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Abstract— The task of searching and grasping objects in
cluttered scenes, typical of robotic applications in domestic
environments requires fast object detection and segmentation.
Attentional mechanisms provide a means to detect and priori-
tize processing of objects of interest. In this work, we combine
a saliency operator based on symmetry with a segmentation
method based on clustering locally planar surface patches,
both operating on 2.5D point clouds (RGB-D images) as input
data to yield a novel approach to table-top scene segmentation.
Evaluation on indoor table-top scenes containing man-made
objects clustered in piles and dumped in a box show that our
approach to selection of attention points significantly improves
performance of state-of-the-art attention-based segmentation
methods.

I. INTRODUCTION

Segmentation of objects from a static scene is a crucial
step in many robotic tasks. Different approaches have been
proposed to tackle the object segmentation problem, which
can be broadly classified into two groups: discriminative and
agglomerative. Discriminative segmentation algorithms tend
to classify the whole scene at once and assign a label to every
pixel [1], [2], [3]. Agglomerative segmentation algorithms
grow regions from a seed point to segment the foreground
object. Active segmentation or attention-driven segmentation
are agglomerative methods that segment images starting from
a fixation point or region [4], [5].

Segmentation in cluttered scenes is a critical module in
robotics, with the need to find task relevant objects quickly
amongst a possibly large number of distractors.

In this paper, we present a novel method for attention-
driven segmentation for cluttered table scenes. The contri-
bution of this paper is two-fold: first, we employ a novel
object detection and selection algorithm based on attention
points from 2.5D symmetry saliency maps first presented in
[6]. Secondly, we introduce a segmentation procedure based
on clustering of planar surface patches using color similarity
and a notion of compactness. We evaluate our approach on
two databases consisting of different types of table scenes
ranging from simple to complex scenarios. We show that the

*The research leading to these results has received funding from the
Austrian Science Fund (FWF) under grant agreement No. TRP 139-N23
InSitu and from the European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement No. 600623, STRANDS.

(a) Mishra et al. [4] (b) Proposed approach

Fig. 1: An example of active segmentation for a cluttered
table scene. Fixation points are shown in black with num-
bering reflecting the order of attention shift. As can be
seen, the approach of Mishra et al. (a) does not segment
all attended objects properly, while the proposed approach
(b) successfully deals with the scene complexity.

proposed approach works better than existing approaches for
attention-driven segmentation (Fig. 1).

The paper is organized as follows: In Section II, we
review related work. Section III and IV describe the proposed
algorithm in detail. The evaluation in Section V shows the
benefits of our algorithm. Section VI concludes the paper
with a discussion about future directions of research.

II. RELATED WORK

The focus of this paper is segmentation of indoor table
scenes typical of robotic task environments. Therefore, we
primarily concentrate on the work developed for RGB-D
data. A number of discriminative segmentation algorithms
use depth information to boost segmentation performance
for complex indoor scenarios. Such algorithms include those
proposed in [7], [8], [9], [10], [11], [12].

The concept of active segmentation or attention-driven
segmentation was first presented by Aloimonos et al. [13].
It was argued that the human visual system investigates and
observes the scene by a set of fixations that are followed by
segmentation. Attention-driven segmentation usually has two
stages. During the first stage, a selection mechanism detects
candidate object locations. During the second stage, the
detected objects are segmented. The attention-driven segmen-
tation approaches in [5], [14], [4] propose different solutions

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2014 IEEE International Conference
on Robotics and Automation. Received September 5, 2013.



for the two stages. Given that the selection mechanism is
directed by a specific search task [15] in the case of robotic
applications, attention-driven segmentation finds greater use
than discriminative segmentation approaches.

In [14], Mishra et al. proposed a framework for active
segmentation, where an object is segmented using object
boundaries, given a fixation point on the object. Though
originally in the paper no strategy for detection of fixation
points was proposed, it was discussed that visual attention
mechanism [16], [17], [18] can be used for such a selection.
Later, [4] extended the active segmentation approach to use
the concept of “simple objects and border ownership”, which
is defined using depth, color and/or motion information about
the scene. A new strategy for the calculation of fixation
points was also proposed. Kootstra et al. [5] proposed
an attention-driven graph-cut segmentation. Objects are lo-
calized with fixation points extracted from 2D symmetry
saliency maps. An energy minimization function is applied
to depth and color along with a support plane constraint for
segmentation. It is worth mentioning that both the above
segmentation algorithms [5], [4] were developed specifically
for table top scenes and require information about the support
plane. However, both approaches fail to segment objects if
the scene consists of multiple occluded and cluttered objects,
having several colors and textures. These types of scenes
are common in domestic robotic tasks and are needed to be
resolved correctly to enable manipulation of objects.

