objects Scene Database (TOSD) for different types of
saliency maps: the orientation-contrast model [15], the 2D symmetry-based model [14]
and our proposed 3D symmetry-based model.

sizes (k = 10, k = 20 and k = 30) on the TOSD. Results are shown on Fig. 6. As
can be seen from the plot the size of the kernel does not influence the performance
much, when the number of calculated attention points is smaller than 10. This
result is expected, because symmetry maps are calculated on different scales.
This allows to detect symmetrical objects of different sizes regardless of the kernel
size. However, with the kernel size k = 30 the performance drops significantly
after around 10 attention points. This is easily explained, due to the fact that
typical sizes of objects in the TOSD are smaller than 50 pixels. It means that
after all relatively big objects were detected in cluttered scenes, smaller objects
were ignored. These results suggests that smaller kernels are to be preferred (a
value of 15 was chosen in subsequent experiments). And the detection of larger
objects can then be done on coarser scales.

3.4 Evaluation on the databases

Fig. 7 and Fig. 8 show comparison plots of the HR against the total number of
calculated attention points for the TOSD and for the NYUDD respectively. As
can be seen from the plot the use of 3D symmetry-based saliency maps improves
the quality of attention points up to 10% starting from the first fixation. An
interesting observation can be made from the plots. An improvement for the
NYUDD is more noticeable than for the TOSD. While for the TOSD the average
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Fig. 8. Comparison plot of the Hit Ratio (HR) against the total number of calculated
attention points for the New York University Depth Dataset (NYUDD) for different
types of saliency maps: the orientation-contrast model [15], the 2D based symmetry
map [14] and our proposed method.

HR is higher. Explanations to these effects lie in the types of scenes. The TOSD
consists of crowded table scenes, while the NYUDD presents room scenes. The
probability to hit any object in the TOSD just by selecting a random point is
much higher than in the NYUDD. It also means that a perfect saliency operator
for TOSD should take much more complicated information into account, than
only early vision processes, e.g. early segmentation.

4 Conclusion

In the presented paper, we discussed a new algorithm for calculating a 3D
symmetry-based saliency map. The proposed algorithm is based on finding local
reflective symmetries using Extended Gaussian Images and normal direction dis-
similarities. From these saliency maps attention points using a Winner-Take-All
neural network were extracted. The quality of attention points was evaluated on
two databases (the TOSD and the NYUDD) against the Hit Ratio. Result were
compared to two saliency methods: the orientation-contrast method [15] and the
2D symmetry-based method [14]. We showed that the proposed algorithm works
better in terms of Hit Ratio (HR). Future work will concentrate on finding a
way to combine both 2D and 3D symmetry models to gain better results on a
variety of different types of scenes.
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