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Optimization-based estimator for the contour and movement of heavy plates in
hot rolling

F. Schausberger∗, A. Steinboeck, A. Kugi

Automation and Control Institute, Vienna University of Technology, Gußhausstraße 27–29, 1040 Vienna, Austria

Abstract

This paper deals with the estimation of the contour of heavy plates during the hot rolling process. Asymmetric
rolling conditions lead to a non-rectangular contour. The reasons for this effect, e.g., temperature gradients or non-
homogeneous input thickness profiles, are hard to predict in a real rolling mill. Hence, feedforward compensation of
these disturbances is difficult, whereas feedback control could be a suitable means for improving the plate contour.
Feedback control essentially requires the actual contour of the plate, which has to be measured or estimated in
real-time. The method presented in this paper suggests to capture an image sequence of the plate by means of a
thermographic measurement device. In the considered application, an image sequence is required because the whole
plate contour cannot be captured by a single image. An optimization-based algorithm takes into account the image
data and the restrictions of the plate movement in the rolling gap and uses this information to estimate the actual
plate contour. In addition, the algorithm estimates the angular velocity and the speed of the plate. Measurement data
from a heavy plate mill is used to validate the effectiveness of the proposed method.

Keywords: Plate contour measurement, Heavy plate mill, Unconstrained optimization, Moving horizon state
estimation, Moving horizon parameter estimation, Model-based estimator, Image stitching, Snaking

1. Introduction

1.1. Measurement of the plate contour
In heavy plate mills, the thickness of the incoming steel

slabs is successively reduced to the desired final plate
thickness in several rolling passes at the mill stands. A
major quality criterion of the final product is the shape
of the resulting contour, i.e. the shape of the plate from
the top view. Ideally, this contour is rectangular to max-
imize the usable area of the plate. A deviation from the
desired contour with respect to the vertical axis of the
plate is called camber (cf. Fig. 1). This may be caused
by asymmetric rolling conditions, e.g., temperature gra-
dients of the plate or non-homogeneous input thickness
profiles. Minimizing the deviation from the desired plate
contour is one main objective of the rolling process.

An important aspect in the design of measures to pre-
vent the generation of shape defects is the detection of
the actual plate contour. A precise knowledge of the con-
tour (longitudinal boundaries and shape of the head and
tail end) can be used to optimize the adjustment of the
rolling mill to reduce the camber. Simply measuring the
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Figure 1: Sketched rolling mill with roller tables and rolled plate with
camber.

whole plate contour at once, e.g., by means of edge de-
tection of an image of the plate, is not possible in the
considered application due to the following reasons:

• The contour of the plate is partly covered by plant
components.

• The measurement should be performed during
rolling in real-time.

• The length to width ratio of long plates is very dif-
ferent from the aspect ratio of common cameras.
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Furthermore, the measurement of the contour should
be carried out as near as possible to the rolling gap be-
cause:

• Short plates should also be captured.

• The time delay between the generation of a camber
and its measurement should be kept to a minimum.

Therefore, the detection of camber must be conducted
during the rolling pass itself and close to the rolling mill.
At this position, the harsh environment may deteriorate
the accuracy and robustness of measurements. Also the
lateral and rotational movement of the plate, which is ig-
nored in many published contour estimation procedures,
makes contour detection difficult. In case of pure longi-
tudinal movement, the contour could be obtained by sim-
ple integration of the plate velocity leading to the plate
position and using measurement signals gathered at a
spatially fixed position. Under real rolling conditions,
this approach is infeasible because the plate is clamped
in the rolling gap so that it may also rotate in addition
to its main longitudinal motion (cf. Fig. 2). The possi-
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Figure 2: Measurement setup providing insufficient data for the es-
timation of the longitudinal boundaries of the plate. The solid line
represents a rotating plate with camber. A rectangular plate with pure
longitudinal movement is shown as dashed lines. Both contours may
lead to the same signals of the measurement devices, which are located
at a spatially fixed position.

ble rotation of the plate during the rolling process also
complicates the detection of the contour.

1.2. Existing solutions

The use of three devices to measure the lateral posi-
tion of the plate downstream the mill is discussed in [1].
Based on these measurements, a polynomial represen-
tation of the actual plate profile is estimated and used
for feedback control to reduce the occurring camber by
modifying the output thickness wedge.

Soaring computer performance enabled the usage of
image processing techniques as proposed in [2], where
three 2D-CCD cameras capture neighboring areas of the
plate. In this camera configuration, the acute angle be-
tween the plate surface and the optical axis of the camera
requires a precise calibration of the camera to accurately
reconstruct the real image. After this preprocessing step,

a customized edge detection routine is employed to esti-
mate the edge of the plate. The detected edges of neigh-
boring images are joined based on the longitudinal speed
of the plate and to ensure C1-continuity of the estimated
plate edges. A very similar approach using just one cam-
era to estimate the centerline of the plate is discussed in
[3].

Also in strip rolling, 2D-cameras are used to track the
lateral position of the strip during the rolling process.
Carruthers-Watt et al. (cf. [4]) used measurements from
several cameras between the mill stands to determine the
lateral position of the strip in the finishing train of a hot
strip mill. The edge is identified as maximum of the gra-
dient of the intensity of the image in the lateral direction
and parameterized using Bezier curves. A similar mea-
surement setup and a mathematical model of the lateral
position of the strip for steering control is discussed in
[5]. In fact, an H2 controller that is robust against hetero-
geneous properties of the different rolled products was
designed using the tilts of several mill stands as control
inputs.

