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A mathematical model of a slab reheating furnace with
radiative heat transfer and non-participating gaseous media

A. Steinboeck∗,a, D. Wildb, T. Kieferb, A. Kugia

aAutomation and Control Institute, Vienna University of Technology, Gusshausstrasse 27–29, 1040 Wien, Austria
bAG der Dillinger Hüttenwerke, Werkstrasse 1, 66763 Dillingen/Saar, Germany

Abstract

Amathematical model of the reheating process of steel slabs in industrial fuel-fired furnaces is developed. The

transient temperature field inside the slabs is computed by means of the Galerkin method. Radiative heat

transfer inside the furnace constitutes boundary conditions that couple the dynamic subsystems of the slabs.

Constraining the heat fluxes to piecewise linear, discontinuous signals furnishes a discrete-time state-space

system. Conditions for an exponential decrease of the open-loop control error are derived. Measurements

from an instrumented slab in the real system demonstrate the accuracy of the model. The simple and

computationally inexpensive model is suitable for trajectory planning, optimization, and controller design.

Key words: Reheating furnace, steel slab reheating, transient heat conduction, Galerkin method,

radiative heat exchange, open-loop control

Nomenclature

1 vector of unity components (−)
A, aj dynamic matrices (1/s)
ãj transformed dynamic matrix (1/s)
a bilinear form
B∓
j differential operator of boundary condition (W/m2)

B vector of radiosities (W/m2)
B∓ input gain matrix (Km2/J)
bj input gain vector (Km2/J)

b̃j transformed input gain vector (Km2/J)
Bi radiosity (W/m2)
cj specific heat capacity (J/(kgK))

Dj differential operator of heat conduction equation (W/m3)
D set of allowed transformed state vectors (K)
Dj thickness of slab (m)

E vector of black body emissive powers (W/m2)
e, ej , e

s control errors (K)

H vector of irradiances (W/m2)
H number of basis functions
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Hi irradiance (W/m2)
hj,i basis function (−)
I identity matrix (−)
i index (usually of furnace zone or surface section)
J set of indices of currently reheated slabs
j (usually) index of slab
jend index of last slab that was pushed into the furnace
jstart index of next slab to be withdrawn from the furnace
k (usually) discrete time index
k1, k2, k3 constants (−)
L2 space of square integrable functions
Lj length of slab (m)
l discrete time index
M∓ matrix mapping slab states to surface temperatures (−)
N number of surface sections
N∓

z number of furnace zones
Ns total number of considered slabs
Ns number of currently reheated slabs
P , p positive definite matrices (−)
P∓

z , P
∓
s matrices for computing heat flux densities (W/(m2 K4))

Q vector of heat flows (W)
q∓ vector of heat flux densities (W/m2)
Qi heat flow (W)
qj heat flux density (W/m2)

q∓j heat flux density into slab surface (W/m2)

S vector of surface areas (m2)
Si surface area (m2)
S∓
j slab surface area (m2)

si,j distance between surfaces (m)

SS matrix of total exchange areas (m2)
ss matrix of direct exchange areas (m2)
SiSj total exchange area (m2)

sisj direct exchange area (m2)

T∓
z vector of zone temperatures (K)

T̃
∓
z reference zone temperature trajectory (K)

T temperature (K)
Tj slab temperature (K)

T̄j,exit mean value of final slab temperature (K)

T∓
z,i temperature of furnace zone i (K)

t time (s)
tj,exit time when slab is withdrawn from furnace (s)
tk sampling instant (s)
tsl time of slab movement (s)
V transformation matrix (−)
V Sobolev space
v trial function (−)
W , W s, w Lyapunov functions (K2)
Wj width of slab (m)
x, xj state vectors (K)
x̂ estimated state vector (K)
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x̃ reference trajectory of state vector (K)
x, y, z Lagrangian spatial coordinates (m)
z, zj transformed state vectors (K)
zj position of slab (m)
Greek symbols
δi,j Kronecker delta
∆tk sampling period (s)
∆tmin, ∆tmin,l minimum time periods occurring in the stability analysis (s)
ε vector of emittances (−)
ε emittance (−)
ε∓j emittance of slab surface (−)
λj thermal conductivity (W/(mK))
µmin, µmax minimum and maximum eigenvalue
ρj mass density (kg/m3)

