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Abstract— Man-made environments are abundant with pla-
nar surfaces which have attractive properties for robotics
manipulation tasks and are a prerequisite for a variety of vision
tasks. This work presents automatic on-line 3D object model
acquisition assuming a robot to manipulate the object. Objects
are represented with piecewise planar surfaces in a spatio-
temporal graph. Planes once detected in 2D are tracked and
serve as priors in subsequent images. After reconstruction of the
planes the 3D motion is analyzed and initial object hypotheses
are created. In case planes start moving independently a split
event is triggered, the spatio-temporal object graph is traced
back and visible planes as well as occluded planes are assigned
to the most probable split object. The novelty of this framework
is to formalize Multi-body Structure-and-Motion (MSaM), that
is, to segment interest point tracks into different rigid objects
and compute the multiple-view geometry of each object, with
Minimal Description Length (MDL) based on model selection
of planes in an incremental manner. Thus, object models are
built from planes, which directly can be used for robotic
manipulation.

I. INTRODUCTION

Increasing interest in enabling robot manipulators to oper-
ate in everyday environments leads to the problem of how to
acquire object models for manipulation. One does not want
to specify all objects and possible obstacles in advance but
allow the robot to actively acquire its own models, using
the robots ability to change view points and to interact
with the scene. Many objects in man-made environments
consist of planar surfaces, such as tables, shelves or box-
shaped packaging. Also curved surfaces can be approximated
sufficiently accurately for most robotics tasks with piecewise
planar surfaces, as is common in modelling for computer
graphics. Planar surface patches support reasoning about
object properties important for manipulation, such as contact
points and friction cones, in contrast to models based on
distinctive interest points, which typically lead to sparse point
sets and are more suitable for recognition.

Our overall goal is to build a cognitive robotic experi-
mentation framework. The rationale behind our system is to
enable human tutor driven learning-by-showing as well as
completely automatic on-line model acquisition by the robot
(see Figure 1). Schindler et al. [1] use a model selection
framework for multibody Structure-from-Motion estimation
of image sequences. In contrast we use model selection to
detect piecewise planar surfaces. We describe plane hypothe-
ses using the 2D projective transformation (homography)
computed from four interest point pairs in two uncalibrated
images. In the first step our model is simpler than that of
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Fig. 1. Example scenario we used to test our system, where a camera
moves around objects and pushes them. The image shows a stereo setup,
from which we use only a single camera.

Schindler, but it enables the robot to interact in more realistic
environments. After 3D reconstruction of the planes the
motion is analyzed and initial object hypotheses are created.
In case planes start moving independently a splitting event
is triggered and current visible planes as well as already
occluded planes, stored in a temporal object hypotheses
graph are assigned to the most plausible split object model.
For assignment of the planes a Minimal Description Length
(MDL) criterion formalizing the colour distribution and the
distance of planes within an object is used. Hence, at each
timestamp piecewise planar object models of the current
scene are available, which directly can be used for analysis
of the shape related to affordances. In case an interest point
descriptor, such as the popular SIFT proposed by Lowe [2]
is computed this model can directly be used for object
recognition and full pose registration from a single image
(see [3] and [4]).

After a review of the related work, we give an overview
of the system in Section II and its core parts, namely
the plane detection (Section II-A), Structure-from-Motion
(Section II-B), merging of planes (Section II-C) and splitting
of piecewise planar object models (Section II-D). Finally,
results of the experiments are shown in Section III.

A. Related work

Although this work focuses on a framework for modelling
objects we first want to mention some literature from the field
of active vision, which is the motivation for our experiments
shown later on and then tackle related work our system is
based on. The early attempts on Active Vision, that is an
active observer whose purpose is to improve the quality
of the perceptual results, goes back to [5], [6], [7]. In [6]
Aloimonos et. al stressed that an active observer can solve
basic vision problems in a much more efficient way. They



introduce a general methodology, in which they believe low-
level vision problems should be addressed. Metta et al. [8]
developed an active strategy for a robot to acquire visual
experience through simple experimental manipulation. The
experiments are oriented towards determining what parts of
the environment are physically coherent, that is, which parts
will move together, and which are more or less independent.
Our experiments are similar, but in contrast to Meta, who
studies the causal chains of events we focus on learning a 3D
piecewise planar object model triggered by motion events.