An algorithm tailored to the stitching of several images
of the plate was developed in [6], [7], and [8]. Common
feature points are identified on two consecutive images
to determine the displacement between the images. They
are captured by a CCD camera. Ollikkala et al. (cf. [9])
used a very similar approach. However, in this solution
the inclined viewing angle of the CCD-camera requires a
perspective correction of the recorded images. After this
image rectification step, an edge detection algorithm is
used to extract the boundaries of the plate.

1.3. Motivation and objectives of this work
The existing solutions for the detection of the plate

contour are mainly based on adequate image process-
ing. In most published works in this field, neither lat-
eral nor rotational movements of the plate are consid-
ered. The knowledge of the restrictions of the movement
of the plate during the rolling process is also not taken
into account, which may lead to reduced accuracy of the
contour estimation.

Additionally, the angular velocity is linked with the
lateral movement (snaking) of the plate in the rolling gap.
This movement may lead to an eccentric position of the
plate in the lateral direction. Because of the resulting
asymmetric loading of the rolls, the knowledge of the
evolution of the lateral position of the plate is also vital
for the necessary adjustment of the rolling gap actuators.

Furthermore, the estimation of the longitudinal speed
of the plate, which is required for the detection of the
contour, is not covered in many works. Usually, the
speed of the plate is calculated using a mathematical
model (forward slip model) and measurements of the an-
gular velocity of the rolls of the mill, see, e.g., [10]. This
in general results in an error prone speed of the plate
due to inaccuracies of the slip model and therefore in
an additional error of the estimated contour. Hence, a

2

Post-print version of the article: F. Schausberger, A. Steinboeck, and A. Kugi, �Optimization-based estimator for the contour and movement

of heavy plates in hot rolling�, Journal of Process Control, vol. 29, pp. 23�32, 2015, issn: 0959-1524. doi: 10.1016/j.jprocont.2015.03.006

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

http://dx.doi.org/10.1016/j.jprocont.2015.03.006


method to determine the plate velocity more accurately
seems favorable in terms of the contour detection.

All these facts were the motivation to develop a new
method to estimate the contour of heavy plates in hot
rolling. The current work aims at:

• Accurate and robust estimation of the contour (lon-
gitudinal and lateral edges).

• Investigation of the influence and estimation of the
movement of the plate (rotational and lateral mo-
tion).

• Precise estimation of the longitudinal speed of the
plate.

The estimation of the plate contour has to respect sev-
eral constrains:

• Harsh environment near the rolling gap.

• Real-time implementation of the contour detection
algorithm.

• Small time delay between the generation and esti-
mation of the plate contour.

The presented aspects and requirements make the con-
tour detection a challenging task in terms of acquisition
and processing of measurement data. This paper gives,
in contrast to common image processing methods, an
observer based approach utilizing the knowledge of the
model for the estimation of the plate contour. The pro-
posed method is tailored to the use in control algorithms.

1.4. Structure of the paper
The paper is organized as follows: Section 2 presents

the mathematical model used for the description of the
movement of the plate boundary. An optimization-based
algorithm for the estimation of the contour of the plate is
given in Section 3. The next Section, Section 4, contains
some methods to improve the basic contour detection al-
gorithm of Section 3. The recording and processing of
image data are discussed in more detail in Section 5. The
feasibility of the proposed approach is demonstrated in
Section 6 by measurement results of a downstream con-
tour measurement device in a heavy plate mill. Section
7 contains a short summary and gives an outlook on fur-
ther research activities.

2. Mathematical model of the movement of the plate
boundary

The exit velocity of the plate leaving the rolling gap
may be non-uniform along the lateral direction. This is
because the plate can experience rotations with respect
to its vertical axis in addition to the main longitudinal
motion, as observed in [11]. The measured boundary
position is thus a superposition of the plate contour

and the plate movement. To analyze these effects, a
mathematical model of the movement of the plate and
the resulting measurement signal of the contour of the
plate is deduced in this section. In the sequel, only one
longitudinal edge of the plate is considered, however,
the presented algorithm can be analogously applied to
the second longitudinal edge.

mill roll
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Figure 3: Top view of the rolling process with geometric parameteriza-
tion of the plate contour.

A schematic representation of the mill roll and the
rolled plate is shown in Fig. 3. The origin of a fixed global
coordinate frame (ξ, η, ζ) with base vectors eξ , eη and eζ

is located at the lateral center of the mill roll. At ξ = 0,
the plate moves out of the rolling gap with the velocity
vPL, which is assumed to be constant but unknown.

Moreover, the velocity in the direction η at ξ = 0 is de-
noted by vL. Although vL is zero because the material is
clamped in the rolling gap, it will be taken into account
in the mathematical model. The reason to introduce this
velocity is that misalignments of the camera as shown in
Fig. 4 may be present. The plate is still clamped in the
rolling gap and the velocity v of the plate is therefore
perpendicular to the axis of the mill roll. Because of the
misalignment of the camera and the rolls, this velocity in-
duces a longitudinal and lateral velocity component vPL
and vL in the (ξ, η, ζ) coordinate frame. The non-zero
lateral velocity vL results in a reduced accuracy of the
estimated contour if not considered in the mathematical
model. Due to the assembling situation of the camera,
a small but constant misalignment has to be expected.
Moreover, the rolls of the mill may exhibit a small time-
dependent rotation about the ζ-axis, which also leads to
an angular misalignment according to Fig. 4.