σ Stefan-Boltzmann constant (W/(m2 K4))
θi angle of incidence (rad)
Subscripts

0 initial value

h finite dimensional approximation

k corresponding to tk
s corresponding to currently reheated slabs

z corresponding to furnace zones
Superscripts
1 corresponding to tk
2 corresponding to tk+1
− bottom half of furnace
+ top half of furnace
s corresponding to all considered slabs

1. Introduction

1.1. Slab reheating furnaces

In the steel industry, furnaces are used for reheating or heat treatment of steel products. Typical examples

are longitudinal reheating furnaces which continuously reheat semi-finished steel blocks to a temperature

that is appropriate for processing in the rolling mill. The steel blocks are successively moved through the

furnace interior, where fuel-fired burners serve as heat sources. This paper refers to the whole class of

semi-finished products that can be processed in such furnaces, e. g., slabs, billets, or bars. Controlling the

furnace can be a demanding process, because the products may vary in size, metallurgic properties, initial

temperature, and desired rolling temperature. Since rolling is typically a batch process, the feed of steel

blocks from the furnace to the mill stand is discontinuous. A common way of realizing the reheating task is

to arrange the steel blocks in a row (or several parallel rows) and to (discontinuously) move them through a

longitudinal furnace by some transport mechanism. In a pusher-type slab reheating furnace, as outlined in

Figure 1, a hydraulically or electromechanically operated ram pushes a row of slabs through the furnace in

an event-driven manner. Inside the furnace, the slabs slide on skids such that they can be heated from the

top and the bottom side.

3

Post-print version of the article: A. Steinboeck, D. Wild, T. Kiefer, and A. Kugi, “A mathematical model of a slab reheating furnace
with radiative heat transfer and non-participating gaseous media”, International Journal of Heat and Mass Transfer, vol. 53, no. 25-26,
pp. 5933–5946, 2010. doi: 10.1016/j.ijheatmasstransfer.2010.07.029
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.07.029


z

y
Pusher

Slab jstartSlab jSlab jend

Skids

Refractory wall

Zone 1

Zone 1 Zone N+
z

Zone N−
zZone i

Zone i

· · ·

· · ·

· · ·

· · ·

System
boundary

Top half

Bottom half

Figure 1: Sectional view of a pusher-type slab reheating furnace.

The temperature profile of the slabs—a system quantity of paramount importance—is not accessible to

measurements. The slab surface temperature may be measured by pyrometry at discrete points but the

reliability of this method is questionable because of the harsh and irregular conditions of both the furnace

interior and the slab surfaces [34]. A common approach of furnace temperature measurements is to equip the

refractory furnace wall with shielded thermocouples. Although this paper is focused on a pusher-type slab

reheating furnace, the results can be straightforwardly transferred to other furnace types, e. g., walking-beam

furnaces, where the steel blocks are alternately carried by beams that are slowly moving back and forth.

1.2. Control task

From a system-theoric point of view, pusher-type slab reheating furnaces are nonlinear, distributed-

parameter systems with multiple inputs and outputs and discontinuous time dependence. The fuel and

air supplies of burners represent the physical control inputs of the furnace. To simplify the control task,

burners may be grouped and jointly regulated. Therefore, it is reasonable to divide the furnace volume

conceptually into several zones. Additionally, the slab movement and the order of slabs may be governed

by some supervisory plant scheduling algorithm, implying that these system inputs generally cannot be

defined independently from other plant components, e. g., the rolling mill. Therefore, the schedule of slabs is

frequently preset by supervisory plant control. There are multiple, sometimes antagonistic control objectives :

• Minimum deviation between the desired and the realized final slab temperature profiles

• Maximum throughput of slabs in the furnace

• Minimum specific energy consumption =
Energy supplied by fuel

Mass of reheated material
• Minimum loss of material through oxidization (scale formation)

• Minimum decarburization depth which influences the mechanical properties of the products

These objectives are accompanied by a number of operational constraints. Some examples are given in the

following.

• Construction and geometry of the furnace including type and arrangement of heat sources (burners)

and location of heat sinks (slabs, openings, skids, etc.)