The basic parts of our object model are planes. Detecting
planes in uncalibrated image sequences is well studied.
Most approaches use a hypothesize-and-test framework. A
popular method for detecting multiple models is to use the
robust estimation method RANSAC [9], to sequentially fit
the model to a data set and then to remove inliers. To generate
plane hypotheses Vincent et al. [10] use groups of four points
which are likely to be coplanar to compute the homography.
To increase the likelihood that the points belong to the same
plane they select points lying on two different lines in an
image. In contrast Kanazawa et al. [11] define a probability
for feature points to belong to the same plane using the
Euclidean distance between the points. Both approaches use
a RANSAC scheme, iteratively detect the dominant plane,
remove the inliers and precede with the remaining interest
points. The success of the plane computation depends on
the coplanarity of four matched points. In [12], [13], [14]
different strategies are proposed to sequentially reduce the
set of points/lines to three pairs. More recent approaches,
such as proposed by Toldo et al. [15], Fouhey et al. [16] and
Chin et al. [17], concentrate on robust estimation of multiple
structures to treat hypotheses equally and do not favour
planes detected first over subsequent planes by greedily
consuming features. These approaches have to create plane
hypotheses independently of each other and thus it is not
possible to restrict the search space, which leads to higher
computational complexity. Our method is most similar to
the approach by Prankl et al. [18], who propose incremental
model selection based on the MDL principle to overcome
these drawbacks.

The planes, represented by homographies, are the basic
entities for 3D reconstruction and for merging/splitting to
create the final object model. While classical Structure-from-
Motion moving through a static scene is essentially solved
in a coherent theory [19], [20] and several robust systems
exist, in recent years, researchers focused on dynamic scenes
composed of rigidly moving objects. The solutions available
so far can be broadly classified into algebraic methods [21],
[22], [23], which exploit algebraic constraints satisfied by
all scene objects, even though they move relative to each
other, and non-algebraic methods [24], [25], which essen-
tially combine rigid SfM with segmentation. Most related
to our system are the methods proposed by Schindler [1]
and by Ozden [26]. They use interleaved segmentation and
3D reconstruction of tracked features into independent ob-
jects. Instead of directly sampling features and generating
3D object hypotheses, we incrementally cluster features to

Algorithm 1 Piecewise planar object modelling pipeline
1) Instantiate new interest points (IPs)
2) Track interest points
3) Track planes modelled by homographies and try to

estimate 3D motion for existing objects
if plane does not support 3D motion then
• trigger split event and create new objects from

current and past keyframes
end if
if average displacement of the IPs < d pixels then
• goto step 1

else
• init a new keyframe and continue

end if
4) Detect and renew planes
5) Merge and reconstruct planes greedily

if new plane supports active object motion model then

• insert plane
else
• create new 3D object and motion model (SfM)

else if
6) Refine objects using incremental bundle adjustment
7) goto step 1

planes in 2D using homographies and then reconstruct and
merge/split planes to independently moving objects in 3D.
Thus in the first step we use a simpler model to more robustly
cluster tracked features to planes, followed by a second step,
reconstruct, merge/split planes and create the final object
model. Finally, instead of a sparse point cloud we get a dense
representation with planes, which directly can be used for
robotic manipulation.

II. SYSTEM
We developed a method to create piecewise planar object

models from an uncalibrated image sequence on the fly. The
idea is to use a simple model for clustering interest points
to planes, which is combined with tracking in an interleaved
way and then reconstruct and merge planes to create object
hypotheses. In case planes start moving independently a split
event is triggered and the history of that object hypothesis is
reviewed to assign current visible planes as well as already
occluded planes to the best split hypothesis. Hence, we
can handle more complex scenes and additionally we get
a structural model of planes instead of a sparse point cloud.
Algorithm 1 gives a detailed outline of the piecewise planar
object modelling pipeline and Figure 2 depicts the events,
that is detection, tracking, merging and splitting of planes.

