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Nonlinear pressure control of self-supplied variable displacement axial piston pumps

W. Kemmetmüller∗,a, F. Fuchshumerb, A. Kugia

aAutomation and Control Institute, Vienna University of Technology, Gusshausstr. 27–29, 1040 Vienna, Austria
bHydac Electronic GmbH, Hauptstr. 27, 66128 Saarbrücken, Germany

Abstract

The present paper deals with the pressure control of self-supplied variable displacement axial piston pumps subject to fast changing,

unknown loads. First, the setup of the system and the mathematical model are described. As the pump is self-supplied, the

mathematical model exhibits a switching right-hand side which makes the control design a challenging task. A nonlinear two

degrees-of-freedom control strategy, comprising a feedforward and a feedback control, in combination with a load estimator is

proposed for the pressure control. The proof of the stability of the overall closed-loop system is based on Lyapunov’s theory. The

performance of the control concept is verified by means of experiments. The results show that the proposed control concept has an

excellent and robust behavior.

Key words: axial piston pumps, nonlinear control, switched systems, load estimation, load-sensing, pressure control

1. Introduction

Electrohydraulic systems are widely spread in many indus-

trial plants and mobile machines like excavators, cranes, etc.,

which is mainly due to the very high power density of hydraulic

systems compared to electrical or mechanical drives. The gen-

erally poor energetic efficiency constitutes one of the major

drawbacks of electrohydraulic systems. Conventional hydraulic

supply systems typically provide a constant supply pressure or

a constant supply volume flow, independent of the actual de-

mands of the load. Thus, the worst energetic efficiency occurs

in the case when no energy is needed by the load. The increas-

ing demands on the energetic efficiency requires the implemen-

tation of hydraulic supply systems which can be adjusted to the

actual requirements of the load (load-sensing), see, e.g., Wu,

Burton, Schoenau & Bitner (2002); Findeisen (2006). Basi-

cally, two approaches do exist to control the supply volume

flow.

If a fixed displacement pump is used, then the input speed

of the pump can be utilized to change the output volume flow.

In many applications, fixed displacement pumps are driven by

electric motors which allow an easy control of the speed. The

dynamics, however, are very limited such that in general the

demands on the dynamical performance cannot be met with this

concept. This is even more obvious if the pump is driven by a

combustion engine.

The second possibility to control the volume flow of a pump

is to change the displacement of the pump. In this con-

text, variable-displacement axial piston pumps are often used,

whereby the displacement of the pump (i.e. the volume flow)
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can be changed by tilting a swash plate. This can be done fast

enough to meet the dynamical demands of many loads.

The present paper deals with the supply pressure control of

electrohydraulic systems comprising a variable displacement

axial piston pump and a variable load. Typically, linear control

strategies are used in such applications, see, e.g., Grabbel &

Ivantysynova (2005); Wu, Burton, Schoenau & Bitner (2002).

Since electrohydraulic systems exhibit a significant nonlinear

behavior the performance of the closed-loop system is normally

rather limited. Furthermore, a rigorous stability proof is lacking

in most cases and the tuning of the controller parameters turns

out to be very time-consuming. In this work, a new model-

based nonlinear control strategy is derived, which, on the one

hand, takes into account the essential nonlinearities of the sys-

tem and, on the other hand, can be easily adjusted to pumps of

different installation sizes in the same model range.

A general problem in designing a load-sensing system is to

find out the actual demands of the load, since in most cases the

load is neither known nor can it be measured. This problem

also occurs in the application considered in this paper where

the load not only is unknown but may also change in a very

fast manner. In order to deal with this fact, the nonlinear con-

trol strategy has to be augmented by a load estimator. This is

a challenging task since it is well known that the separation

principle of the controller and the estimator design does not

hold for nonlinear systems. In this contribution, the stability of

the closed-loop system consisting of the nonlinear controller,

the nonlinear load estimator and the plant model is proven by

means of Lyapunov’s theory.

In order to meet the high demands both on the tracking

behavior and the robustness of the closed-loop system a two

degrees-of-freedom control structure, comprising a feedfor-

ward and a feedback part, is proposed in the controller design.

Thereby, the design of the control strategy becomes very chal-
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lenging in the considered application due to the fact that the

axial piston pump is self-supplied, i.e. the volume flow which

is necessary to control the pump is taken from the output vol-

ume flow of the pump. This, as will be outlined in detail in

the next section, yields a switching mathematical model of the

system. It is well known from literature that the controller de-

sign and the proof of the stability is much more demanding for

switching systems (Branicky, 1995, 1998; DeCarlo, Branicky,

Pettersson & Lennartson, 2000; Liberzon, 2003).

The paper is organized as follows: In the next section, the

electrohydraulic system under consideration is described in de-

tail and a short overview of the mathematical modeling as well

as a precise definition of the control task is given. Section 3

is concerned with the control design, whereby a feedforward

controller is designed in the first part and is augmented by a

feedback controller in the second part. The design of a load es-

timator is the topic of Section 4, where a simple and an extended

estimator for the load is presented. Finally, the feasibility of the

overall control concept is shown by means of measurement re-

sults in Section 5.

