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Abstract. Robust real time object pose tracking is an essential compo-
nent for robotic applications as well as for the growing field of augmented
reality. Currently available systems are typically either optimized for tex-
tured objects or for uniformly colored objects. The proposed approach
combines complementary interest points in a common tracking frame-
work which allows to handle a broad variety of objects regardless of their
appearance and shape. A thorough evaluation of state of the art interest
points shows that a multi scale FAST detector in combination with our
own image descriptor outperforms all other combinations. Additionally,
we show that a combination of complementary features improves the
tracking performance slightly further.

1 Introduction

Vision systems for detection and tracking of objects are dominated by approaches
based on interest points and local descriptors. While successful for textured ob-
jects the performance decreases if objects are uniformly colored. In industrial ap-
plications the variety of objects is limited and the environment can be adapted,
but home and service robotic scenarios require systems which are able to handle
different kinds of objects and a cluttered environment in a common framework.
This can be achieved by designing a framework with multiple components, each
optimized for the detection of one object category. In contrast, we propose a
single detection and tracking approach which is able to handle a broad variety
of objects by integrating complementary features. We evaluate state of the art
interest point detectors and descriptors and develop a strategy to combine dif-
ferent feature types by learning a probabilistic reliability model. Note that in
the remaining text we use the term interest point to indicate a salient image
point plus the descriptor computed from the surrounding patch.

Starting with the scale invariant feature transform (SIFT) developed by
Lowe [1] numerous successful interest point types have been proposed. A com-
parison of affine region detectors and descriptors can be found in [2] and [3]. Most

? The work described in this article has been funded by the European project under
the contract no. 600623, as well as by the Austrian Science Fund under the grant
agreements I 513-N23 and TRP 139-N23 and the Austrian Research Promotion
Agency under the grant agreement 836490.



of them are optimized for object recognition and are able to handle a limited
number of objects with a fair amount of texture. More recently, interest points
which are faster to compute and thus are more appropriate for object tracking
have been proposed (FAST [4], MSER [5], SURF [6], ORB [7]. We focus on these
interest point types and compare them to our own SIFT-like descriptor which
we simply call image gradient histogram descriptor (ImGD).

Our work is placed in the context of robotics applications where an accurate
object pose is necessary for path planning or visual servoing. Hence, we evaluate
the interest points within a complete tracking system. The tracker uses a monoc-
ular image sequence to compute the object pose and it is based on an iterative
particle filter framework similar to the approach proposed by Mörwald [8]. In
contrast to Mörwald who renders complete textures of 3D models into the image
in order to compute particle quality, our object model consists of a sparse set
of interest points of possibly different types and their 3D location on the object
surface. A problem when trying to integrate interest points of different types is
how to compare their matching quality. Therefore, we propose to learn a proba-
bilistic confidence measure for each interest point detector/descriptor pair using
Bayes theorem, which is used during tracking to compare and rank matched
point pairs.

In this paper we propose a probabilistic framework for tracking objects by
combining complementary interest point types. Concretely, our contributions
are:
– A probabilistic tracking approach using Bayes theorem to combine comple-

mentary interest points.
– A framework for learning and evaluation of the probabilistic model.
– An evaluation of state of the art interest points including Harris [9] FAST [4],

MSER [5], SIFT [1], SURF [6] and our own ImGD.

The paper proceeds with a discussion of the related work in Section 2. After that,
the method, including learning of the probabilistic model and object tracking
is described in Section 3. Then the interest point detectors and descriptors are
reviewed in Section 4 which are evaluated in Section 5.

2 Related Work

State of the art interest points are reviewed in Sec. 4. In what follows we sum-
marize related work for object pose tracking.

Robustness has always been a concern for visual tracking [10–12]. Especially
the introduction of particle filtering to visual tracking [13] boosted robustness
[14–16], aided by the increased use of GPU-optimised algorithms [17, 18]. Also
the combination of complementary cues proved to boost robustness and broaden
the range of objects that could be handled. [19] extended earlier work on track-
ing based on planar patches to take into account contour information, but re-
main limited to planar objects. [20] extended their earlier feature-point based 3D
tracker with the ability to integrate edge information, handling the problem of
ambiguities resulting from spurious background edges.[21] start with a 3D wire-
frame model based tracker and augment this with point features (small image



patches around Harris corners [9]) collected online from front-facing surfaces and
fuse measurements using an Iterated Extended Kalman Filter (IEKF). [22] com-
bine edges and texture (again image patches around Harris corners) in a single
non-linear minimization scheme, which they apply to 2D tracking (homography
estimation) of planar objects delineated by straight edges or NURBS, as well as
full 3D tracking of objects such as boxes and balls. [23] combine depth data, ap-
pearance features, silhouettes and even tactile data within an Unscented Kalman
Filter (UKF) and achieve high robustness tracking an articulated robotic ma-
nipulator and complexly shaped work piece.