A. Plane detection using homographies

The idea is to cluster interest points at image level us-
ing the 2D projective transformation (homography). Interest
points of a plane cluster belong to the same object with a high
probability and thus build a reliable part for the following
3D reconstruction.



detection, reconstruction, merging of planes with common motion and tracking
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Fig. 2. The upper row shows three keyframes of sequence 1 (897 frames) with detected planes in green which are merged because of common 3D motion.
The brightness of the interest points indicates the assignment to different planes. After the gripper (two black dots on the left image border) pushes an
object the keyframe-graph is traced back and two different objects are modelled (lower image row).

Algorithm 2 Plane detection and tracking
P ← Ptracked, P ′ ← 0
k ← 0, ε←M/N , S ← 0
while η = (1− εM )k ≥ η0 do
P ′ ← P
Add Z random plane hypotheses to P ′

Select plane hypotheses from P ′ and store in P
Count number of explained interest points (inliers) I for
P
if I > Imax then
Imax ← I
ε← Imax/N

end if
k ← k + 1

end while

1) Algorithm: Therefore we embedded Minimal Descrip-
tion Length (MDL) based model selection in an iterative
scheme. Existing planes, tracked from the last images or
created in the last iteration compete with newly created
hypotheses to ensure that interest points are assigned to the
best current available hypothesis. Additionally hypothesis
generation is guided to unexplained regions. This method
avoids the bias towards dominant planes typical for iterative
methods, and it limits the search space which leads to a faster
explanation of the entire image in terms of piecewise planar
surfaces.

Algorithm 2 shows the proposed method for plane de-
tection and tracking. In each iteration a small number Z of
new plane hypotheses P ′ is computed which have to compete
with the selected hypotheses P of the last iteration. In the

first iteration P is initialized with tracked planes of the last
image. The termination criterion is based on the true inlier
ratio ε and the number of samples M which are necessary to
compute the homographies. As long as we do not know these
values we use the best estimate available up to now. For ε that
is the ratio of the number of explained interest points Imax of
the current best plane hypotheses and the number of matched
interest points N to explain. Accordingly M is the number
of plane hypotheses currently selected multiplied with the
minimal set of interest points m = 4 to compute one plane
homography. Furthermore in Algorithm 2 k is the number
of iterations, η stands for the probability that no correct set
of hypotheses is found and η0 is the desired failure rate.
Due to the incremental scheme it is possible to guide the
computation of new hypotheses to unexplained regions.

2) Minimal Description Length based model selection:
In each iteration selected homographies of the last iteration
have to compete with newly sampled hypotheses. For the
selection, the idea is that the same feature cannot belong
to more than one plane and that the model cannot be fitted
sequentially. Thus an over-complete set of homographies is
generated and the best subset in terms of a Minimum De-
scription Length criterion is chosen. The basic mathematical
tool for this is introduced in [27] and adapted in [28]. To
select the best model, the savings for each hypothesis h are
expressed as

Sh = Sdata − κ1Smodel − κ2Serror (1)

where in our case Sdata is the number of interest points N
explained by h and Smodel stands for the cost of coding
the model itself. One model (the homography of a plane) is
used and thus Smodel = 1. Serror describes the cost for the



error added, which we express with the log-likelihood over
all interest points fk of the plane hypothesis h. Experiments
have shown that the Gaussian error model in conjunction
with an approximation of the log-likelihood comply with the
expectations. κ1 and κ2 are constants to weight the different
factors and thus the merit term of a model results in

sii = Sh = −κ1 +
N∑

k=1

((1− κ2) + κ2p(fk|h)) , (2)

where p(fk|h) is the likelihood that an interest point belongs
to the plane hypothesis h. Details for the derivation of
Equation 2 can be found in [18]. An interest point can only be
assigned to one model. Hence, overlapping models compete
for interest points which can be represented by interaction
costs

sij = −
1

2

∑
fk∈hi∩hj

((1− κ2) + κ2 min{p(fk|hi), p(fk|hj)}) .

(3)
Finding the optimal possible set of homographies for the
current iteration leads to a Quadratic Boolean Problem
(QBP)1

max
n

nTSn , S =

 s11 · · · s1N
...