2. Mathematical Modeling and Control Task

The variable displacement axial piston pump under consider-

ation is to be used in injection molding machines, where liquid

plastics is injected into a mold by a screw conveyor. The dis-

placement of the screw conveyor is controlled by a hydraulic

piston actuator, which, in turn, is controlled by the axial piston

pump. Basically, the injection process can be divided into two

phases:

i. In the first phase, the mold is filled with liquid plastics. To

accomplish this task, the screw conveyor has to be moved

with a constant velocity. This means that the axial piston

pump has to provide a constant volume flow.

ii. In the second phase, the mold is completely filled. In or-

der to compensate for the shrinking of the cooling plastics,

liquid plastics has to be supplied to the mold with constant

pressure. Thus, the axial piston pump has to control the

pressure in the piston actuator.

The control task for the first phase is rather simple since the vol-

ume flow qp of the pump is basically proportional to the swash

plate angle ϕp. Thus, a simple (linear) controller for the swash

plate angle turns out to be sufficient in terms of accuracy and

dynamic performance, see, e.g., Fuchshumer (2009). On the

other hand, the control of the pressure in the piston actuator

is a challenging task since (i) there are very high demands on

the dynamics and the accuracy of the pressure and (ii) the char-

acteristics of the load can change dramatically with very high

dynamics. The control task is further complicated by the fact

that the pump is self-supplied, which means that the volume

flow necessary to control the swash plate angle of the pump is

taken from the pump volume flow qp, cf. Fig. 2. This in turn

entails a switching character of the mathematical model.

In Fig. 1 the schematic diagram of a variable displacement

axial piston pump is shown. The pump under consideration

consists of 9 pistons which are placed in the barrel. The bar-

rel, driven by an induction machine, rotates with the (almost

constant) angular velocity ωp and is forced against the valve

plate, which alternately connects the pistons to the tank and to

the load pressure. The pistons themselves are born against the

swash plate by means of slippers. A tilt (angle ϕp) of the swash

plate results in an axial displacement of the pistons. Thereby,

oil is taken from the tank via the intake port and delivered to

the load via the discharge port. The volume flow of the pump

qp can be changed continuously by changing ϕp.

ϕp qa

pa

ωp

pt actuator

swash plate

slipper

piston barrel valve plate

discharge

intake

port

port

Figure 1: Schematic diagram of the variable displacement axial piston pump.

Fig. 2 depicts the schematic diagram of the overall electro-

hydraulic system under consideration. It comprises the variable

displacement pump which delivers the volume flow qp to the

load volume Vl. The load volume is connected to the tank with

tank pressure pt via a variable load orifice. In order to change

the volume flow qp of the pump, the angle ϕp of the swash plate

has to be adjusted. For this task a single acting hydraulic actua-

tor is used, whereby the restoring force is generated by a spring.

The actuator pressure pa is controlled by a 3 ways / 3 lands

(3/3) proportional directional valve generating the actuator vol-

ume flow qa. As shown in Fig. 2, the control valve is supplied

by the load pressure pl, i.e., the pump is self-supplied. Thereby,

only positive actuator volume flows qa are taken from the load,

while negative volume flows are discharged to the tank. The

advantage of the chosen experimental setup is that all relevant

situations occurring in injection moulding machines can be em-

ulated under well-defined conditions.

The mathematical modeling of electrohydraulic systems was

the topic of numerous works, see, e.g., Blackburn, Reethof &

Shearer (1960), Merritt (1967) and McCloy & Martin (1980)

for a general overview. Especially, detailed works are avail-

able for the mathematical modeling of variable displacement

pumps (Manring & Johnson, 1996; Manring, 2005; Ivantysyn J

& Ivantysynova M, 1993; Findeisen, 2006). Since the detailed

mathematical models capturing all the dynamical effects are in

general rather complicated they are not suitable for a model

2

Post-print version of the article: W. Kemmetmüller, F. Fuchshumer, and A. Kugi, “Nonlinear pressure control of self-supplied variable
displacement axial piston pumps”, Control Engineering Practice, vol. 18, pp. 84–93, 2010. doi: 10.1016/j.conengprac.2009.09.006
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.conengprac.2009.09.006


pl ql

qp
ϕp

pt

ptpt

η(qa)

qa
pa

load orificeload volume Vl

control
valve

actuator

pump

Figure 2: Schematic diagram of the electrohydraulic system.

based controller design. Therefore, an analysis of the dynam-

ics of the system based on the singular perturbation theory was

performed in Fuchshumer (2009) to systematically reduce the

overall complexity of the mathematical model. The resulting

model, which will be used in the subsequent control design, is

given by

d

dt
ϕp = − qa

Aara

(1a)

d

dt
pl =
β

Vl

(
kpϕp − kl

√
pl − η(qa)

)
, (1b)

where ϕp is the swash plate angle, pl is the load pressure and

qa is the volume flow into the actuator. The effective area of the

actuator is denoted by Aa and the effective radius is given by ra.

Further, β is the bulk modulus of the oil, Vl is the volume of the

load and kl denotes the unknown coefficient of the load orifice

(load coefficient). The function η(qa) describes the volume flow

taken from the load in order to tilt the swash plate

η(qa) =

{
qa for qa > 0

0 else.
(2)

Finally, the volume flow qp of the pump is given by qp = kpϕp

with the pump coefficient

kp =
npAprpωp

π
, (3)

with the number of pistons np, the cross-sectional area Ap of a

piston, the effective radius of rotation rp of the pistons and the

constant angular velocity ωp of the barrel. As was shown in

Fuchshumer (2009), this considerably simplified mathematical

model of the electrohydraulic system in Fig. 2 covers the essen-

tial (nonlinear) behavior of the real system and thus serves as a

good basis for the controller design.