• Protection of the furnace against immoderate wear

• Bounds on the temperature of the furnace walls in order to protect them from damage

• Initial slab temperatures

• Metallurgical constraints of the slab temperature trajectory
4
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• Unforeseen standstills or delays caused by upstream or downstream process steps

Supervisory
plant control

Trajectory
planner

T̃
∓
z T∓

z
x̃

x̂

++

+

−

Air,
fuelBurner

controller
Furnace

Observer

Feedback
controller

Figure 2: Control scheme of a slab reheating furnace.

The control task may be complicated by non-uniformities of the steel products in terms of initial temperature,

desired final temperature, geometry, material, available reheating time, and monetary value (cf. [15, 32, 34]).

Considering the complexity of the control task, it is reasonable to follow a model-based control approach

and to design control systems with cascaded control loops [5, 15, 18, 24, 36, 43]. Figure 2 shows an outline

of a possible control scheme which is appropriate for non-steady-state operation.

Supervisory plant control provides data of the slabs to be reheated and the production schedule, i. e.,

path-time diagrams of the slabs. Utilizing this information, a trajectory planner designs reference state

trajectories x̃(t) and corresponding control inputs T̃
∓
z (t) for the subordinate burner controllers. In this

paper, quantities belonging to the bottom and the top half of the furnace (cf. Figure 1) are designated

by the superscripts − and +, respectively. T∓
z (t) are the measurement values of the thermocouples in the

furnace. These temperatures are controlled by an inner control loop, e. g., PI controllers which regulate the

supply of air and fuel [5, 15, 18, 43]. An observer provides the estimate x̂(t) of the system state x(t), which

cannot be measured. Finally, a feedback controller corrects the planned trajectories T̃
∓
z (t) to account for

model inaccuracies and unforeseen disturbances.

1.3. Temperature tracking

Since the slab temperatures are generally not accessible to measurements, their state variables need to

be estimated. To this end, an observer, based on a sufficiently accurate mathematical model, may be used.

The term sufficiently has to be specified on a case by case basis. The considered control scheme uses an

extended Kalman filter (see [41] for more details), which was derived from an elaborate mathematical model

published in [40]. This model may also be utilized for simulation purposes, for instance to verify the design

of the trajectory planner or the feedback controller.

1.4. Motivation for a reduced furnace model

Similar to other process control applications, controlling a slab reheating furnace includes tasks like

• trajectory planning,

• optimization, and

• control, e. g., model predictive control or state feedback control,
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usually under the constraints defined by some plant scheduling algorithm. These tasks are characterized by

the need for tailored mathematical models (cf. [25]), which are both computationally inexpensive as well as

dependable in terms of accuracy and convergence. Fast computation is an important issue, particularly for

optimization tasks.

The slab reheating furnace considered in this paper has been in operation for many years and was

analyzed in detail by Wild et al. [40]. Because of economical reasons and a growing range of products, it

is planned to modernize the existing control system. However, in terms of complexity and computational

costs, the elaborate model presented in [40] is too demanding for the above listed functions.

Therefore, a reduced model is derived, which allows to compute the transient temperature field in the steel

slabs, where the radiative heat fluxes inside the furnace serve as boundary conditions. The reduced model

represents a balance between accuracy and computational requirements. In view of the control objectives

described in Section 1.2, the performance of the reheating furnace is likely to benefit from the introduction

of a reduced mathematical model. However, since the proposed model does neither account for the total

energy balance of the furnace system nor for scale formation, it is not capable of furnishing quantitative

results on the supplemental control objectives minimum specific energy consumption and minimum loss of

material.

1.5. Existing furnace models

Due to the large number of existing mathematical models of slab reheating furnaces, a comprehensive

overview of relevant publications would exceed the scope of this paper. Hence, the following outline of the

extensive literature can only serve as a possible starting point for further exploration. Computational fluid

dynamics models have been left out of account since their mathematical complexity is in conflict with the

intended application.

Generally, the models may be distinguished based on the incorporated physical theory. Like in this

analysis, so-called white box models [36] are adopting the fundamental equations of physical phenomena,

such that model parameters are directly assignable to physical quantities of the real system. In contrast,

black box models (or gray box models) [36] utilize generic structures from system identification theory,

which generally does not allow direct physical interpretations. Especially, if physical effects are indistinct

or affected by unknown disturbances, the black box approach may be a better choice than physics-based

modeling.

Furnace models for steady-state operation as presented in [3, 4, 13, 22] are usually computationally

inexpensive, which makes them suitable for optimization tasks. Note that the assumption of steady-state

operation requires constant slab velocity or at least constant pushing periods. Then, the slab temperature

trajectory is effectively a function of the longitudinal coordinate z of the furnace (cf. Figure 1).