In our work we are interested not in a particular choice of feature combina-
tion, but in the methodology to evaluate and combine different features. This is
then applied to full 3D tracking of arbitrarily shaped 3D objects.

3 Method

Algorithms for object pose estimation need three or more corresponding 2D/3D
point pairs [24]. To tolerate inaccurate and false correspondences these meth-
ods are typically embedded in a robust estimation schemes (e.g. RANSAC). In
order to ensure convergence a set of “good” point correspondences with a high
probability of being correct is necessary. In case of using a single feature type
this is often implemented by comparing interest point descriptors and apply-
ing a threshold. If different types are combined a solution would be to provide
individual thresholds for each descriptor. Instead of using heuristic thresholds,
we propose to learn a mapping of descriptor distances to a probabilistic confi-
dence measure using Bayes theorem. In detail, given an object model consisting
of interest points, their 3D location on the object surface and interest points
detected in a query image, the goal is to compare model descriptors with de-
scriptors of query points and compute the probability of being a correct match.
Good matches are then used to estimate the 3D location of the object with
respect to the camera.

3.1 Training of the Probabilistic Model

Object models are reconstructed by collecting a sequence of RGB-D images and
using a standard RGB-D SLAM approach [25, 26] to compute the camera pose.1

For training of the probabilistic model we need positive training examples, i.e.,
correct matches (tp) and negative examples (tn). Positive and negative examples
are directly acquired from the image sequence used for reconstruction. In each
frame interest points are detected and reprojected to the object surface. Then
neighboring reprojected points from all frames are clustered and marked as posi-
tive training example if the size of the corresponding image patches for descriptor
calculation is similar. Patch similarity is given if the difference of the semi-axes
of circumscribed ellipses is smaller than a threshold te and if the orientation is
similar (∆θi,j < tθ). Negative training examples are sampled from matches of

1 There is no restriction to RGB-D images. The reconstruction pipeline could easily
be substituted by a SfM approach using a monocular image sequence.
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Fig. 1. Example of a learned matching probability (multi scale FAST detector and
ImGD).

one descriptor of a cluster and a randomly selected interest point outside of the
cluster or of an interest point detected in a dedicated “false positive” image set.

With d = ||D(i)−D(j)||2 being the descriptor distance of matched interest
point pairs m(i, j) the training set is used to compute the prior probability
p(m = true) of correct matches, the prior probability p(d) of the occurrence of
each distance d in the training set and the conditional probability p(d|m = true)
of a descriptor distance d being a correct match (m = true). During tracking
the posterior probability p(m = true|d) of being a correct match can then be
computed using Bayes rule:

p(m = true|d) =
p(d|m = true)p(m = true)

p(d)
. (1)

Probability density functions are approximated with histograms of the descriptor
distances. In our implementation we pre-compute the posterior probabilities and
use a lookup table during tracking, resulting in probabilities as shown in Fig. 1.

3.2 Object Tracking

Our tracking framework is based on a Sequential Importance Resampling (SIR)
particle filter proposed by Doucet et al. [27] and adapted by Mörwald et al. [8] for
tracking the 3D pose of objects. In contrast to Mörwald, who renders textured
3D models to the image and counts consistent edgels in order to evaluate the pose
hypotheses of particles we project the 3D location of matched interest points to
the image and use the distance of these point pairs to compute a confidence
value.