Remark 1. Henceforth it is assumed that the volume flow qa

into the actuator is the control input of the system. In reality,

of course, only the position of the spool of the 3/3 proportional

directional valve can be directly controlled. However, a servo-

compensation is implemented in the system which calculates

the spool position sv necessary to achieve a desired actuator

volume flow qa. More details on this topic will be given in

Section 5.

The control design task can now be summarized as follows:

Given the (nonlinear) mathematical model of the system (1),

(2), design a (nonlinear) controller (with qa as the control input)

for the load pressure pl which is capable of following high dy-

namic trajectories pl,d(t) without exact knowledge of the load.

The control task is complicated by the following facts:

• From (1), (2) it can be seen that the mathematical model

of the electrohydraulic system constitutes a switching sys-

tem, since the right-hand side is changing dependent on

the sign of qa. This means, of course, that many classical

stability results and control design methods for nonlinear

systems cannot be directly applied.

• In addition to the fact that the load coefficient kl is un-

known in the real application, it can even change very

rapidly.

• The controller has to be robust with respect to model un-

certainties and measurement noise.

3. Control Design

This section is concerned with the development of a nonlin-

ear model based control strategy for the electrohydraulic sys-

tem (1), (2). In this work, a two degrees-of-freedom control

structure comprising a feedforward and a feedback part is used

to solve the aforementioned control task. In order to take into

account the unknown load coefficient kl, the controller is aug-

mented by an estimator for kl.

For the subsequent considerations, system (1), (2) is formally

split into two systems: system ΣI which is valid for qa ≤ 0,

ΣI :
d

dt
ϕp = − qa

Aara

(4a)

d

dt
pl =

β

Vl

(
kpϕp − kl

√
pl

)
, (4b)

and system ΣII which holds for qa > 0

ΣII :
d

dt
ϕp = − qa

Aara

(5a)

d

dt
pl =

β

Vl

(
kpϕp − kl

√
pl − qa

)
. (5b)

3.1. Feedforward Control

System ΣI

A simple investigation of (4) shows that the system ΣI is dif-

ferentially flat with the load pressure pl as a possible flat out-

put, see, e.g., Fliess, Lévine, Martin & Rouchon (1995) for an

introduction to the concept of flatness for nonlinear systems.

Defining a sufficiently smooth (at least twice continuously dif-

ferentiable) desired trajectory pl,d of the load pressure in (4b)

yields

ṗl,d =
β

Vl

(
kpϕp,d − kl

√
pl,d

)
. (6)
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In order to calculate the desired swash plate angle ϕp,d from

(6) the knowledge of the load coefficient kl would be necessary.

To circumvent this problem at this point, an estimation k̂l is

used in the feedforward control instead of kl. The design of the

estimator and the proof of the overall closed-loop stability will

be treated later on in this paper. For the time being only the

existence of an appropriate estimator for kl is presumed. This

directly gives the desired swash plate angle ϕp,d

ϕp,d =
1

kp

(
Vl

β
ṗl,d + k̂l

√
pl,d

)
. (7)

The second derivative of the desired load pressure

p̈l,d =
β

Vl

(
− kp

Aara

qa,d − 1

2

k̂l√
pl,d

ṗl,d − ˙̂kl

√
pl,d

)
(8)

includes the desired actuator volume flow qa,d. Thus, the feed-

forward control1 for ΣI reads as

FF I : qa,d = −Aara

kp

(
Vl

β
p̈l,d +

1

2

k̂l√
pl,d

ṗl,d +
˙̂kl

√
pl,d

)
. (9)

System ΣII

In contrast to ΣI , the load pressure pl is no longer a flat output

for ΣII . Nevertheless, an inversion-based feedforward control

strategy can be applied to this system. Thus, the desired load

pressure pl,d is used in (5b)

ṗl,d =
β

Vl

(
kpϕp,d − kl

√
pl,d − qa,d

)
, (10)

yielding the desired volume flow qa,d for ΣII with kl replaced by

k̂l in the form

FF II : qa,d = −Vl

β
ṗl,d + kpϕp,d − k̂l

√
pl,d. (11)

The corresponding desired swash plate angle ϕp,d in (11) is de-

termined by the differential equation for the internal dynamics

d

dt
ϕp,d =

1

Aara

(
−kpϕp,d + k̂l

√
pl,d +

Vl

β
ṗl,d

)
. (12)

Obviously, the internal dynamics is exponentially stable.

3.2. Feedback Control

The feedforward control designed in the last subsection has

to be augmented by a feedback control in order to stabilize the

tracking error in case of parameter variations or model uncer-

tainties. Therefore, the pressure error ep = pl−pl,d and the error

in the swash plate angle eϕ = ϕp−ϕp,d are introduced. Applying

FF I to the system ΣI yields the error system for qa ≤ 0

d

dt
eϕ = − 1

Aara

qa,c (13a)

d

dt
ep =

β

Vl

(
kpeϕ − kl

√
ep + pl,d + k̂l

√
pl,d

)
, (13b)

1Subsequently, the feedforward control for ΣI and ΣII will be referred to by

FFI and FFII , respectively.

where qa,c = qa − qa,d denotes the feedback part of the control

input. Similarly for qa > 0, using FF II in ΣII results in

d

dt
eϕ = − 1

Aara

qa,c (14a)

d

dt
ep =

β

Vl

(
kpeϕ − kl

√
ep + pl,d + k̂l

√
pl,d − qa,c

)
. (14b)