As mentioned earlier, the problem of fixation points selec-
tion stays open with numerous solutions. Selecting fixations
as attention points of the saliency map is one of the widely
used approaches [5], [6]. Potapova et al. [6] proposed the use
of 2.5D symmetry based saliency maps to extract fixation
points for segmentation. It was shown that 2.5D symmetry-
based saliency maps capture the properties of the scene better
than 2D based saliency maps.

In this paper, we adopt the idea of Potapova et al. [6] for
object detection and extend it with a novel attention points
selection algorithm. Furthermore, a novel segmentation al-
gorithm is introduced, using the fixation points to enable
clustering of planar surface patches, similar to [8], using
color similarity and the notion of compactness.

III. OBJECT DETECTION

In this section, we describe the detection of good object
candidate locations in a cluttered scene. Einhauser et al. [19]
showed that objects attract human attention better than early
vision saliencz features. Symmetry is one of the character-
istics of many natural as well as human-made objects and
at the same time a powerful attentional cue [20]. Therefore,
we based our object detection strategy on the calculation of
a 2.5D reflective symmetry-based saliency map.

A. Saliency Map from 2.5D Symmetries

We follow the algorithm in [6] to generate the reflective
symmetry based saliency map, starting from a 2.5D point
cloud, i.e. a rectangular array of depth values. Each point p
in the point cloud P is indexed by image coordinates (i, j),

has color (r, g, b), and is characterized by a set of values
(x, y, z,n), where (x, y, z) are spatial coordinates, and n
is the estimated surface normal at that point. Normals are
calculated by locally fitting planes to neighboring points.

Following ideas by Minovic et al. [21] and Sun et al. [22],
Potapova et al. [6] proposed to estimate the local amount of
symmetry s(p) at point p on the neighborhood N(p). Mi-
novic et al. [21] showed that planes of reflective symmetries
are perpendicular to the directions of the object’s principal
axes. The principle axes of a 3D model can be detected
from the Extended Gaussian Image (EGI) created from point
normals as was proposed by Sun et al. [22].

In our scenario the EGI for point p is created from normals
of the points in the neighborhood N(p), which is a 10× 10
pixel window around p. The principal axes {u1, u2, u3} of
the local surface in the neighborhood N(p) are estimated
using Principal Component Analysis (PCA) on the EGI.
The corresponding reflective symmetry planes {π1, π2, π3}
are planes going through the point p perpendicular to the
respective principal axes.

For a given reflective plane πi (i = 1, 2, 3) the neighbor-
hood N (p) is divided into two neighborhoods Ni1 (p) and
Ni2 (p), so that ∀p′ ∈ N (p):

p′ ∈

{
(Ni1 (p)) if d (p′, πi) > 0

(Ni2 (p)) if d (p′, πi) < 0
(1)

where d (p′, πi) is the signed Euclidean distance from point
p′ to the plane πi.

For each neighborhood Nij (j = 1, 2) the mean point pij
and the mean normal nij are calculated.

The amount of local reflective symmetry for the point p
over the reflective plane πi is then given by:

s (p) = max
i=1,2,3

{Ωi (N(p), p)} (2)

Ωi (N(p), p) = e−4zie−4diω1ω2 (3)

4di represents the absolute difference between distances
from mean points pi1 and pi2 to the reflective plane πi:

4di = | |d (pi1, πi)| − |d (pi2, πi)| | (4)

where d
(
pij , πi

)
is the distance from mean point pij to the

plane πi.4di reflects the fact that we are searching for points
where the parts of the neighborhood left and right of the
symmetry plane are positioned symmetrically.
4zi in eq. 3 represents the absolute difference between

z-coordinates (depth values) of mean points pi1 and pi2 and
therefore favors symmetries facing the view point

4zi =
∣∣zpi1

− zpi2

∣∣ (5)

ω1 in eq. 3 measures the co-planarity between the line li
connecting pi1 and pi2 and the two mean normals ni1 and
ni2:

ω1 =

∣∣∣∣∣∣∣∣ ni1 × ni2

||ni1 × ni2||
× li

∣∣∣∣∣∣∣∣ (6)

li =
pi1 − pi2
||pi1 − pi1||

(7)
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(a) Original image (b) Saliency Map (c) Attention points (d) Surface patches (e) Segmentation result

Fig. 2: Object detection process: starting from original image (a), saliency from 2.5D symmetries is calculated (b) (shown
in green superimposed on the original image); (c) shows attention points from symmetry (red) and skeletal line segments
(green) (please note that for visualization purposes both attention points and skeletons were dilated); (d) shows planar surface
patches and (e) shows segmentation result with respective attention points.