Furthermore, the plate contour is assumed to be con-
stant after leaving the rolling gap. Let ω be the angular
velocity of the plate about the axis ζ. A second local
coordinate frame (index PL) that is fixed to the plate is
used for parameterizing the longitudinal boundary by a
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field of view (FOV) of the camera
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Figure 4: Angular misalignment of the camera and the rolls.

polynomial with degree NL

pL(ξPL) =
NL

∑
i=0

cL,iξ
i
PL, (1)

with so far unknown coefficients cL,i. The origin of the
coordinate frame (ξPL, ηPL, ζPL) is shifted by (∆ξ, ∆η, 0)
and rotated by the angle ϕ about the axis ζ with respect
to the coordinate frame (ξ, η, ζ). Hence, the nonlinear
dynamical model of the plate movement reads as

d
dt




∆ξ
∆η
ϕ


 =




vPL −ω∆η
ω∆ξ + vL

ω


 , (2)

with state vector x =
[
∆ξ ∆η ϕ

]T and inputs vPL,
vL(t) and ω(t).

The current position of a point PL(ξL, ηL) on the longi-
tudinal boundary in the local coordinate frame is written
in vector representation as

r
′
L =

[
ξL(t) pL(ξL(t))

]T , (3)

starting from the origin of the plate-fixed coordinate
frame. The same point can be described in the global
coordinate frame with the vector

rL =
[
ξML ηML(t)

]T ,

where (ξML, ηML(t)) refer to measurement results at the
measurement line, see Fig. 3. These measurements are
obtained from edge detection algorithms within bitmaps
of the plate, which are captured by an infrared 2D-CCD
camera mounted behind the rolling mill. A detailed de-
scription of the measurement setup is given in Section
5. It should be noted that ξML does not vary with time
in contrast to ηML(t). This is because the measurement
device has a fixed position and orientation in the global
coordinate frame. An alternative representation of (3) is
given by

r
′
L =

[
ξL(t)
ηL(t)

]
= Aζ(ϕ(t))

[
ξML − ∆ξ(t)

ηML(t)− ∆η(t)

]
, (4)

where the rotation matrix Aζ(ϕ(t)) is defined in the form

Aζ(ϕ(t)) =
[

cos(ϕ(t)) sin(ϕ(t))
− sin(ϕ(t)) cos(ϕ(t))

]
.

Similar to (1), the head end of the plate is parameterized
by the polynomial

pH(ηPL) =
NH

∑
i=0

cH,iη
i
PL, (5)

with the degree NH and the polynomial coefficients
cH,i, i = 0, . . . , NH . Hence, a point PH(ξH , ηH) on the
head end may be written in vector representation as

r
′
H =

[
pH(ηH(t)) ηH(t)

]T

using (5) or as

r
′
H =

[
ξH(t)
ηH(t)

]
= Aζ(ϕ(t))

[
ξMH(t)− ∆ξ(t)

ηMH − ∆η(t)

]
(6)

in the local coordinate frame using measurements
(ξMH(t), ηMH) of the head end. In contrast to the mea-
surements of the longitudinal boundaries, for the head
end, the longitudinal coordinate ξMH(t) varies with time
and ηMH is constant. This is because of the spatially fixed
measurement lines in the longitudinal direction used for
the head end.

Note that (4) and (6) also depend on the states x of (2).

3. Optimization-based contour detection

The challenging task of determining the boundary of
the plate also includes the estimation of the states and in-
puts of the system (2). An Extended Kalman Filter (EKF),
see, e.g., [12], may be used to estimate the states of the
system. But the large number of measurements (more
than 1000) obtained by the infrared camera makes the
real-time usage in the considered application much more
difficult due to the resulting extensive computational ef-
fort. Optimization-based state estimation serves as an-
other option. An overview of this topic can be found in
[13]. Because such methods are able to simultaneously
estimate both parameters and states, an optimization-
based approach is developed to determine the contour
and the movement of the plate (angular velocity, lateral
and longitudinal speed of the plate) based on the mea-
surement signals.

3.1. Formulation of the optimization-based contour detection
The optimization-based detection of the contour of the

plate can be divided into three parts. First, the coeffi-
cients of the polynomial (5) are calculated when the head
of the plate is in the camera’s field of view (FOV) for the
first time. In the second part, the head end of the plate is
still in the FOV, which enables the estimation of the lon-
gitudinal speed of the plate. When the head end of the
plate is no longer in the FOV (third part), the plate speed
is held constant for the remaining length of the plate.
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3.1.1. Parameterization of the head end
The contour detection starts when the head end of the

plate appears in the FOV for the first time and the time
t is set to zero, i.e. t = 0. Then, the initial state of (2) is
chosen as

x(0) = x0 =
[
ξML,1 0 0

]T , (7)

with ξML,1 representing the longitudinal position of the
left-most measurement line of the FOV in the global co-
ordinate frame. At this time step, the coefficients of the
polynomial parameterization of the head end (5) are cal-
culated once by minimizing the longitudinal offset

eH(x(t), t; pH) = pH(ηH(t))− ξH(t) (8)

between measured points at the head end (ξMH(t), ηMH)
and their representation (6) in the least-squares sense

min
pH ∈ RNH+1

MH

∑
j=1

e2
H(x0, 0; pH),

with the coefficient vector

pH =
[
cH,0 cH,1 . . . cH,NH

]T

and MH as the number of used rows of the camera.

3.1.2. Optimization problem with a head end in the FOV
Because the head end of the plate is in the FOV, vPL can

be estimated by minimizing the longitudinal offset (8)
using the determined coefficient vector pH from Section
3.1.1.