Before a controller can be designed for the switched system

(13), (14), some important facts on the stability of switched

systems have to be discussed. First of all, it is well known

from literature that a switched system may be unstable even

if the individual systems are all stable for themselves (Bran-

icky, 1995, 1998; DeCarlo, Branicky, Pettersson & Lennartson,

2000; Liberzon, 2003). Therefore, it is not sufficient to design

a stabilizing controller for the error systems (13) and (14) sepa-

rately. One possibility to achieve a systematic proof of the sta-

bility of switched systems is given by the method of multiple

Lyapunov functions as proposed by Branicky (1998). Thereby,

the stability of each system has to be proven with a Lyapunov

function and in addition it has to be shown that each Lyapunov

function is strictly non-increasing during switching. While the

proof of the first condition is rather straightforward for many

systems, the proof of the second condition is in general diffi-

cult. One way to avoid the proof of the second condition is to

use a common Lyapunov function for all systems. Although

the design of a common Lyapunov function turns out to be a

rather delicate issue for general nonlinear switching systems,

this approach will be pursued in the following.

For the time being, it is assumed that a common Lyapunov

function and feedback controllers FBI and FBII for the error

systems I and II, respectively, have already been found such

that the stability of each closed-loop system is guaranteed2. At

this point the question arises when and how the control law con-

sisting of the feedforward and the feedback control is switched.

The intuitive approach would be that FF I + FBI are active for

qa ≤ 0 and FF II + FBII for qa > 0.

Then, however, two problems occur: First, switching the

feedforward control FF I and FF II based on qa = 0 yields to

discontinuities in the desired value of the swash plate angle ϕp,d

and thus in eϕ. In order to make this more obvious, consider at

the beginning that qa = qa,d + qa,c < 0 and therefore FF I and

FBI are active. If at time ts the volume flow qa equals zero,

switching to FF II and FBII would occur. In this case, the ini-

tial value ϕp,d(ts) of the differential equation (12) would be set

to the actual value of ϕp,d at t = ts in FF I due to (7) and thus

the trajectory is continuous. However, switching from qa > 0

(i.e. FF II and FBII are active) to FF I and FBI at time t = ts

when qa = 0, the desired swash plate angle ϕp,d has to satisfy

the following relations at t = ts

ϕp,d =
1

kp

(
Vl

β
ṗl,d + k̂l

√
pl,d + qa,d

)
(15)

2Note that the actual design of the feedback controllers will be performed

in the next subsection.

4

Post-print version of the article: W. Kemmetmüller, F. Fuchshumer, and A. Kugi, “Nonlinear pressure control of self-supplied variable
displacement axial piston pumps”, Control Engineering Practice, vol. 18, pp. 84–93, 2010. doi: 10.1016/j.conengprac.2009.09.006
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.conengprac.2009.09.006


according to (11) for FF II and

ϕp,d =
1

kp

(
Vl

β
ṗl,d + k̂l

√
pl,d

)
(16)

according to (7) for FF I . Of course there is no reason for qa,d to

be zero at time t = ts, since the switching condition qa(ts) = 0

only leads to qa,d(ts) = −qa,c(ts). Consequently, switching at

qa = 0 in general provokes a discontinuous time evolution of

ϕp,d and thus of eϕ. Note that this behavior originates from the

fact that the relative degree of the output to be controlled pl is

changing when switching between the systems ΣI and ΣII due

to (4) and (5), respectively. See, e.g., Isidori (2001) for more

details on the notion of relative degree of a nonlinear system.

There is, however, a second problem which occurs in con-

nection with a switching based on the condition qa = 0. If

FF I + FBI yields qa = 0 this does not necessarily imply that

FF II + FBII also yields qa = 0. In order to clarify this, let us

consider the situation where qa < 0 with FF I and FBI active

and switching takes place if qa from FF I + FBI crosses zero,

i.e. qa = 0. In this case, qa calculated from FF II + FBII may

also be negative which would cause immediate switching back

to FF I and FBI . Thus, there is a set where neither FF I and FBI

nor FF II and FBII are valid. As a result (and for perfect switch-

ing), a sliding motion along the (sliding) submanifold qa = 0 of

FF I + FBI would take place.

The first problem, i.e. the discontinuity of the desired tra-

jectories, can be solved by switching the feedforward control

FF I and FF II and the feedback control FBI and FBII indepen-

dently. Therefore, the zero crossing of the desired volume flow

qa,d is used as a switching criterion for the feedforward control

instead of the actuator volume flow qa. Since qa,d = 0 yields the

same ϕp,d for FF I and FF II , cf. (15) and (16), this switching

criterion avoids the aforementioned problems when switching

from FF II to FF I .

The sliding motion of the controller can also be circumvented

by switching the feedback control FBI and FBII independently

of the system. In contrast to the feedforward control the choice

of a suitable switching criterion is much more complicated in

this case since the feedback control may consist of arbitrary

nonlinear functions of the states ep and eϕ. Furthermore, the in-

dependent switching of the feedforward and the feedback con-

trol requires the proof of the stability of the closed-loop system

of all eight possible combinations of feedforward control (FF I ,

FF II ), feedback control (FBI, FBII) and systems (ΣI , ΣII ) with

one common Lyapunov function. In order to simplify matters,

in this work a common feedback law FBI = FBII will be used.

The general procedure of the feedback controller design is

as follows: First, a feedback controller and a control Lyapunov

function are designed for the error system (13), resulting from

the application of FF I to ΣI . Afterwards, the stability of the

closed-loop system for the other three combinations of feed-

forward control and system (FF II , ΣII ), (FF I , ΣII ) and (FF II ,

ΣI ), respectively, is proven using a common Lyapunov function

and feedback law. This, of course, implies the stability of the

overall switched closed-loop control system.