ω2 in eq. 3 measures the similarity between mean normal
directions based on the symmetry operator from Reisfeld et
al. [23] and is calculated as follows:

ω2 = (1− cos (α1 + α2)) (1− cos (α1 − α2)) (8)

where αj is the angle between mean normal nij and li. This
term is largest in regions, where the normals are oriented
completely opposite to each other and smallest in regions,
where normals have the same orientation (e. g. flat surfaces).

We take the product of all four terms in eq. 3, since we
are searching for local symmetries with neighborhoods that
produce high values for all four quantities.

B. Multi-Scale Symmetry-Based Saliency Map

The above symmetry is defined locally over a neighbor-
hood around a given point. To capture symmetries at different
scales we calculate saliency maps on a Gaussian pyramid of
depth images and then sum them using across scale addition
[17]:

S =

Ln⊕
l=L1

sl (9)

where L1 and Ln are the finest and the coarsest scales of
the pyramid. In our experiments we used four levels of the
pyramid. Finally, saliency map S is normalized to the range
[0, 1]. Figure 2b shows an example of saliency map from
2.5D symmetries.

C. Attention Points from Symmetry

From the multi-scale symmetry-based saliency map S
we extract 8-neighbor connected components of pixels with
saliency value bigger than zero {Ck}. The average saliency
Sk of each connected component Ck is computed as

Sk =
1

nk

∑
p∈Ck

S (p) (10)

where nk is the number of pixels in the connected compo-
nent, S (p) is the saliency value of the point p.

The connected component Ck is considered to be valid
only if Sk > θsal. In our experiments we set θsal to 10% of
the maximum saliency value.

The skeleton Tk is extracted from the connected compo-
nent Ck. Symmetry attention points {fk} are extracted from

the skeleton Tk as junction points, if they exist, or as mid-
points for simple skeletal line segments. Figure 2c shows
examples of attention points {fk} and skeletons Tk.

IV. OBJECT SEGMENTATION

Given attention points we want to segment the scene
incrementally. We first cluster points into planar patches
based on their normals similar to Richtsfeld et al. [8]. We
then cluster these patches beginning from the attention points
by connecting similar patches as long as a given object-ness
measure is valid.

A. Clustering Normals

Neighboring points are clustered to uniform patches with-
out discontinuities using point normals. Normal clustering
starts at the point with lowest curvature and greedily as-
signs neighboring points as long as they fit to the initial
plane model. The algorithm iteratively creates planar surface
patches until all points belong to some plane or are identified
as noise. After normal clustering we obtain a set of planar
surface patches {ρt} (Figure 2d).

B. Clustering Patches

Patches {ρt} are now greedily clustered into object hy-
potheses µk. Object hypotheses are initialized using the sym-
metry attention points {fk}, which are sorted in decreasing
order of Sk. Given a symmetry point fk, all patches ρt
bordering this point (with a 5 pixel radius) form an initial
cluster. Patches are then greedily added to the cluster subject
to a color and compactness constraint. Once a cluster cannot
be extended further, the next cluster is initiated from the next
attention point.

1) Color Similarity: A new patch ρ′t is considered to
be a part of the object only if its color model is similar
to the already existing model for the object. The color
similarity CSin between a new patch ρ′t and an object µk

is computed as the Chi-square distance between their HSV
color histograms.

CSin(µk, ρ
′
t) = χ2(H(µk), H(ρ′t)) (11)

We also calculate the similarity CSout between the patch
ρ′t and not-object, i. e. a mask µ′k surrounding the object,
which is defined as the part of the image outside an enlarged
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mask µk of the object. This enlarged mask is created from
the µk by doubling its area.