A convenient method for determining the unknown
polynomial coefficients cL,i of the longitudinal boundary
is to minimize the lateral offset eL(x(t), t; pL) between a
measured boundary point (ξML, ηML(t)) and its repre-
sentation (3) during a certain time period. At the time t,
this error is defined as

eL(x(t), t; pL) = pL(ξL(t))− ηL(t), (9)

with the coefficient vector

pL =
[
cL,0 cL,1 . . . cL,NL

]T (10)

of the boundary polynomial (1).
Remember that vPL was assumed to be unknown but

constant. To find the unknowns ω(t), vL(t), pL and vPL,
a dynamic optimization problem has to be solved, which
is formulated in the plate-fixed coordinate frame. In or-
der to obtain a static optimization problem, (2) is dis-
cretized using a fixed sampling time Ts. Based on the
assumptions ω(t) = ωk and vL(t) = vL,k during a sam-
pling interval tk ≤ t < tk + Ts, the solution x of (2) can
be calculated analytically. This yields the discrete-time

system

xk+1 =




∆ξk cos(ωkTs)− ∆ηk sin(ωkTs)
∆ξk sin(ωkTs) + ∆ηk cos(ωkTs)

ϕk + ωkTs




+
vPL
ωk




sin(ωkTs)
1− cos(ωkTs)

0


+

vL,k

ωk




cos(ωkTs)− 1
sin(ωkTs)

0




= f(xk, ωk, vPL, vL,k), (11)

with the state xk = x(kTs) =
[
∆ξk ∆ηk ϕk

]T, k ∈N0.
Hence, the static optimization problem can be formu-

lated as

min
ω ∈ RN

vL ∈ RN

pL ∈ RNL+1

vPL

N

∑
k=0

ML

∑
j=1

e2
L,j,k(xk; pL) +

N

∑
k=0

MH

∑
j=1

e2
H,j,k(xk)

︸ ︷︷ ︸
J

(12a)

subject to xk+1 = f(xk, ωk, vPL, vL,k) (12b)

with the abbreviations

eL,j,k(xk; pL)

= pL

(
(ξML,j − ∆ξk) cos(ϕk) + (ηML,j,k − ∆ηk) sin(ϕk)︸ ︷︷ ︸

ξL,j,k

)

−
[
(ηML,j,k − ∆ηk) cos(ϕk)− (ξML,j − ∆ξk) sin(ϕk)︸ ︷︷ ︸

ηL,j,k

]
.

and

eH,j,k(xk)

= pH

(
(ηMH,j − ∆ηk) cos(ϕk)− (ξMH,j,k − ∆ξk) sin(ϕk)︸ ︷︷ ︸

ηH,j,k

)

−
[
(ξMH,j,k − ∆ξk) cos(ϕk) + (ηMH,j − ∆ηk) sin(ϕk)︸ ︷︷ ︸

ξH,j,k

]
.

The optimization variables are the vector of the angular
velocities ω =

[
ω0 ω1 . . . ωN−1

]T, the vector of the

lateral velocities vL =
[
vL,0 vL,1 . . . vL,N−1

]T, the co-
efficient vector pL and the speed of the plate vPL. ML is
the number of used columns of the measurement device.
If no measurement (ξML,j, ηML,j,k) is available for a cer-
tain time step k and measurement line j, eL,j,k(xk; pL) is
set to zero. Similarly, eH,j,k(xk) vanishes if no head end
of the plate is in the FOV at t = kTs. The considered time
period ranges from t = 0 to t = NTs, i.e., there are N + 1
sampling points and the optimization involves N values
of ωk and vL,k.
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Remark: Measuring the plate contour at just one fixed
location ξML provides insufficient information to iden-
tify the contour polynomial and the movement of the
plate. To extract and separate this information, at least
two measurement lines (NL ≥ 2) at significantly differ-
ent positions ξML,j must be provided. However, a larger
number of measurements improves the robustness of the
estimation as noise and fluctuating errors are suppressed
by averaging.

3.1.3. Optimization problem without a head end in the FOV
In Section 4, a receding horizon approach for the pre-

sented optimization-based algorithm will be discussed.
For this, measurement sets of the boundary of the plate
without any head end may occur. Such measurement
sets do not allow the estimation of the longitudinal speed
of the plate with the presented approach. Hence, the es-
timated speed of the plate obtained from the last opti-
mization with a head end in the FOV, see Section 3.1.2,
is used by assuming vPL = const. for the remaining part
of the plate. Furthermore, the optimization problem (12)
simplifies to

min
ω ∈ RN

vL ∈ RN

pL ∈ RNL+1

N

∑
k=0

ML

∑
j=1

e2
L,j,k(xk; pL) (13a)

subject to xk+1 = f(xk, ωk, vPL, vL,k). (13b)

3.2. Numerical solution of the optimization problem

Suitable algorithms for solving the static optimiza-
tion problems (12) and (13) are, for instance, the steep-
est descent method [14], the conjugate gradient method
[15], the quasi-Newton method [16], the Newton method
[17], the trust-region method [14], and the Gauss-Newton
method [14]. For the given problem, the quasi-Newton
method proved useful due its superlinear convergence
rate (cf. [14]) and the fact that it requires only the eval-
uation of the cost function J and its gradient in every
iteration. The gradient may be calculated by numerical
differentiation of the cost function. For the given opti-
mization problem, the gradient is calculated analytically.
Compared to the use of numerical differentiation, this
leads to a faster convergence of the optimization algo-
rithm as well as to a more accurate solution (cf. [18]).

The gradient of the cost function J with respect to ω,
vL, pL, and vPL is detailed in Appendix A. In the sequel,
the numerical solution of the optimization problem (12)
is discussed. However, the presented approach can be
analogously applied to the optimization problem (13) by
omitting the optimization variable vPL. For a compact
notation, all optimization variables are arranged in the

vector

w =




ω
vL
pL
vPL


 =

[
w0 w1 . . . w2N+NL+1

]T .

According to [16], the quasi-Newton method using the
BFGS-formula to update the estimate of the inverse
Hessian H−1 proceeds as follows:

Step 0: Initialize the estimated inverse Hessian H−1
0

and calculate the initial gradient g0 = ∇J(w0)
for the initial guess w0.