Feedforward FF I with System ΣI

Applying FF I to ΣI results in the error system (13). For the

design of the feedback controller it is assumed that the esti-

mated value k̂l is exactly equal to the real value kl (certainty

equivalence condition, see, e.g., Krstić, Kanellakopoulos &

Kokotović (1995)). The design of an estimator for kl and the

proof of the stability of the overall closed-loop system com-

prising the feedforward control, the feedback control and the

estimator will be given in the next section.

As a starting point the positive definite function Wc

Wc =
1

2
δ1e2

p +
1

2
δ2e2
ϕ, (17)

with positive constants δ1, δ2 > 0, is chosen as a possible candi-

date for a control Lyapunov function (CLF). The change of Wc

along a solution of the error system (13) reads as

d

dt
Wc = − δ1βkl

Vl

(√
ep + pl,d − √pl,d

)
ep

+
δ1βkp

Vl

epeϕ − δ2

Aara

eϕqa,c.

(18)

For the considered application a simple feedback control law of

the form

qa,c = λpep + λϕeϕ (19)

with constant controller parameters λp, λϕ > 0, is chosen. At

this point one may wonder why a linear feedback controller

suffices in terms of the demands on the closed-loop dynamics.

Note that the excellent performance of the overall closed-loop

system (cf. Section 5) is mainly due to (i) the feedforward con-

troller, which systematically accounts for the nonlinearities in

the tracking case and (ii) the nonlinear load estimator for kl, to

be designed in the next section, in the disturbance case in com-

bination with (iii) the proposed switching strategy.

Substituting the feedback control law (19) into (18) and set-

ting δ1 to

δ1 =
δ2Vl

Aarakpβ
λp (20)

results in

d

dt
Wc = −

δ2λpkl

Aarakp

(√
ep + pl,d − √pl,d

)
ep −

δ2λϕ

Aara

e2
ϕ. (21)

Clearly, since kp, kl > 0 the right-hand side of (21) is negative

definite and this proves the asymptotic stability of the closed-

loop system (13), i.e. FF I with ΣI , and (19).

Similar results can be obtained for the three other combina-

tions of feedforward control and system (FF II ,ΣII), (FF I ,ΣII )

and (FF II ,ΣI), see the Appendix A. Thus, the stability of the

closed-loop system consisting of the switched feedforward con-

trol, the common feedback control and the switched system is

proven if the certainty equivalence condition kl = k̂l holds. In

the next section an estimation of k̂l will be derived and the sta-

bility of the overall closed-loop system will be proven.
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4. Estimation of the load coefficient kl

The design of the estimator for the load coefficient kl is

based on the assumption that kl is unknown but constant. In

this contribution, two different estimators will be derived. The

first rather simple approach is straightforward and well known

from literature but has the drawback that it can hardly be tuned

to meet the demands on the dynamic performance and on the

robustness. In particular these deficiencies become apparent

when applying this simple estimator to the experimental setup.

For this reason, an extended estimator also will be presented

where the whole measurement information is exploited within

the design process.

4.1. Simple estimator

The simple estimator is supposed to take the form

d

dt
k̂l = −χk(ep, eϕ, t), (22)

where the right-hand side χk of (22) has to be determined. In

order to do so, the CLF (17) is extended by a quadratic term in

the estimation error êk = kl − k̂l

Wtot = Wc +We =
1

2
δ1e2

p +
1

2
δ2e2
ϕ +

1

2

1

λ̂k

ê2
k , (23)

with the tuning parameter λ̂k > 0 of the estimator. Before cal-

culating the change of Wtot along a solution of the error system

(13), (14), (42) or (47), respectively, it is useful to rewrite the

right-hand sides in such a way that only expressions with kl and

kl − k̂l = êk do appear but no ones which are explicitly weighted

with k̂l. Note that this can always be achieved since the right-

hand sides of the error systems (13), (14), (42) and (47) are all

affine in the load coefficient kl. For the error system (13) this

rearrangement of the right-hand side exemplarily yields

d

dt
eϕ = − 1

Aara

qa,c (24a)

d

dt
ep =

β

Vl

(
kpeϕ − kl

√
ep + pl,d + kl

√
pl,d

)
(24b)

− β
Vl

(
kl − k̂l

)
︸   ︷︷   ︸

êk

√
pl,d.

Analogously, all other error systems can be rewritten to exhibit

a similar structure. The first term of (24b) equals the error sys-

tem (13) if the certainty equivalence condition holds and the

second term of (24b) accounts for the estimation error.

Now, the change of the overall Lyapunov function Wtot along

a trajectory of the closed-loop system (24) with (19) and (22)

can be calculated as

d

dt
Wc = −

δ2klλp

Aarakp

(√
ep + pl,d − √pl,d

)
ep −

δ2λϕ

Aara

e2
ϕ

− δ2λp

Aarakp

√
pl,depêk +

1

λ̂k

êkχk.

(25)

This result corresponds to (21) except for the last two terms.

In order to render Ẇtot negative semi-definite, the third term in

(25) is cancelled out by the last term. Thus, the estimator due

to (22) reads as

d

dt
k̂l = −λ̂k

δ2λp

Aarakp

√
pl,dep (26)

Obviously, using the same approach for the other three er-

ror systems yields the same result. Since the calculations are

straightforward they are omitted here. With this, the stability

of the closed-loop system comprising the switched feedforward

control, the common feedback control, the estimator and the

switched system has been proven.