CSout(µ
′
k, ρ
′
t) = χ2(H(µ′k), H(ρ′t)) (12)

The color constraint is fulfilled if CSout < CSin.
2) Object Compactness: A new patch patch ρ′t is only

added to an object, if its addition does not violate the
compactness measure κ of the object. Compactness κ is
calculated as the mean of the shortest distances of the object
points to the visible surfaces of the object’s 3D convex hull.
Let a set {pki} be object points, Vk be the corresponding
object’s convex hull, and vj be a set of faces facing the
viewpoint. Compactness measure κ is then calculated as:

κ =
1

nk

∑
pki

dmin(pki, Vk) (13)

where nk is the number of object points and dmin(pki, Vk)
is the shortest distance from the point to any visible face

dmin(pki, Vk) = min
j
d(pki, vj) (14)

The compactness constraint for a patch ρt is fulfilled if
compactness measure of the object plus patch ρt is smaller
than the given threshold κ < θcom. As shown in the
evaluation section the optimal value for the compactness
threshold θcom = 0.005. Examples of segmented objects
using these constraints are shown in Figure 2e and Figure 4.

V. RESULTS AND EVALUATION

We evaluated our segmentation algorithm on two pub-
licly available databases: the Table Object Scene Database
(TOSD)1 and the Willow Garage Table Objects Database
(Willow)2.

Other databases as Caltech256, Pascal VOC, LabelMe,
Berkeley’s B3DO, NYU’s Depth Dataset, UW’s RGB-D
Object Dataset do not cater to our specific task of cluttered
table scene segmentation.

TOSD database is targeted towards segmentation evalua-
tion and consists of scenes with varied object configuration
complexities. It is composed of images with complex and
cluttered scenes, as well as scenes where only several boxes
or other simple objects are presented, as shown in Fig. 4.
The TOSD database consists of 111 scenes for training and
131 scenes for testing.

The Willow Garage database was originally presented as
a benchmark for object recognition for the “Willow Garage:
Solutions in Perception Challenge”. While the database was
created for the task of object recognition, it still serves
as a good benchmark for the performance evaluation of
segmentation algorithms. The Willow database consists of
175 images taken from the challenge final test set.

Labeling for both databases is in the form of precise seg-
mentation mask contours as opposed to bounding boxes. This

1https://repo.acin.tuwien.ac.at/tmp/permanent/
TOSD.zip

2http://vault.willowgarage.com/wgdata1/vol1/
solutions_in_perception/Willow_Final_Test_Set/

makes the evaluation more precise and allows to evaluate
how algorithms perform in terms of under-segmentation and
over-segmentation.

Evaluation was carried out by varying two specific aspects
– namely, object detection and object segmentation. We do
not attempt to directly measure the quality of object detec-
tion, but instead present the effect of choices in the object
detection methodology on our object segmentation approach.
In addition, the evaluation was performed to compare the
performance of our approach against several state-of-the-art
segmentation approaches.

A. Object Detection Strategies

In our work, we applied several strategies for object
detection in order to estimate their influence on the object
segmentation. As described earlier, the primary object de-
tection strategy used in our pipeline involves the generation
of saliency maps from 2.5D symmetries. In this strategy
(TJ3D), attention points are selected as points of T-Junctions
(or mid-points for simple lines) in symmetry lines extracted
from the 2.5D symmetry-based saliency maps (Figure 2c).
The second strategy (WTA3D) employed, extracts attention
points using Winner-Take-All (WTA) [24] from the 2.5D
symmetry-based saliency maps. To see how the use of 2.5D
information improves the quality of a detection strategy, we
also include attention points using Winner-Take-All from 2D
symmetry-based saliency maps [20] (WTA2D).

B. Object Segmentation

To evaluate the attention-based aspect of the algorithm
we performed comparison against an attention-driven active
segmentation algorithm proposed by Mishra et al. [14]
(M09), as well as its extension which uses depth information
as described in [4] (M11).

Though it is clearly not fair to compare our approach
to algorithms that use only color information, it is still
interesting to see how the performance differs. Interactive
segmentation algorithms [25], [26], [27] require user input
(e. g. bounding box as in [25]). In scenarios where it is not
possible for a user to provide input, the user behavior can be
simulated by a computational model of the visual attention
system [28], [29]. Therefore, we selected a state-of-the-art
interactive segmentation algorithm presented by Gulshan et
al. [26] (G10) to compare with our algorithm. The algo-
rithm proposed in [26] requires strokes of foreground and
background as input. Foreground strokes in our evaluation
were simulated as twice dilated skeleton lines from saliency
maps. Background strokes were simulated as rectangles near
the image border 20% smaller than the size of the original
image.