In many studies, e. g., [5, 15, 16, 18, 24, 32, 35, 36, 40, 42, 43], the temperature profile inside the slabs

is assumed as 1-dimensional in the vertical direction y. Section 3.1 briefly reflects on the conditions that

justify this assumption. Other furnace models like [2, 3, 4, 7, 9, 22, 25, 26, 32] provide for a 2-dimensional

temperature distribution in the slabs. This may allow studying the influence of skids on the inhomogeneity

of the slab temperature profile. In [13, 20], even the full 3-dimensional temperature field is simulated.
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However, there are also lumped-parameter models where each slab is represented in the state vector by its

mean temperature only, see for instance [16, 23, 24, 29].

Most frequently, the heat conduction problem is solved by means of the finite difference method (cf.

[2, 3, 4, 7, 9, 13, 20, 22, 24, 25, 35, 36, 40, 43]). An alternativ approach was chosen in [42], where the method

of weighted residuals (collocation method) with up to 5 polynomial trial functions was applied. Only a few

authors account for the temperature dependence of material parameters, e. g., [3, 5, 9, 20, 24, 35, 40]. The

problem of temperature-dependent material behavior will be touched upon in Section 3.1.

The method of computing the heat flux into the slabs is another distinguishing feature of furnace models.

In some respect any model accounts for the radiative heat transfer into the slabs, but many authors (cf.

[3, 4, 5, 7, 15, 16, 23, 29, 35, 36, 42, 43]) neglect the radiative exchange in longitudinal direction z of the

furnace. Then, if the bulk gas flow inside the furnace is not taken into account, there is no thermodynamic

interaction between the slabs. This approach yields a particularly simple mathematical description, since

the dynamic models of the slabs are—apart from the fact that they share some inputs—decoupled.

A more elaborate furnace model is obtained if a full energy balance supplements the computation of

radiative heat transfer, which then facilitates the evaluation of the system in terms of specific energy

consumption and efficiency. The combustion process and the resulting gas flow towards the funnel are

addressed in [2, 7, 23, 31, 35, 40, 42, 43]. An in-depth treatise of the matter can be found in [3], where

the position of burner flames and even a recirculating flow component, which opposes the bulk flow, are

modeled. The consideration of convective heat transfer between the gas flow and the surfaces is reported in

[2, 3, 16, 20, 25, 29, 31, 35].

A system identification method (black box model) is proposed in [18]. Step response experiments were

carried out on the real furnace system to provide data for non-parametric system identification with a

discrete-time autoregressivemodel with exogenous input (ARX) enhanced by time-delay behavior. Moreover,

ARX models for both the furnace temperatures and the slab temperatures are reported in [5]. Semi-

empirical models for the dynamic behavior of the furnace temperatures with the fuel supply rates as inputs

are presented in [23, 36]. Another identification model for the furnace temperatures that is suitable for

parameter estimation by means of an ARX, finite impulse response, or Box-Jenkins structure is described in

[33]. The stochastic model proposed in [16] avoids solving the heat conduction equation by simulating the

heat exchange processes as random motions of heat carriers. These black or gray box approaches usually

render physical modeling of dynamic processes in the furnace unnecessary.

1.6. Contents

The paper is organized as follows: After an introduction of some basic nomenclature, Section 3 con-

centrates on the heat conduction problem for a single slab with nonlinear material parameters. The heat

conduction equation is solved by the Galerkin method and integrated to obtain a discrete-time representa-

tion. In Section 4, the analysis proceeds with the radiative heat exchange inside a multi-surface enclosure

filled with a non-participating gaseous medium. Then, the results are transferred to the considered furnace

system, which yields the requested reduced state space model given in Section 5. The theoretical part is

concluded with a brief discussion about the stability of the system under open-loop control. Finally, Sec-

tion 7 presents a first comparison between measurement data acquired from the real system and simulation
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results. Throughout the paper, an attempt is made to provide at least the most fundamental equations

necessary to review and utilize the proposed modeling method.