Simulation studies and experimental results with the simple

estimator, however, show that (i) a suitable choice of λ̂k is very

difficult to find and that (ii) the demands on the dynamic perfor-

mance and accuracy cannot be achieved. Furthermore, the esti-

mator shows a weak robustness to model uncertainties. There-

fore, the simple estimator is not feasible for practical imple-

mentation.

4.2. Extended estimator

The basic idea in the development of the extended estimator

for the load coefficient kl is to additionally estimate the load

pressure pl, although this quantity is available by measurement.

The main reason for this is to provide additional degrees-of-

freedom for the design and parametrization of the estimator.

The estimator for the load pressure pl is composed of a pre-

diction and a correction part, where the predictor is basically

a copy of the mathematical model (4b), (5b) and the corrector

term χp(ep, eϕ, t) is used to stabilize and adjust the estimator

dynamics, namely

d

dt
p̂l =

β

Vl

(
kpϕp − k̂l

√
pl

)
− χp, for qa ≤ 0 (27a)

d

dt
p̂l =

β

Vl

(
kpϕp − k̂l

√
pl − qa

)
− χp, for qa > 0. (27b)

As it can be seen the switching between (27a) and (27b) relies

on the zero-crossing of the actuator volume flow qa. Thus, the

estimator (27) is switched synchronously to the system (4), (5).

For the estimation of the load coefficient kl the same approach

as in (22) is used

d

dt
k̂l = −χk(ep, eϕ, t). (28)

Introducing the estimation errors êp = pl − p̂l and êk = kl − k̂l it

can be easily seen that the error system for both systems ΣI and

ΣII has the identical form

d

dt
êp = − β

Vl

√
plêk + χp(ep, eϕ, t) (29a)

d

dt
êk = χk(ep, eϕ, t). (29b)

The corrector terms χp(ep, eϕ, t) and χk(ep, eϕ, t) in (29) have

to be designed in order to allow for a proof of the stability of

the overall closed-loop system comprising the feedforward and

the feedback controller, the system and the extended estimator.
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However, before proving the stability of the overall closed-loop

system, the stability of the extended estimator itself will be an-

alyzed. For this purpose the Lyapunov function candidate

We =
1

2
ê2

p +
1

2

1

λ̂k

ê2
k (30)

with the estimator parameter λ̂k > 0 is chosen. The change of

We along a solution of (29) is then given by

d

dt
We = − β

Vl

√
plêpêk + êpχp +

1

λ̂k

êkχk. (31)

In order to compensate for the first indefinite term, χk is fixed

as

χk(ep, eϕ, t) = λ̂k

β

Vl

√
plêp. (32)

Then, the choice of the corrector term χp in the form

χp(ep, eϕ, t) = −λ̂pêp (33)

with the estimation parameter λ̂p > 0 renders Ẇe in (31) neg-

ative semi-definite. This implies stability in the sense of Lya-

punov of the extended estimator.

Up to now, the estimator has been analyzed separately from

the rest of the system. In order to study the stability of the over-

all closed-loop system with the extended estimator the overall

Lyapunov function, cf. (17) and (30)

Wtot = Wc +We =
1

2
δ1e2

p +
1

2
δ2e2
ϕ +

1

2
ê2

p +
1

2

1

λ̂k

ê2
k (34)

is used. Keeping the analysis of the simple estimator, especially

(24), (25) and (26), in mind, it can be seen that the time deriva-

tive Ẇtot along a solution of the overall closed-loop system is

negative except for the term

− δ2λp

Aarakp

√
pl,depêk. (35)

This term can be cancelled out by augmenting χk(ep, eϕ, t) from

(32) in the form

χk = λ̂k

(
β

Vl

√
plêp +

δ2λp

Aarakp

√
pl,dep

)
. (36)

Summarizing, the extended estimator reads as

d

dt
p̂l =

β

Vl

(
kpϕp − k̂l

√
pl

)
+ λ̂pêp (37a)

d

dt
k̂l = −λ̂k

(
β

Vl

√
plêp +

δ2λp

Aarakp

√
pl,dep

)
(37b)

for qa ≤ 0 and

d

dt
p̂l =

β

Vl

(
kpϕp − k̂l

√
pl − qa

)
+ λ̂pêp (38a)

d

dt
k̂l = −λ̂k

(
β

Vl

√
plêp +

δ2λp

Aarakp

√
pl,dep

)
(38b)

for qa > 0.

5. Measurement Results

In this section, the properties of the proposed control strategy

comprising the feedforward controller FF I (7), (9) and FF II

(11) and (12), the common feedback controller (19) and the ex-

tended estimator (37) and (38), are analyzed by means of mea-

surement results of a test stand. The test stand was designed and

built by the company HYDAC Electronic GmbH, see Fig. 3.