Step 1: Compute the search direction dl = −H−1
l gl

with gl = ∇J(wl).

Step 2: Perform a line search, i.e. solve
min
αl≥0

J(wl + αldl) and compute the update

wl+1 = wl + αldl .

Step 3: Check if any termination criterion (maximum
number of iterations, convergence) is fulfilled.
If yes, stop here.

Step 4: Update H−1
l in the form

H−1
l+1 =

(
I− dl qT

l
qT

l dl

)
H−1

l

(
I− ql dT

l
qT

l dl

)
+

dldT
l

qT
l dl

αl

with ql = gl+1 − gl .

Step 5: Start again at Step 1.

A crucial point for the convergence rate of the quasi-
Newton method is the choice of the initial guess H−1

0
(cf. [14]). The used cost function can be written in the
form J = eTe. In the vector e, the lateral offsets eL,j,k,
j = 1, . . . , ML and k = 0, . . . , N, and the longitudinal
offsets eH,j,k, j = 1, . . . , MH and k = 0, . . . , N, from (12a)
are consecutively arranged. The specific order of these
offsets in the vector e is arbitrary. Let the Jacobian J of e
with respect to w be denoted as

J(w) = (∇e)T .

Hence, the Hessian of J(w) can be written as

∇2 J(w) = 2JTJ + 2Γ,

with Γ =
[
Γq,n

]
and

Γq,n =
N

∑
k=0

ML

∑
j=1

eL,j,k
∂2eL,j,k

∂wq∂wn
+

N

∑
k=0

MH

∑
j=1

eH,j,k
∂2eH,j,k

∂wq∂wn

∀q, n ∈ {0, 1, . . . , 2N + NL + 1}.
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This motivates the initial guess

H−1
0 =

(
2JT(w0)J(w0)

)−1
. (14)

H−1
0 is a positive definite approximation of the inverse of

the Hessian if Γ (second order derivatives) is negligible.
The expression

(
2JT(wl)J(wl)

)−1 could also be used
as an approximation of the inverse Hessian in every iter-
ation of the optimization problem. This choice would re-
sult in the Gauss-Newton method (cf. [14]). Despite the
fact that only very few iterations are necessary for this
method to converge for the given problem, the extensive
computational effort of (14) leads to larger total optimiza-
tion times than the proposed quasi-Newton method.

In step 2, a line search based on a quadratic interpola-
tion of the cost function

J (wl + αldl) ≈ a0 + a1αl + a2α2
l (15)

with coefficients ai, i = 1, 2, 3, is performed. The poly-
nomial coefficients a0, a1 and a2 can be computed in the
form

a0 = J0, a1 = J′0, a2 = J1 − J0 − J′0,

where

J0 = J(wl), J1 = J(wl + dl)

and

J′0 =
dJ (wl + αldl)

dαl

∣∣∣∣
αl=0

= dT
l gl .

The optimal step length α∗l that minimizes the right-
hand-side of (15) therefore takes the form

α∗l =
1
2

J′0
J0 + J′0 − J1

.

Three different termination criteria are used to check
if the solution is acceptable:

• The gradient is sufficiently small, i.e., ‖gl‖∞ <
γg
(
1 + ‖g0‖∞

)
with the tuning parameter γg > 0.

• The step size is sufficiently small, i.e., |wl+1 −wl | <
γx

([
1 . . . 1

]T
+ |wl+1|

)
with the parameter γx >

0.

• The achieved decrease of the cost function value J
along the current search direction is smaller than
the constant γJ > 0, i.e., J(wl+1) − J(wl+1 +
α∗l+1dl+1) < γJ .

Properly chosen values for γg, γx and γJ ensure both, a
sufficiently accurate optimization result and a low num-
ber of iterations.

4. Receding horizon approach

With the proposed method, the contour is estimated
based on the whole measurement set in one go after the
plate has left the rolling gap. This global approach has
two drawbacks:

1. There is a large number of optimization variables,
which increases with the number of images used,
leading to large computing times when solving (12).

2. The contour information is only available after the
roll pass has finished. Thus, the contour information
cannot be utilized for feedback control.

These problems are avoided if the optimization routine
is applied to overlapping sections along the plate. Such a
receding horizon approach reduces the number of opti-
mization variables and provides almost real-time contour
information.

field of view (FOV) of the camera

field of view (FOV) of the camera

ξ

ξ

ηη

η

ζ

ζ

lmin

Figure 5: Receding horizon approach for the proposed contour detec-
tion method.

The beginning of the optimization procedure is out-
lined in Fig. 5, where the plate is shown at 2 different
times. At any time, the field of view (FOV) of the 2D-
camera remains the same. As indicated in the upper
part of Fig. 5, the first optimization starts at t = 0 when
the plate length in the FOV exceeds a lower bound lmin.
The starting point of the optimization at the boundary of
the plate is marked with a cross, while the end point is
marked with a circle. As the plate leaves the rolling gap
with the speed vPL, the starting points (crosses) move
through the FOV, i.e., they are fixed to the corner points
of the plate. The end points (circles), however, are spa-
tially fixed. Hence, they move along the boundary and
the number of optimization variables increases. This con-
tinues until the maximum number N of images used in
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one optimization horizon is reached. From this time on-
wards, the dimension of the optimization problem does
not change anymore. Therefore, for every additional cap-
tured image, the oldest image in the used measurement
set is discarded.