. . .
...

sN1 · · · sNN

 (4)

where n= [n1, n2, · · · , nN ] stands for the indicator vector
with ni = 1 if a plane hypothesis is selected and ni =
0 otherwise. This iterative method keeps the number of
hypotheses tractable. Furthermore experiments have shown
that a greedy approximation gives good results and thus the
solution can be found very fast.

B. Structure from Motion (SfM)

The final results of our system are 3D models of objects.
Approaching this goal from object reconstruction our system
is strongly related to the dynamic SfM frameworks [1], [26].
In [26] Ozden et al. defined the following requirements:

1) Determine the number of independently moving ob-
jects at the beginning of a sequence, and whenever
that number changes

2) Segment the feature tracks into different moving ob-
jects in each frame

3) Compute their 3D structure and the camera motion for
the frame

4) Resolve geometric ambiguities
5) Robustness to short feature tracks due to occlusion,

motion blur, etc.
6) Scale to realistic recording times

They propose interleaved segmentation and 3D reconstruc-
tion of the feature tracks into independent objects. Instead
of directly sampling features and generating 3D object hy-
potheses we incrementally cluster features to planes in 2D

1QBP assumes pairwise interaction, which in our case can be violated.
But this is still a good approximation because interaction always increases
cost, yielding a desirable bias against weak hypotheses.

and track them. Thus the first two items as well as the third
are approached more robustly with a simpler model in 2D
followed by reconstruction, clustering and splitting of planes
to objects in 3D.

To reconstruct planes which are not assigned to a 3D
motion model we use a standard SfM pipeline similar to
Nister et al. [29] and Klein et al. [30]. Therefore the nonlinear
refined homography is directly decomposed to initialize the
first camera pose (cp. [31]). In the following frames the rela-
tive motion from C−1 to C is estimated using RANSAC [9]
and a direct least squares solution between the two point
sets (cp. Haralick et al. [32]). A sparse bundle adjustment
implementation by Lourakis [33] over the last N frames is
used to refine camera pose and 3D points of the plane. Once
a plane is reconstructed our algorithm tries to incorporate
planes greedily in case of consistent motion.

C. Merging of planes with consistent motion
Merging of planes amounts to checking whether the mo-

tion of a new plane is consistent with the motion of an
existing object. In contrast to Schindler et al. [1] we aim at
building individual object models and thus, once an object
is split we do not merge them again if they start moving
together. Hence, it is possible that several objects with the
same motion are tracked at the same time and a new plane
moves consistent with more than one object. If merging
would be done only because of consistent motion this plane
would be assigned to one of the objects just by chance.
Therefore a pseudo-likelihood depending on colour and the
3D location of interest points is introduced and planes are
assigned to the object with a higher probability. Analogous
to Equation 2 the formulation

pij = −ε1 +
1

N

N∑
k=1

(
(1− ε2) + ε2p(f

proj
i,k |Hj)

)
+ ε3p

∗(ai|Aj) (5)

is used to assign the plane i to the object j with the
higher likelihood pij . In Equation 5 p(fproji,k |Hj) is the
probability that an interest point of a plane i belongs to the
3D object Hj . Likewise in Equation 2, this is modelled using
a Gaussian error model. Therefore the camera pose of object
j is used to compute 3D points for plane i and the projections
are compared to the corresponding tracked image points. ε
denote constants to weight the different factors, where ε1 is
an offset which must be reached to be considered as moving
together and ε3 is a weighting factor to reduce the influence
of the appearance model and primarily merge depending on
the motion.