The main components of this test stand are the variable dis-

placement axial piston pump driven by an induction machine

and controlled by the control valve, the load volume and the

load orifice. The schematic diagram of the hydraulic circuit of

the test stand is given in Fig. 2 and the parameters of the system

are summarized in Table 1.

axial piston pump

induction machineload orifice

control valve

Figure 3: Experimental setup of the test stand for the axial piston pump.

parameter symbol value unit

bulk modulus β 1.6 · 109 Pa

eff. area of actuator Aa 300 mm2

eff. radius of actuator ra 50 mm

number of pistons np 9

area of piston Ap 165 mm2

radius of rot. of pistons rp 30 mm

angular vel. of pump ωp 50π 1
s

pump coefficient kp 2.23 · 10−3 m3

s

min. swash plate angle ϕp,min −1.5 ◦

max. swash plate angle ϕp,max 18 ◦

load volume Vl 1.5 l

min. load coeff. kl,min 10 · 10−9 m3

s
√

Pa

nom. load coeff. kl,nom 90 · 10−9 m3

s
√

Pa

max. load coeff. kl,max 140 · 10−9 m3

s
√

Pa

Table 1: Parameters of the pump and the load.

The actuator for tilting the swash plate is controlled by a (3/3)

proportional directional valve, cf. Fig. 2. In contrast to the pre-

vious assumption, the volume flow qa into the actuator cannot

be directly assigned by means of this valve. In fact, only the

position sv of the spool of the valve can be controlled directly.
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The volume flow qa is given in the form

qa = α

√
2

ρ

(
Ala(sv)

√
pl − pa − Aat(sv)

√
pa − pt

)
, (39)

where α denotes the constant discharge coefficient, ρ is the mass

density of the oil and Ala(sv) and Aat(sv) are the opening areas

of the valve from the load to the actuator and from the actuator

to the tank, respectively. Furthermore, pl is the load pressure,

pa denotes the actuator pressure and pt = 0 is the tank pressure.

In the system under consideration a valve with a small negative

overlap is used, whose opening characteristics are depicted in

Fig. 4.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

sv in mm

ar
ea

in
m
m

2

Aat Ala

Figure 4: Opening characteristics Ala(sv) and Aat(sv) of the proportional valve.

In order to calculate the real control input, i.e. the valve spool

position sv, from the virtual control input qa, (39) is solved

for sv. A unique solution of this equation always exists, al-

though it can only be evaluated numerically. With this it is pos-

sible to compensate for the nonlinearities of the valve (servo-

compensation) such that the spool position sv can be calculated

from the volume flow qa. Thereby, as already mentioned before,

the dynamics of the valve is neglected since it is considerably

faster (rise time of approximately 5 ms) than the dynamics of

the system.

The control strategy, extended by the servo-compensation,

was realized in form of a Simulink C-code s-function, com-

piled using Matlab Real-TimeWorkshop and implemented on

a dSPACE realtime hardware DS1103. Thereby, a sampling

time of T s = 1 ms is used. Furthermore, the parameters of the

controller and the estimator are chosen according to Table 2.

In the first measurement result the tracking behavior of the

load pressure pl is analyzed. Therefore, two measurements are

performed, one with a small load coefficient kl = kl,min (see the

left-hand side of Fig. 5) and one with a larger, nominal load co-

efficient kl = kl,nom (see the right-hand side of Fig. 5). As can be

seen from the time-evolution of the load pressure pl an excel-

lent tracking performance is achieved independent of the actual

value of the load coefficient. On the other hand, the different

parameter value

λp 8 · 10−11

λϕ 5 · 10−3

λ̂p 600

λ̂k 5 · 10−27

δ2 1.5 · 10−14

Table 2: Parameters of the controller and extended estimator.

load coefficients have a large influence on the trajectories of the

swash plate angle ϕp. Obviously, this is due to the fact that only

a small volume flow qp of the pump is necessary to provide the

(small) load volume flow ql = kl,min
√

pl for the small load co-

efficient while a much higher volume flow qp is necessary for

the larger load coefficient kl,nom. The influence of the different

load coefficients can also be seen in the plots of the actuator

volume flow qa and the real control input sv, which are given at

the bottom of Fig. 5.

The second measurement result, given in Fig. 6, shows the

behavior of the system for rapid changes of the load coefficient.

Here, the load orifice is closed and opened as fast as possible

while a desired trajectory pl,d(t) in the load pressure is tracked.

Of course, the fast change of kl yields to significant errors in

the load pressure but these errors are compensated in a very

fast way. At this point it is worth mentioning that the stability

proof of the overall closed-loop system, cf. Section 4.2, relies

on the assumption that the load coefficient is unknown but con-

stant. Clearly, the case of rapidly changing loads is not covered

by the stability proof but the measurment results show that the

control strategy is reliable also in this situation. The dynamical

behavior of the estimation of the load coefficient, as given on

the right-hand side of Fig. 6, shows that the estimation k̂l tracks

the rapidly changing load coefficient in an excellent manner.

Thereby, it has to mentioned that the rather large overshoot in

the estimation of the load coefficient can be reduced by adjust-

ing the parameters of the estimator. However, the main focus

of the control strategy is good tracking of the load pressure pl

and not the exact estimation of the load coefficient. For this

task, the chosen parameters of the controller and estimator have

proven to be feasible in practical application and turned out to

be a good compromise between tracking performance of the

load pressure and a good estimation of the load coefficient.

In the final measurement result, the tracking behavior of the

load pressure is analyzed for slowly varying load coefficients.

Here, the load coefficient kl is slowly increased while the load

pressure should track a rectangular like reference trajectory,

cf. Fig. 7. For this case again an excellent tracking performance

can be achieved, while at the same time a good estimation of the

load coefficient is obtained.

To sum it up, the measurement results show a very good per-

formance of the overall control strategy and thus prove the prac-

tical feasibility of the proposed control strategy comprising the

feedforward control, the feedback control and the extended es-

timator.
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Figure 5: Measurement results for the tracking behavior of the load pressure pl for a small load coefficient kl = kl,min on the left-hand side and a larger, nominal

load coefficient kl = kl,nom on the right-hand side.