2. Slab management, geometry, and position

Throughout this analysis, a furnace with one row of slabs is considered. If a furnace contains two or

more rows, averaging techniques are recommended. The slab index j ∈ N uniquely identifies each slab. All

slabs j ∈ J = {jstart, jstart + 1, . . . , jend} are currently inside the furnace, where jstart designates the next

slab to be withdrawn from the furnace and jend the last slab that was pushed in. Therefore, jstart and

jend are updated according to jstart = jstart + 1 and jend = jend + 1 every time a slab leaves and enters

the furnace, respectively. Let tsl with l ∈ N mark the time of such events. Likewise, the number of slabs

Ns = |J | in the furnace is updated at tsl . In the global frame of reference, the center of the slab j has the

x

y

z

zj

Dj

Wj

Lj

q+j

q−j

Figure 3: Geometry and position of slab j.

current z-position zj , as indicated in Figure 3. Slabs can only be moved in positive z-direction. Moreover,

let y be a local coordinate in vertical direction, which is 0 at the center of the respective slab j. The third

spatial coordinate x, defining the lateral direction of the furnace, is not used, because only a 2-dimensional

problem is considered. Hence, all variables are assumed to be invariant with respect to x, i. e., the furnace

is infinitely wide, and the slabs are infinitely long. The slab j has the thickness Dj in y-direction, the width

Wj in z-direction, and the length Lj in x-direction.

3. Conductive heat transfer in a slab

This section addresses the heat balance and the heat conduction problem for a single slab j. As men-

tioned in Section 1.5, most published furnace models apply the finite difference method for discretization

of the spatial domain. However, here, the Galerkin method is used, because it yields a low-dimensional

mathematical model that is particularly suitable for control purposes as demonstrated in [37]. Moreover,

an implicit time integration scheme is proposed to discretize the time domain, as required for computer

implementations.

3.1. Heat conduction problem with Neumann boundary conditions

Let Tj(y, t) > 0 be the absolute temperature field in the slab j defined along the vertical spatial dimension

y with y ∈ [−Dj/2,Dj/2], as shown in Figure 3. Here, y is a Lagrangian coordinate. Since the aspect ratio

of the slab is usually characterized by Lj ≫ Dj and Bj ≫ Dj , independence of Tj(y, t) from both x and z

is a reasonable approximation. The heat flux qj(y, t) inside the solid is determined by the properties of the
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material, the temperature gradient, and the boundary conditions at y = −Dj/2 and y = Dj/2. Therefore,

Fourier ’s law qj(y, t) = −λj∂Tj(y, t)/∂y and the differential operators

Dj(Tj) := ρjcj
∂Tj

∂t
+

∂qj
∂y

= ρjcj
∂Tj

∂t
− ∂

∂y

(
λj

∂Tj

∂y

)
(1a)

B∓
j (Tj) := ∓qj (∓Dj/2, t)∓ λj

∂Tj

∂y

∣∣∣∣
y=∓Dj/2

= −q∓j (t)∓ λj

∂Tj

∂y

∣∣∣∣
y=∓Dj/2

(1b)

can be used for defining the heat conduction process by the diffusion law [1, 19]

Dj(Tj(y, t)) = 0 y ∈ (−Dj/2,Dj/2) , t > t0 (1c)

with initial conditions

Tj(y, t0) = Tj,0(y) y ∈ [−Dj/2,Dj/2] (1d)

and Neumann boundary conditions

B−
j (Tj(y, t)) = B+

j (Tj(y, t)) = 0 t > t0. (1e)

It is assumed that Tj(y, t) always satisfies the differentiability requirements induced by the operators Dj and

B∓
j . The heat inputs q

−
j (t) and q+j (t) define the heat exchange between the solid and its environment. They

may depend on the surface temperatures Tj(−Dj/2, t) and Tj(Dj/2, t), respectively. Here, the heat conduction

problem is given in its differential (strong) formulation. Section 3.2 touches upon the corresponding integral

(weak) formulation.

In (1), ρj represents the mass density, which may depend on y only. The specific heat capacity cj and the

thermal conductivity λj may depend on y or Tj or both. In fact, the material behavior may vary with the

coordinate y if multi-layer steel products are considered. However, in this analysis, a homogeneous material,

i. e., independence of the parameters from y, is stipulated. Moreover, possible dependence of the parameters

on the history of Tj is disregarded, i. e., cj and λj may only depend on the current local temperature. An

example for the dependence of the parameters on the local temperature Tj(y, t) is given in Figure 4 for

standard steel (0.1% carbon). The salient peak of cj corresponds to a phase transition. Throughout this

paper, if temperature dependence is allowed for, data from Figure 4 is used. The reference [14] provides

more information on the temperature dependence of material parameters.