As indicated in the lower part of Fig. 5, the optimiza-
tion regions are overlapping. In this case, the estimated
boundary from the first optimization is shown in green.
Without this spatial overlap, discontinuities at the junc-
tion of the optimization regions may occur. Neverthe-
less, a small but negligible deviation between the result-
ing contours of subsequent optimizations is present. It is
defined that the overlapping part of the result from the
most recent optimization overwrites the result from the
previous run. In case of the example from Fig. 5, the
resulting longitudinal boundaries after the first move of
the optimization horizon consist of the part of the green
line between the red and green cross and the red line.

The previous run is taken as initial guess for the actual
one. A reasonable add-on of the algorithm is to estimate
also the head- and tail-contour to obtain the whole plate
boundary.

Remark: With increasing plate length, also ∆ξk in-
creases. Especially when using boundary polynomials
pL with a high degree NL and for ∆ξk � 1, the Hes-
sian ∇2 J(w) and therefore the optimization problem be-
come ill-conditioned. This property may be challenging
in terms of the numerical solution of the optimization
problem. An easy countermeasure is to regularly shift
the plate-fixed local coordinate frame (ξPL, ηPL, ζPL) to a
new position closer to the FOV and to reset the rotation
of the coordinate frame to zero. Then, the estimated con-
tour consists of different polynomials belonging to the
respective optimization region. The parameters, which
define the displacements and the rotations of the coordi-
nate frame, have to be stored so that the whole contour
can be assembled at the end of the rolling pass.

5. Recording and processing of image data

The proposed optimization algorithm requires mea-
surement pairs (ξML,j, ηML,j,k), j = 1, . . . , ML and k =
0, . . . , N, to estimate the plate contour. For the estimation
of the speed of the plate, measurements (ξMH,j,k, ηMH,j),
j = 1, . . . , MH and k = 0, . . . , N, from the head end of the
plate are required. One possible measurement principle
is to extract the actual plate boundary from a 2D-image
that is taken by an infrared CCD camera mounted above
the plate. It is thus natural to select a sampling time Ts
that equals the frame rate of the camera. The advantage
of using a 2D-camera instead of a line scan device is that
several measurement lines (depending on the camera res-
olution) are concurrently recorded. Furthermore, a sin-
gle 2D-camera is cheaper than several line scan devices.
Compared to a standard color 2D-CCD array, infrared

cameras are superior for the considered application be-
cause of the high thermal contrast between the plate and
its environment. This is beneficial for the subsequent
edge detection, because the plate may be surrounded by
a cloud of steam resulting from cooling water sprayed
onto the plate during the rolling process (cf. Fig. 6). The
industrial camera used in this work captures 30 frames
per second with an image resolution of 659 x 494 pixels.

In the sequel, a fixed mounting position is assumed for
the 2D-camera. Many different algorithms are available
for edge detection in a 2D bitmap. These algorithms dif-
fer in terms of accuracy and computational effort. A fre-
quently used approach is the so called Canny-algorithm
(cf. [19]), which proved useful for the given problem.
This algorithm filters the image with a Gaussian filter
to suppress noise in the subsequent calculation of im-
age gradients along both Cartesian directions. Gaussian
filtering is also beneficial because of the disturbances
caused by the cooling water. After the edge detection, the
edges are clustered into lateral and longitudinal edges
according to their gradients. Large magnitudes of the
gradient in ξ-direction indicate edges at the head and tail
of the plate whereas large gradients in the η-direction are
linked with longitudinal edges.
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Figure 6: Pixel image of the temperature distribution of a plate rolled in
the two-phase-region of austenite and ferrite and detected edges (blue:
longitudinal edges, green: lateral edge).

6. Measurement results

In the following, results for the estimated contour of
a plate rolled in an industrial rolling mill of the AG der
Dillinger Hüttenwerke, Germany are given. Measure-
ment data from a contour measurement device (CMD)
located downstream (at the end of the production line)
is used to validate the estimated contour. This contour
measurement is performed by means of a laser line scan-
ner and some image processing algorithms. The scanner
is arranged across the roller table. It captures images
(1D arrays) as the plate moves on the roller table along
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a strictly straight path (no rotation of the plate). The im-
age frames are joined by software to generate a full 2D
picture of the plate contour.

The optimization problem (12) was implemented in
C++. The used infrared 2D-CCD camera was installed
at the finishing mill of Aktiengesellschaft der Dillinger
Hüttenwerke. The camera is mounted 25 m above the
pass-line level at the ceiling of the plant building. This
isolates the camera from oscillations and harsh condi-
tions (heat, dust, cooling water) near the rolling process.
Using a 25 mm lens, a spatial resolution of 9.6 mm/pixel
is achieved. By considering both longitudinal edges of
the plate, the optimization variable w reads as

w =
[
ωT vT

L pT
L,le f t pT

L,right vPL

]T

with the coefficient vectors pL,le f t and pL,right (cf. (1)
and (10)) of the boundary polynomials for the left and
the right longitudinal boundary, respectively. The initial
guess w0 is chosen as ω0 = vL,0 = 0 and vPL,0 = 3 m/s
(common rolling speed). The first entries of pL,le f t and
pL,right (constant terms of the polynomials) are set to the
mean values of the respective edge in the first detected
image. All other elements of pL,le f t and pL,right are ini-
tially set to 0.

A crucial parameter for the estimation accuracy is the
chosen length N of the optimization horizon. A larger
value of N results in a smoother estimated contour due to
averaging. Smaller horizons induce more noise in the de-
tected contour. Clearly, N also controls the time needed
for solving the optimization problem. The actual choice
of N is therefore a tradeoff between a sufficiently smooth
contour and a reasonable computing time. For the con-
sidered measurement configuration, N = 10 proved to
be a good compromise. The remaining parameters used
for the contour detection are shown in Tab. 1. With these
parameters, it takes less than 25 ms (Standard PC with i7-
2600 @ 3.4 GHz processor and 16 GB RAM) to solve the
optimization problem (12) for one optimization horizon.
This facilitates contour detection in real-time.