9

Post-print version of the article: W. Kemmetmüller, F. Fuchshumer, and A. Kugi, “Nonlinear pressure control of self-supplied variable
displacement axial piston pumps”, Control Engineering Practice, vol. 18, pp. 84–93, 2010. doi: 10.1016/j.conengprac.2009.09.006
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.conengprac.2009.09.006


00 0.50.5 11 1.51.5 22
00

20

40

60

80

100

100

t in st in s

p
re

ss
u

re
in

b
ar

pl,d
pl

50

150

200
10−9

k̂
l

in
m

3

s√
P
a

Figure 6: Measurement results for a rapid change of the load coefficient kl while tracking a trajectory in the load pressure pl.
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Figure 7: Measurement results for the slow change of the load coefficient kl while tracking a trajectory in the load pressure pl.

6. Conclusion

In this work a new (nonlinear) control concept for the pres-

sure control of self-supplied variable displacement axial piston

pumps with variable load was designed. First, the basic setup

of the electrohydraulic system and its mathematical model was

described. Therein it was pointed out that the switching charac-

ter of the mathematical model, which is due to the self-supply

mechanism of the pump, and the fast changing unknown loads

constitute the main challenges for the controller design. In or-

der to solve this control task, a two degrees-of-freedom control

structure comprising a feedforward and a feedback controller

in combination with a load estimator was proposed. The ad-

vantages of this approach are (i) the systematic proof of the

closed-loop stability for unknown but constant load coefficients

based on Lyapunov’s stability theory, (ii) the model-based de-

sign, which allows an easy implementation of the control con-

cept to other installation sizes in the same model range, and

(iii) the simple parameterization by means of a few controller

parameters. The feasibility of the control strategy was shown

by measurement results, whereby an excellent robustness be-

havior and a superior tracking performance could be achieved.

Furthermore, the practical use of the proposed control concept

is affirmed by the industrial partner who also stresses the signif-

icant improvement of the proposed control concept compared to

the existing industrial solution.

A. Proof of stability

A.1. Feedforward FF II with System ΣII

The error system for the feedforward controller FF II applied

to the system ΣII is given in (14). By using the certainty equiv-

alence condition, the CLF from (17) and the feedback control

(19) with (20) yields the change of the CLF Wc along the solu-

tion of (14)

d

dt
Wc = −

δ2klλp

Aarakp

( √
ep + pl,d − √pl,d

)
ep

− δ2

Aara


λ2

p

kp

e2
p +
λpλϕ

kp

epeϕ + λϕe
2
ϕ

 .
(40)

The right-hand side of (40) is negative definite if the condition

4kp > λϕ > 0 (41)

is fulfilled, which also implies the asymptotic stability of the

closed-loop system (14), (19).
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A.2. Feedforward FF I with System ΣII

Due to the independent switching of the feedforward part and

the system it may happen that the feedforward control FF I is

applied to the system ΣII and vice versa FF II is applied to ΣI .

Using FF I in combination with ΣII results in the error system

d

dt
eϕ = − 1

Aara

qa,c (42a)

d

dt
ep =

β

Vl

(
kpeϕ − kl

√
ep + pl,d + k̂l

√
pl,d − qa

)
. (42b)

Inserting the control law (19) into (42) and presuming the cer-

tainty equivalence condition, the change of the CLF Wc along a

solution of the error system (42) reads as

d

dt
Wc = −

δ2klλp

Aarakp

(√
ep + pl,d − √pl,d

)
ep

− δ2λϕ

Aara

e2
ϕ −

δ2λp

Aarakp

epqa.

(43)

This result equals (21) except for the last indefinite term

− δ2λp

Aarakp

epqa. (44)

Since the actuator volume flow qa is positive for the system ΣII ,

the indefinite term (44) is negative for ep > 0. Thus, Ẇc is

negative definite for ep > 0. In order to show a similar relation

for ep < 0, the quantity qa is replaced by qa = qa,d +qa,c in (43),

with qa,c according to (19). Doing so, (43) can be rewritten in

the form

d

dt
Wc = −

δ2klλp

Aarakp

( √
ep + pl,d − √pl,d

)
ep − δ2

Aara
λ2

p

kp

e2
p +
λpλϕ

kp

epeϕ + λϕe
2
ϕ

 −
δ2λp

Aarakp

epqa,d,

(45)

which corresponds to (40) except for the last indefinite term

− δ2λp

Aarakp

epqa,d. (46)

Now, since FF I is only active if qa,d is negative, the expres-

sion (46) is negative for ep < 0 which also proves the negative

definiteness of Ẇc for ep < 0, provided that (41) holds. Summa-

rizing, it has been shown that Ẇc is negative definite and thus

the stability of the closed-loop system (42), where FF I is ap-

plied to ΣII , with the control law (19) subject to the inequality

(41) is proven.

A.3. Feedforward FF II with System ΣI

The last case to be considered is the feedforward controller

FF II applied to the system ΣI . In this case the error system

reads as

d

dt
eϕ = − 1

Aara

qa,c (47a)

d

dt
ep =

β

Vl

(
kpeϕ − kl

√
ep + pl,d + k̂l

√
pl,d + qa,d

)
. (47b)

Similar arguments as in the previous subsection show that also

in this case the change of the common Lyapunov function (17)

along a solution of (47) is negative definite for λp > 0 and λϕ
satisfying the inequality condition (41).
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