The nonlinear temperature dependence of cj and λj renders the partial differential equation (1) nonlinear,

which complicates its solution, especially if solution techniques based on the weak formulation are applied.

In [37], a method was proposed which allows to accurately account for the nonlinearity by replacing the

temperature as a state variable with a transformed quantity proportional to the specific enthalpy. A simpler

but less precise approach is outlined in the following.
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Figure 4: Temperature-dependent material parameters for standard steel with 0.1% carbon (data adapted from [14]).

3.2. Weighted residual method

Assume for the time being that cj and λj are independent of the temperature Tj. Later, some measures

will be taken to compensate at least partially for the error introduced by this assumption. Then, Dj from

(1a) is a linear operator. Consider the Sobolev space V := H1(−Dj/2,Dj/2) and the bilinear form

a(v1, v2) :=

∫ Dj/2

−Dj/2

v1v2dy : V × V → R. (2)

Using any trial function v(y) ∈ V and any scalars v−, v+ ∈ R, the identity

a(v(y),Dj(Tj(y, t))) + v−B−
j (Tj(y, t)) + v+B+

j (Tj(y, t)) = 0 t > t0 (3a)

must hold. Here, Dj(Tj(y, t)) ∈ L2(−Dj/2,Dj/2) is required, where L2(−Dj/2,Dj/2) is the space of square

integrable functions on the interval (−Dj/2,Dj/2). In the usual way (cf. [30]), integration by parts yields

0 = ρjcja

(
v(y),

∂Tj(y, t)

∂t

)
+ λja

(
∂v(y)

∂y
,
∂Tj(y, t)

∂y

)
+
(
v+ − v (Dj/2)

)
λj

∂Tj(y, t)

∂y

∣∣∣∣
y=Dj/2

− v+q+j (t)

−
(
v− − v (−Dj/2)

)
λj

∂Tj(y, t)

∂y

∣∣∣∣
y=−Dj/2

− v−q−j (t) t > t0.

(3b)

The formulations (1) and (3b) are equivalent, apart from the fact that (3b) induces less restrictive require-

ments on the differentiability of Tj(y, t) with respect to y.

The idea of the weighted residual method is to find an approximate solution by weakening the condition

that (3) must be satisfied for any trial function v(y) ∈ V and any scalars v−, v+ ∈ R. For the approximation,

it suffices if (3) holds for any v(y) ∈ Vh ⊆ V and any v−, v+ ∈ V ∓
h ⊆ R, where Vh is a finite dimensional

subspace. Moreover, (3b) can be simplified by means of the choice v∓ = v(∓Dj/2). As demonstrated in [44],
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this reasonable simplification is particularly useful for Neumann boundary conditions. It is, therefore, used

throughout the following analysis.

3.3. Galerkin method

Generally, the choice of Vh is left to the user. A well-known type of the weighted residual approach is

the Galerkin method (cf. [8, 30]). It suggests to approximate the exact solution Tj(y, t) by

Th,j(y, t) =
H∑

i=1

xj,i(t)hj,i(y) (4)

with H basis functions hj,i(y) ∈ Vh := span{h1(y), h2(y), . . . , hH(y)} ⊆ V , which are also used as trial

functions v(y) in (3). I. e., the trial functions v(y) and the approximate solution Th,j(y, t) are taken from

the same finite dimensional space Vh. In (4), the time dependence of Tj is reflected by the so-called Galerkin

coefficients xj,i(t), which can be summarized in the vector xj(t) = [xj,1(t), xj,2(t), . . . , xj,H(t)]T. To render

the linear combination (4) unique, the trial functions hj,i(y) have to be linearly independent. In case of

q−j (t) = 0 or q+j (t) = 0 or both, Vh can be chosen such that the homogeneous boundary conditions are

automatically satisfied by Th,j(y, t). However, for the considered problem, the boundary conditions are

generally inhomogeneous.