Table 1: Parameters used for the computations.

Parameter Value Unit

NL 3

NH 4

N 10

ML 659

MH 100

Ts 1/30 s

lmin 3 m

ξML,1 4 m

γg 10−10

γx 10−8

γJ 10−3
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(d) Longitudinal velocity vPL of the rolled plate.

Figure 7: Measurement and simulation results for a rolled plate.

Fig. 7a shows the contour of the plate both measured
by the downstream CMD and estimated by the proposed
algorithm. The estimated contour is rotated and shifted
to render a comparison with the measured contour in the
coordinate frame (x, y) of the CMD. The figure indicates
a good accuracy of the contour detection in the range of
one centimeter in lateral direction. Also the shapes of the
head and tail edges as well as the length of the plate are
accurately estimated.

Remark: In Fig. 7b - 7d, the longitudinal displacement
∆ξ of the plate-fixed coordinate frame starts at ∆ξ =
ξML,1 = 4 m because of the chosen initial condition (7)
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and the parameters of the used measurement setup (cf.
Tab. 1).

Fig. 7b shows the movement of the plate in form of
the position and orientation of the plate-fixed coordinate
frame. In Fig. 7c, the estimated velocity vL in lateral di-
rection is shown. Although there are oscillations present,
they are not disturbing the estimation of the contour.
This is because the lateral deviations resulting from these
oscillations are very small, i.e. they are less than half a
centimeter and therefore less than half of the width of a
pixel. They are caused, e.g., by vibrations of the camera
in lateral direction.

Furthermore, the estimated velocity vPL of the plate is
shown in Fig. 7d. As mentioned in Section 3.1, vPL can
only be estimated as long as the head of the plate is in
the FOV of the camera. Therefore, a constant plate speed
is assumed for the remaining part of the plate. The accu-
rately estimated length of the plate indicates that the es-
timated velocity agrees well with its real (average) value.

Although only the contour of one representative plate
is shown in this paper, similar results have been observed
for randomly chosen plates rolled over a period of sev-
eral weeks.

Additionally, the convergence properties for a single
optimization horizon of the proposed optimization ap-
proach are analyzed. To prevent the optimization from
premature termination, the termination criteria are tem-
porarily set to γg = γx = γJ = 0. In Fig. 8, the decrease
of the cost function J in every iteration is shown. The
cost value converges within only 5 iterations to the mag-
nitude of the machine precision (≈ 2.26 · 10−16). When
using the parameters from Tab. 1, the convergence cri-
teria would have been already fulfilled after the second
iteration. This shows that the convergence properties of
this algorithm are quite good. An important prerequi-
site for this behavior is the initial choice of the Hessian
according to (14).

iteration l

J
(w

l)
−

J
(w

l+
1
)

1 3 5 7 9 11

10
−16

10
−11

10
−6

10
−1

Figure 8: Decrease of J (wl) as a function of the iteration l.

7. Conclusions and outlook

In this work, an optimization-based algorithm for real-
time estimation of the contour of hot rolled plates during
the rolling pass was developed. It uses a mathematical
model of the movement of the plate and top-view images

of the plate captured by an infrared camera. The model
considers the restrictions of the lateral movement of the
plate in the rolling gap. Additionally to the contour, the
angular movement and the velocity of the plate are esti-
mated. An approach to correct angular misalignments
of the camera was also presented. The resulting un-
bounded optimization problem is solved numerically us-
ing the quasi-Newton method. Furthermore, a receding
horizon approach is proposed which renders the method
suitable for real-time applications.

The results of the proposed algorithm were compared
with measurements from a contour measurement device
located downstream at the finishing mill of the AG der
Dillinger Hüttenwerke in Germany. The comparison in-
dicates a good accuracy of the contour detection with
deviations less than one centimeter. Even the velocity of
the plate and the edges at the head and tail are accurately
estimated.

It is planned to use the developed contour estimation
system as a basis for the design of model predictive con-
trol algorithm that reduces the occurring camber. To this
end, a model linking the deformation in the rolling gap
with the resulting plate contour, see, e.g., [20], will be
used to calculate the required control inputs to the rolling
mill.
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The second author gratefully acknowledges financial
support provided by the Austrian Academy of Sciences
in the form of an APART-fellowship at the Automation
and Control Institute of Vienna University of Technology.

Appendix A

The gradient of (12) with respect to the angular veloc-
ities ωr, r = 0, . . . , N − 1 takes the form

d
dωr

J (w)

= 2
N

∑
k=0

ML

∑
j=1

eL,j,k
d

dωr
eL,j,k + 2

N

∑
k=0

MH

∑
j=1

eH,j,k
d

dωr
eH,j,k,

with

d
dωr

eL,j,k =
∂pL

(
ξL,j,k

)

∂ξL,j,k

dξL,j,k

dωr
−

dηL,j,k

dωr
(16)

and

d
dωr

eH,j,k =
∂pH

(
ηH,j,k

)

∂ηH,j,k

dηH,j,k

dωr
−

dξH,j,k

dωr
(17)
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according to (9) and (8), respectively.
The additional derivatives used in (16) can be calcu-

lated as

∂pL

(
ξL,j,k

)