In detail, first complementary interest points are detected in a query image
(e.g. SURF and FAST+ImGD) and matched to descriptors stored in the object
database. For each match we use the descriptors D and the pre-calculated lookup
table presented in Section 3.1 to derive the posterior probability p(m = true|d).
Matches of different interest point types are then combined and sorted in decreas-
ing p(m = true|d) and the best N matches are passed on to the pose tracking
system. Pose tracking is the problem of finding the transformations Tt of an



object with respect to a camera given a sequence of images (observations). This
results in an estimation of 6 parameters for each observed image. For sampling
pose hypotheses directly in a 6 DOF space an untractable number of trials would
be necessary. Hence, we bootstrap our system with pose hypotheses computed
with the three point pose (P3P) algorithm [24] and a robust RANSAC scheme.

The quality measure

c(T) =

N∑
i=1

max(0, tinl − ||pim,i − C Tpmodel,i||22) (2)

for P3P-RANSAC and for particles, is computed from the best N interest point
matches. Where tinl stands for an inlier threshold, pim,i is a matched query
point, pmodel,i is the corresponding 3D model point in homogeneous coordinates
and C is the intrinsic camera matrix. In comparison to the tracking framework
proposed in [8] which needs a separate recognizer to reinitialize, our framework
continuously adds poses from the P3P-RANSAC algorithm and thus automati-
cally reinitializes if the object is lost.

4 Interest Point Detectors and Descriptors

In the following paragraphs we review the interest point detectors and descriptors
evaluated with our system. For all detectors and descriptors we use implemen-
tations available in OpenCV2, except SIFT, where we use the implementation
of Wu3, and MSER and ImGD where we use our own implementations.

4.1 Interest Point Detectors

SIFT detector (DoG) is proposed by Lowe [1]. The idea is to approximate the
Laplacian of Gaussian with the difference of adjacent Gaussian images which is
faster to compute. Additionally Lowe eliminates minima and maxima detected
at edges and computes the dominant image gradient orientation. Hence, SIFT
detects blob-like structures and it is scale and rotation invariant.
SURF detector (Hes) is developed by Bay et al. [6]. They propose to use an
Hessian matrix approximation. The implementation is based on integral images
which reduces the computation time drastically. SURF also detects blob-like
structures and it is scale and rotation invariant.
Maximally Stable Extremal Regions (MSER), developed by Matas et al. [5]
is an affinely-invariant region detector. It detects the extremal property of the
intensity function of regions by increasing/decreasing a brightness threshold and
reporting stable parts of the image.
Harris detector is the classical corner detector developed by Harris et al. [9].
To achieve rotation invariance we compute the dominant gradient orientation.
Features from Accelerated Segment Test (FAST), proposed by Ros-
ten et al. [4] is a heuristic for feature detection which uses machine learning

2 http://www.opencv.org
3 http://cs.unc.edu/ ccwu/siftgpu/
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Fig. 2. Example images of our evaluation sequences including the ground truth coor-
dinate system (yellow) detected with the ARToolKit [29] and the tracking coordinate
system (red-green-blue).

to classify corner candidates by considering a circle of 16 pixels around a point.
We use an implementation proposed in [7] where FAST corners are detected in
an image pyramid to cover the scale space and the intensity centroid is used to
detect the dominant orientation.

4.2 Interest Point Descriptors

SIFT descriptor, proposed by Lowe [1] describes a patch with histograms of
gradient orientations sampled from 4× 4 subregions. Each orientation sample is
weighted with its magnitude and a Gaussian weight.
SURF descriptor, developed by Bay et al. [6] uses the first order Haar wavelet
responses in x and y direction, exploiting integral images for speed, to describe
the patch around interest points.
Image gradient descriptor (ImGD), our own descriptor is similar to the
original SIFT descriptor proposed by Lowe. We use the same grid layout to
compute 4 × 4 orientation histograms. To speed up computation we skip the
interpolation used to distribute the value of each gradient sample into adjacent
histogram bins. Instead, we compute an element wise square root of the L1
normalized descriptor proposed by Arandjelović et al. [28]. This transformation
is equivalent to using the Hellinger kernel for comparing descriptors instead of
the Euclidean distance.

5 Evaluation

To evaluate the interest points we propose two methods. First the meaningfulness
of the descriptor is compared by computing the probability density function
and the corresponding matching probability p(m = true|d). Then we evaluate
different interest points and combinations of them with our complete tracking
system. In all experiments the Euclidean distance is used to compare descriptors.