Evaluation of (3b) by sequential replacement of v(y) with the H trial functions hj,i(y) yields an initial-

value problem in form of an explicit ODE for the unknown Galerkin coefficients xj(t). Therefore, xj(t) are

the states of a dynamical system of orderH (lumped-parameter system). A reasonable strategy for obtaining

the initial values xj(t0) = xj,0 is to minimize the deviation between Th,j(y, t0) and the given initial temper-

ature profile Tj,0(y) weighted with the trial functions hj,i(y) by claiming a(hj,i(y), Th,j(y, t0)− Tj,0(y)) = 0

∀ i ∈ {1, 2, . . . , H}. Insertion of (4) and utilization of the linearity of the operator a(v1, v2) from (2) yield

the linear equation

[
a(hj,i(y), hj,k(y))

]
i=1...H,k=1...H

xj,0 =
[
a(hj,i(y), Tj,0(y))

]
i=1...H

. (5)

Since linear independence of the basis functions hj,i(y) was assumed, (5) can be straightforwardly solved for

the initial state xj,0. In the sequel, the proposed approach is explained with a three-dimensional orthogonal

basis

hj,1(y) = 1, hj,2(y) =
2y

Dj

, hj,3(y) =

(
2y

Dj

)2

− 1

3
, (6)

i. e.,H = 3 and Th,j(y, t) is a quadratic polynomial in y. This choice allows a straightforward interpretation of

the Galerkin coefficients xj : xj,1 is the slab mean temperature, xj,2 defines the asymmetry of the temperature

profile Th,j(y, t), and xj,3 is the transient temperature inhomogeneity, which depends on the relation between

the total heat flux into the slab and the heat conductivity inside the slab. Thermal expansions corresponding

to xj,2 cause the slab to bend, whereas those corresponding to xj,3 cause thermal stresses.

The rationale for the choice (6) is that—given the right initial condition Tj,0(y)—it would allow an

exact solution of (1) if q−j (t) and q+j (t) were constant. For an arbitrary initial condition Tj,0(y), the error
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would be transient. As reported in [37], the chosen trial functions are an acceptable compromise between

computational effort and achieved accuracy. Results for H > 3 are shown in [37].

Substitution of (6) and (4) into (3b) for v = h1, v = h2, and v = h3 with v∓ = v(∓Dj/2) yields the so

far linear ODE

ẋj(t) = ajxj(t) + b−j q
−
j (t) + b+j q

+
j (t) t > t0 (7a)

with the initial value xj(t0) = xj,0 from (5) and the expressions

aj = −
12λj

ρjcjD
2
j

diag {0 1 5} , b∓j =
1

ρjcjDj

[1 ∓3 15/2]T. (7b)

In (7), it is possible to approximately compensate for the ignored temperature dependence of cj and λj by

substituting these parameters with weighted mean values

c̄j(xj) =
a
(
cj(Th,j), Th,j

)

a
(
hj,1, Th,j

) , λ̄j(xj) =
a
(
λj(Th,j),

∂Th,j

∂y

)

a
(
hj,1,

∂T
h,j

∂y

) . (8)

Then, the ODE (7) becomes nonlinear. Although, the choice (8) is not well-founded in theory, it yields

acceptable results in practice. The reference [37] sheds some light upon the rationale for the approach.

When implementing (8), special care should be taken to handle the case of vanishing denominators—a case

that is not exceptional.

The heat fluxes q∓j (t) in (7a) could be replaced by expressions for the radiative heat exchange between the

slab and its environment. However, noting that q−j (t) and q+j (t) depend in a nonlinear fashion on the surface

temperature Th,j(−Dj/2, t) and Th,j(Dj/2, t), respectively, a significant nonlinearity would be introduced into

(7a). Therefore, to simplify the solution of (7a), the consideration of radiative heat exchange is postponed

until a discrete-time system has been obtained. In the sequel, the subscript h is omitted, because it can be

easily inferred from the respective context whether the exact or the approximate solution is meant.

3.4. Discretization of the time domain

An analytical solution of the ODE (7) with cj and λj replaced by c̄j(xj) and λ̄j(xj) from (8), respectively,

has not been found. Hence, a computer implementation of the model requires the time domain to be

discretized by applying some (approximate) integration algorithm. Any standard numerical ODE solver

for explicit initial-value problems should suffice to integrate this ODE. However, the benefit of manual

discretization is that usually laborious iterative solver algorithms can be replaced by algebraic difference

equations, which allow rapid evaluation. Consider a discretized time domain with sampling instants tk ∀ k ∈
N, which do not need to be equidistant, and let ∆tk = tk+1 − tk be the corresponding sampling period.