∂ξL,j,k
= cL,1 + 2cL,2ξL,j,k + . . . + NLcL,NL ξNL−1

L,j,k ,

(18a)
dξL,j,k

dωr
= −(ξML,j − ∆ξk) sin(ϕk)

dϕk
dωr

+ (ηML,j,k − ∆ηk) cos(ϕk)
dϕk
dωr

− cos(ϕk)
d∆ξk
dωr

− sin(ϕk)
d∆ηk
dωr

(18b)

and

dηL,j,k

dωr
= −(ηML,j,k − ∆ηk) sin(ϕk)

dϕk
dωr

− (ξML,j − ∆ξk) cos(ϕk)
dϕk
dωr

− cos(ϕk)
d∆ηk
dωr

+ sin(ϕk)
d∆ξk
dωr

. (18c)

The derivatives utilized in (17) may be obtained by ex-
changing pL with pH , NL with NH , cL,i with cH,i and ξL,j,k
with ηH,j,k in (18a). Moreover, ξL,j,k has to be replaced by
ξH,j,k, ηL,j,k by ηH,j,k, ξML,j by ξMH,j,k and ηML,j,k by ηMH,j
in (18b) and (18c), respectively.

Based on (11), the derivatives dxk
dωr

can be recursively
computed in the form

dxk
dωr

=





0 if r ≥ k
∂f(xr ,ωr ,vPL ,vL,r)

∂ωr
+

∂f(xr ,ωr ,vPL ,vL,r)
∂xr

dxr
dωr

if r = k− 1
∂f(xk−1,ωk−1,vPL ,vL,k−1)

∂xk−1

dxk−1
dωr

if r < k− 1,

with

∂f(xr, ωr, vPL, vL,r)

∂ωr

= Ts




−∆ξr sin(ω̄r)− ∆ηr cos(ω̄r) +
vPL
ωr

cos(ω̄r)

− vPL
ω2

r Ts
sin(ω̄r)− vL,r

ωr
sin(ω̄r)− vL,r

ω2
r Ts

(cos(ω̄r)− 1)

∆ξr cos(ω̄r)− ∆ηr sin(ω̄r) +
vPL
ωr

sin(ω̄r)

− vPL
ω2

r Ts
(1− cos(ω̄r)) +

vL,r
ωr

cos(ω̄r)− vL,r
ω2

r Ts
sin(ω̄r)

1




and

∂f(xr, ωr, vPL, vL,r)

∂xr
=




cos(ω̄r) − sin(ω̄r) 0
sin(ω̄r) cos(ω̄r) 0

0 0 1


 , (19)

where the abbreviation ω̄r = ωrTs was used.

The gradient of (12) with respect to vL,r reads as

d
dvL,r

J (w)

= 2
N

∑
k=0

ML

∑
j=1

eL,j,k
d

dvL,r
eL,j,k + 2

N

∑
k=0

MH

∑
j=1

eH,j,k
d

dvL,r
eH,j,k,

with

d
dvL,r

eL,j,k =
∂pL

(
ξL,j,k

)

∂ξL,j,k

dξL,j,k

dvL,r
−

dηL,j,k

dvL,r

and

d
dvL,r

eH,j,k =
∂pH

(
ηH,j,k

)

∂ηH,j,k

dηH,j,k

dvL,r
−

dξH,j,k

dvL,r
.

Again the expressions

dξL,j,k

dvL,r
=

dξH,j,k

dvL,r
= − cos(ϕk)

d∆ξk
dvL,r

− sin(ϕk)
d∆ηk
dvL,r

and

dηL,j,k

dvL,r
=

dηH,j,k

dvL,r
= − cos(ϕk)

d∆ηk
dvL,r

+ sin(ϕk)
d∆ξk
dvL,r

are recursively given by

dxk
dvL,r

=





0 if r ≥ k
∂f(xr ,ωr ,vPL ,vL,r)

∂vL,r
+

∂f(xr ,ωr ,vPL ,vL,r)
∂xr

dxr
dvL,r

if r = k− 1
∂f(xk−1,ωk−1,vPL ,vL,k−1)

∂xk−1

dxk−1
dvL,r

if r < k− 1

using (19) and

∂f(xr, ωr, vPL, vL,r)

∂vL,r
=




cos(ωrTs)−1
ωr

sin(ωrTs)
ωr
0


 .

The gradient of the cost function J(w) with respect to
the parameter vector pL yields

d
dpL

J (w)

= 2
N

∑
k=0

ML

∑
j=1

eL,j,k

[
1 ξL,j,k ξ2

L,j,k . . . ξNL
L,j,k

]
.

The gradient with respect to vPL reads as

d
dvPL

J (w)

= 2
N

∑
k=0

ML

∑
j=1

eL,j,k
d

dvPL
eL,j,k + 2

N

∑
k=0

MH

∑
j=1

eH,j,k
d

dvPL
eH,j,k,
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with

d
dvPL

eL,j,k =
∂pL

(
ξL,j,k

)

∂ξL,j,k

dξL,j,k

dvPL
−

dηL,j,k

dvPL

and

d
dvPL

eH,j,k =
∂pH

(
ηH,j,k

)

∂ηH,j,k

dηH,j,k

dvPL
−

dξH,j,k

dvPL
.

Furthermore, it is necessary to calculate

dξL,j,k

dvPL
=

dξH,j,k

dvPL
= − cos(ϕk)

d∆ξk
dvPL

− sin(ϕk)
d∆ηk
dvPL

and

dηL,j,k

dvPL
=

dηH,j,k

dvPL
= − cos(ϕk)

d∆ηk
dvPL

+ sin(ϕk)
d∆ξk
dvPL

with recursively computing

dxk
dvPL

=





0 if k = 0


sin(ωk−1Ts)
ωk−1

1−cos(ωk−1Ts)
ωk−1

0


+

∂f(xk−1,ωk−1,vPL ,vL,k−1)
∂xk−1

dxk−1
dvPL

if k > 0

using (19).
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