5.1 Comparison of Interest Point Detectors and Descriptors

For learning the probabilistic model in order to evaluate the meaningfulness of
descriptors we use the reconstruction and training pipeline described in Sec-
tion 3.1. We select four objects ranging from highly textured surfaces with a
simple repetitive shape 2(a) to a single colored surface with a more complex



shape 2(d). For each object we used about 800 RGBD-frames, compute the
camera poses and reconstruct the upper hemisphere of the objects. The interest
points detected in each frame and reprojected to the object surface are used to
generate true and false training examples. Depending on the interest point type
and the object surface this results in up to 500k positive and 1.5M negative
examples.

In general, it can be seen in Figs. 1 and 3, that different interest point de-
tectors result in different matching probabilities even if the same descriptors are
used. In every case ImGD leads to a better separation of true and false matches,
i.e., a steeper slope of the posterior matching probability, no matter which in-
terest point detector is used. It can also be seen, that the density functions have
a similar behavior for each object which results in almost identical posterior
curves. Hence, in the following tracking evaluation we use the posterior curve
for GarbageTruck which is approximately the mean in every case.

5.2 Evaluation of the Object Pose Tracking system

For evaluation of tracking we place each object on a ground truth pattern and
capture a trajectory covering different orientations and scales (see Fig. 2). Each
sequence is annotated with the ARToolKit [29] by detecting the camera pose of
about 600 frames per object. Then different interest point detectors, descriptors
and combinations of them are used to track the object pose. To compare the
results we compute the precision

ppr =
ntp

ntp + nfp
, (3)

where ntp is the number of true object detections and respectively nfp is the
number of false detected objects. To decide which object pose is correct and
which is false we compare the tracked pose with the pose computed with the
ARToolKit and use an inlier threshold tdetection = 40mm which is about half of
the object size. In addition to the precision we record the pose accuracy in x,
y and z direction (camera coordinate system) and the overall computation time
per frame.

Results are shown in Table 1. It can be seen, that the MultiFAST detector in
combination with our ImGD achieves the highest precision as well as the highest
frame rat (for the Horse up to 20fps). An interesting insight is, that SIFT has al-
most the worst matching probability curve (see Fig. 3) but it achieves the second
best tracking result. As proposed by Lowe [1], this motivates using the second
nearest neighbor ratio to prune weak matches instead of using a fixed thresh-
old. The results in Table 1 also indicate, that the performance can (slightly)
be increased if different interest point types are combined. No improvement has
been achieved for combinations with MultiFAST/ImGD where the precision is
already at a very high level when using it alone.

6 Conclusion

We presented a system for real time object pose tracking. By learning proba-
bilistic confidence measures for interest points the proposed system is able to



Table 1. Tracking evaluation using different detector and descriptor combinations.

detector / descriptor precision x [mm] y [mm] z [mm] time [ms]

Harris/ImGD 0.59 4.6 5.6 18.9 83

MSER/ImGD 0.38 3.2 4.0 10.4 106

MultiFAST/ImGD 0.98 2.1 2.2 13.8 62

SIFT/SIFT 0.89 2.2 3.2 12.6 163

SURF/SURF 0.47 3.1 5.6 19.2 100

SURF/ImGD 0.81 3.3 3.8 14.4 77

Harris/ImGD + MSER/ImGD 0.60 3.9 7.5 18.5 172

Harris/ImGD + SURF/SURF 0.62 4.7 6.7 17.3 159

Harris/ImGD + SURF/ImGD 0.82 3.2 4.0 15.1 130

MultiFAST/ImGD + MSER/ImGD 0.98 2.0 2.2 13.4 149

MultiFAST/ImGD + SURF/SURF 0.98 2.2 2.3 13.4 134

MultiFAST/ImGD + SURF/ImGD 0.98 2.0 2.1 12.2 108

integrate complementary features in a common tracking framework. This al-
lows to handle a broad variety of objects regardless of their appearance and
shape. We evaluate state of the art interest points and compare them to our
own image gradient histogram descriptor (ImGD). Results show that a multi
scale FAST detector in combination with our ImGD outperforms all other de-
tector/descriptor combinations, which could be only slightly improved by com-
bining it with another feature type. Future work will explore the possibly more
pronounced improvements using more complementary feature types beyond the
point-like features above (e.g. object contours), in handling even broader object
classes such as partly transparent or shiny objects.
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Fig. 3. Matching probability (left column) and probability density (right column) for
different detector/descriptor combinations.