Being aware that merging of planes based on colour and
3D interest point adjacency is a critical point, experiments
have shown that for our scenarios, where only a few objects
are modelled simultaneously, this is a good second merging
criterion next to motion. The likelihood

p∗(ai|Aj) =
1

N

N∑
k=1

(
(1− ε4) + ε4p(f

3D
i,k |Hj)

)
+ log(p(ci|Cj)) (6)



combines these factors in a probabilistic manner. The first
term describes a probabilistic voting scheme. Therefore a
neighbourhood graph of all currently available 3D points is
constructed. This graph is used to compute the mean µ and
the standard deviation σ of the length of edges which connect
points of the same plane. Then µ and σ are used to compute
Gaussian votes p(f3Di,k |Hj), where each 3D point of a target
plane votes for the nearest object and thus the object which is
close to the plane accumulates more votes and gets a higher
probability that the plane belongs to that object. The second
term models the colour distribution of the objects. Therefore
we build the 8 × 8 × 8 colour histogram ci of the target
plane i and the histogram Cj of the object j to which the
plane should be assigned. We use normalized rgb colours to
be insensitive to brightness differences of object planes. The
border of the plane is approximated by the convex hull of
the interest points. For comparison of colour models we use
the Bhattacharyya coefficient

p(ci|Cj) ∼
∑
q

√
ci(q)Cj(q). (7)

Hence, the probability of a plane i which has to be assigned
to an object j consists of a probabilistic vote of each interest
point to the nearest object and a probability describing the
colour similarity.

D. Separating planes in case of different motions

Motivated by Palmer [34] – who stated that although
the vast majority of objects in ordinary environments are
stationary the vast majority of the time, ones that move are
important – we trigger our object modelling if an object
separates, that is, planes start moving differently. Therefore
in Equation 5, which is used to continuously test if planes
start moving separately, ε3 is set to zero and first visible
planes are separated only because of motion without using
colour and shape. Then past observations, where the planes
had a common motion are examined. If the camera moves
around an object and planes could not be tracked because
of (self-)occlusion Equation 6 is used to assign them to
the new object with the higher probability. Therefore we
represent objects in a keyframe2 based graph structure. Each
observation of an object is assigned to a keyframe and linked
to an observation in the previous as well as in the next
keyframe. Thus the object itself is stored distributed within
the graph structure and each observation holds the current
pose to the reference frame and the appearance modelled
with interest points and the colour histogram. Figure 2
depicts an event chain where planes are merged because of
common motion, start moving separate and thus the object
is split and new object models are built by tracing back the
graph and assigning occluded planes to the object with the
higher probability.

2In our system keyframes are a subset of frames of the whole video
sequence, which are automatically selected for plane detection or in case of
an event occurs.

III. EXPERIMENTS

For all experiments we use Shi-Tomasi interest points [35]
and a KLT-tracker [36]. In [37] it has been shown that a
sub-pixel refinement essentially improves pose estimation.
Hence, we use the affine refined location of the interest
points with sub-pixel accuracy and finally compute a non-
linear optimized homography using homest [38].

To test our system we use five videos each with about
800 frames. Motivated by our cognitive robotic scenarios
the sequences show packaging of arbitrary shapes typically
found in a supermarket (see Figure 2). We placed two
different objects on a table and manually moved camera and
gripper around them in a way that one half of the objects
is already occluded before the gripper pushes one object.
The goal of the experiments is that our system detects the
planes, reconstructs, tracks and merges them depending on
common motion and finally, after pushing one object, creates
two separate piecewise planar object models.

Three numbers are computed to compare the results, that
is the feature based precision

pf,pr =
nf,tp

nf,tp + nf,fp
(8)

which is the ratio of the number of inliers nf,tp correctly
located on a ground truth plane and the total number of
features per detected plane nf,tp+nf,fp. The second number
is the over-segmentation-rate

pov =
np,fp

np,tp + np,fp
(9)

per plane which indicates how often a plane is replaced
during tracking. np,fp the number of false positives is the
number of detected planes minus the number of correctly
detected planes np,tp. Furthermore we computed the plane
based accuracy

ppl,pr =
np,tp

np,tp + np,fp
(10)

which describes the ratio of the correctly detected planes
np,tp and the total number of detected planes np,tp + np,fp.