The output segmentation masks are compared to the
ground truth labeling in terms of the F -measure defined as
2PR/(P + R). We calculated precision P as the fraction
of the segmentation mask overlapping with the ground truth
and recall R as the fraction of the ground truth overlapping
with segmentation mask.
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TOSD Willow
Segmentation All Best First All Best First

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
M09+TJ3D 0.59 0.07 0.60 0.06 0.59 0.07 0.76 0.05 0.78 0.04 0.76 0.05

M09+WTA2D 0.54 0.07 0.65 0.05 0.52 0.06 0.68 0.07 0.85 0.02 0.72 0.05
M09+WTA3D 0.57 0.07 0.62 0.06 0.58 0.06 0.74 0.05 0.80 0.04 0.75 0.05

M11 0.57 0.08 0.66 0.06 0.62 0.07 0.82 0.06 0.88 0.03 0.86 0.04
G10 0.47 0.08 0.50 0.08 0.47 0.08 0.66 0.08 0.71 0.06 0.68 0.07

Proposed Algorithm 0.80 0.05 0.81 0.04 0.80 0.04 0.964 0.010 0.974 0.010 0.970 0.011

TABLE I: F -score for different segmentation algorithms evaluated on TOSD and Willow datasets.

Segmentation algorithm M09 was evaluated using object
detection strategies TJ, WTA2D and WTA3D, mentioned
earlier. Segmentation algorithm M11 was evaluated with its
own object detection strategy, because this strategy is an
intrinsic part of the algorithm. Segmentation algorithm G10
was evaluated using symmetry lines as foreground strokes.
Evaluation results are presented in Table I.

Note that the attention mechanism cannot rule out that
several attention points come to lie on the same object. In
this case, each attention point leads to a possibly different
segmentation for an object. Therefore, we calculated three
F -scores: the label first in Table I refers to the segmentation
from the first attention point, best refers to the best segmen-
tation w.r.t. ground truth, and average refers to the average
score over all segmentations for an object. If first is lower
than best this means that the attention points are not optimal.
Ideally the first attention point leads to the best segmentation.
If average is significantly lower than best this means that
segmentation algorithm depends a lot on the position of the
attention point. All F -scores in Table I are averaged over all
objects and all scenes.

The proposed segmentation algorithm depends on the
value of the threshold θcom. To find the optimal value of the
threshold, we evaluated F -scores against threshold values for
both databases. As can be seen from Figure 3, the optimal
value is 0.005, balancing between over-segmentation (smaller
values) and under-segmentation (larger values). Note that the
scenes in the Willow Garage database are simpler (isolated
standing objects), so that a further increase in θcom does not
lead to under-segmentation and performance stays constant.
The highest value of F -score obtained was 0.81 for TOSD
at this optimal value of θcom. As can be seen from Table
I, the primary object detection strategy (TJ3D) proposed
in this paper results in improved performance for all types
of segmentation algorithms compared to other detection
strategies. Evaluation results also show that our combined ap-
proach of detection and segmentation performs better on both
databases than state-of-art segmentation algorithms. Results
for G10 show that color-only segmentation cannot handle
complicated table scenarios without good user input. Figure
4 shows visual segmentation outputs for some segmentation
strategies. It can be seen that the proposed approach visually
gives better results than other attention-driven segmentations.

0.002 0.004 0.006 0.008 0.01
Compactness threshold

0.7

0.8

0.9

1

F−
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o
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First
Best
All

TOSD Willow

Fig. 3: F -score for proposed segmentation algorithm using
different thresholds for compactness θcom for TOSD and
Willow datasets. As can be seen from the plot, the optimal
segmentation is achieved when threshold θcom = 0.005.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a novel attention-driven algo-
rithm for cluttered table scene segmentation. We combined
a novel object detection strategy using a saliency operator
based on 2.5D symmetry with attention points estimation
based on symmetry lines and T-Junction points. This was fur-
ther combined with a segmentation approach based on greedy
clustering of planar surface patches using the notion of
compactness and color similarity. Our approach shows good
results on typical cluttered table scenes containing human
made objects with an F -score of 81%. We have shown that
our selection of attention points improves performance of
attention based segmentation methods and that our combined
attention and segmentation approach improves over state-
of-the-art attention-driven segmentation approaches. Future
work will lie in the area of attention-driven segmentation of
more complex scenes directed by task specifications.
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