A. Plane detection

To test the plane detection we selected 30 keyframes
and manually marked a total number of about 150 planes.
With the first video sequence we tested the behaviour of the
parameters of our algorithm. Figure 3 shows our performance
measures for the parameter κ1 = [1...10] and κ2 = [0...1.].
It can be seen that our algorithm is quite robust against
variation of the parameters. Figure 3 (left) shows, that
the Parameter κ1 mostly influences the over-segmentation-
rate while the plane based precision slightly increases. The
feature based precision pf,pr and the plane based precision
ppl,pr are almost constant in Figure 3 (right) and the over-
segmentation-rate has a minimum for κ2 = 0.3. The results
for all five videos are shown in Table I. It can be seen
that our algorithm did not detect a totally wrong plane
(ppl,pr = 1) while in some cases interest points match a plane
by chance (pf,pr ≈ 0.97). The over-segmentation-rate pov
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Fig. 3. Parameter optimisation

sequence pf,pr ppl,pr pov time per frame [s]
1 0.97 1.0 0.40 0.25
2 0.98 1.0 0.25 0.18
3 0.93 1.0 0.43 0.15
4 0.99 1.0 NA 0.19
5 0.99 1.0 0.60 0.26

TABLE I
RESULTS OF OUR FIVE VIDEO SEQUENCES.

would be zero if in the final 3D object model each manually
marked plane is reconstructed by exactly one plane. Our
plane detection/tracking algorithm is designed to subdivide
planes if a better explanatation can be obtained in terms of
smaller planes. The final object model consists of all these
planes and thus is pov ≈ 0.4. Furthermore the pov is not zero
because sometimes the manually marked planes are indeed
not flat but a little bit curved.

B. Reconstruction

Figures 2, 4, 5, 6 and 7 show the qualitative results of our
system. Planes merged to one object are drawn with the same
colour, whereas the brightness of interest points indicates the
assignment to different planes. In each figure the third image
of each row shows the perspective of the camera shortly
before/after the object is pushed and the last one depicts the
reconstructed objects. Figure 2 shows the whole event chain,
that is, detection, reconstruction and merging of planes with
a common motion coloured green and separating planes as
they start moving independently (indicated in red and blue).
In the Sequences 1, 2, 4 and 5, shown in Figures 2, 4, 6 and 7
object modelling was successful and accurate as expected.
The 3D reconstruction (right image of each row) shows that
sometimes parts of an object, which we intuitively would
mark as one plane are split. That is on the one hand, because
these planes are indeed not flat but a little bit curved and on
the other hand model selection within our plane detection
algorithm replaces a plane in the following keyframes if
a better, more complete/accurate plane is found. Figure 5
shows one of the failures which might occur. These two
objects have approximately the same height and thus one
joined explanation was favoured instead of two separate.
In the case shown in Figure 5 this results in a much too
big top surface of the red object which covers a part of
the heart-shaped box. Figures 7 and 8 show the limits of

Fig. 8. Example image and reconstruction of a small more complex
sequence which shows the limits of our system. Planes of the three dominant
objects at the front are reconstructed, while the object at the centre of the
image and the objects at the background are not detected because of low
texture and too few features.

our system. Our reconstruction relies on planes modelled by
homographies and thus for one plane a theoretical minimum
number of five interest points are necessary (4 + 1 which
supports the homography). Because of reliability issues we
used a threshold of 10. Hence, in Figure 7 even though a
small plane is detected (shown in the middle image, plane
with id = 17) the top of the cleaner bottle is completely
lost. In Figure 8 the object in the middle, which has hardly
any texture and the finer scene details at the background are
invisible for our system whereas the three prominent objects
are nicely recovered.

IV. CONCLUSION AND FURTHER WORK

We explored how robot motion can be used to learn more
about unknown objects in a home or service robot task. Using
our approach it is possible to model the object surface from
pushing the parts. If accidentally several objects are pushed,
different motion will occur and they will be modelled as two
different items. We formalize model selection with Minimal
Description Length (MDL) to incrementally cluster features
to planes in 2D using homographies and then reconstruct
and merge/split planes into independently moving objects
in 3D. Merging as well as splitting is triggered based on a
probability which combines 3D motion, structure and colour
information of the planes. Consistent with plane detection
this is formalized with MDL. Instead of a sparse point cloud,
which is typical for Multi-body Structure-and-Motion, we
get a dense representation with planes, which directly can
be used for robotic manipulation. For future work we want
to introduce more complex object models where parts are
linked with joints, e.g., scissors.
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