In order to obtain a discrete representation [10] of the state space system (7) and (8), the input signals

q∓j (t) can be restricted to a function space that facilitates an analytical integration of the ODE. The zero-

order-hold method [10] is a well known example, where only piecewise constant input signals are allowed.

More accurate results are obtained by using piecewise linear signals which may be discontinuous at the
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Figure 5: Piecewise linear input signal.

sampling points tk. Figure 5 shows an example for q∓j (t). However, the continuous inputs q−j (t) and q+j (t)

are generally not equal. They can be expressed as

q∓j (t) = q1∓j,k
tk+1 − t

∆tk
+ q2∓j,k

t− tk
∆tk

for tk ≤ t < tk+1, (9)

where q1∓j,k and q2∓j,k follow from

q1∓j,k = q∓j (tk), q2∓j,k = lim
τ→0−

q∓j (tk+1 + τ).

To permit a simple analytical solution, it is assumed that c̄j(xj) and λ̄j(xj) take the constant values c̄j(xj,k)

and λ̄j(xj,k) within each time interval [tk, tk+1). Implementing this approximation, the integration of (7)

with the inputs (9) readily yields the discrete-time system

xj,k+1 = aj,kxj,k + b1−j,kq
1−
j,k + b1+j,kq

1+
j,k + b2−j,kq

2−
j,k + b2+j,kq

2+
j,k (10a)

with

aj,k = e
−

12λ̄j(xj,k)∆tk
ρj c̄j(xj,k)D

2
j
diag {0 1 5}

(10b)

b1∓j,k =




∆tk
2ρj c̄j(xj,k)Dj

∓ Dj

4λ̄j(xj,k
)

(
−1 +

(
1 +

ρj c̄j(xj,k)D
2
j

12λ̄j(xj,k
)∆t

k

)(
1− e

−12λ̄j(xj,k)∆tk
ρj c̄j(xj,k)D

2
j

))

Dj

8λ̄j(xj,k)

(
−1 +

(
1 +

ρj c̄j(xj,k)D
2
j

60λ̄j(xj,k)∆tk

)(
1− e

−60λ̄j(xj,k)∆tk
ρj c̄j(xj,k)D

2
j

))




(10c)

b2∓j,k =




∆tk
2ρj c̄j(xj,k)Dj

∓ Dj

4λ̄j(xj,k)

(
1− ρj c̄j(xj,k)D

2
j

12λ̄j(xj,k)∆tk

(
1− e

−12λ̄j(xj,k)∆tk
ρj c̄j(xj,k)D

2
j

))

Dj

8λ̄j(xj,k)

(
1− ρj c̄j(xj,k)D

2
j

60λ̄j(xj,k)∆tk

(
1− e

−60λ̄j(xj,k)∆tk
ρj c̄j(xj,k)D

2
j

))



. (10d)

By virtue of the chosen function space for the inputs q∓j (t), the discrete-time system (10) has 4 inputs

(q1∓j,k ) and (q2∓j,k ) whereas the original continuous-time system (7) has just 2 inputs q∓j (t). Moreover, (10)

is non-causal, since q2∓j,k occurs at the same time as xj,k+1. As a consequence of boundary conditions, q2∓j,k
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may depend on xj,k+1 such that (10a) constitutes an implicit discrete-time system, as will be shown for the

complete furnace model in Section 5.2. The benefit of the proposed integration scheme compared to the

classical zero-order-hold method is that complicated input signals q∓j (t), e. g., ramps with non-equidistant

discontinuities, can be approximated more accurately, see also [37].

4. Radiative heat transfer in the furnace

The input signals q∓j (t) of each slab j ∈ J represent radiative heat fluxes inside the furnace. Radiative

heat transfer generally couples the dynamical subsystems of all slabs, because radiation is not just a local

phenomenon. Before the net radiation method [1, 19, 27] is utilized to model the radiative heat transfer

inside the furnace, a few assumptions are made.

4.1. Assumptions

The most basic assumptions about the radiation conditions in the considered furnace are listed in the

following. Admittedly, this gives only an incomplete rendering of the sometimes intricate physical details of

radiative heat transfer. For an in-depth discussion of the issue, the references [1, 12, 27, 31, 38] may serve

as a point of departure.

• Thermal radiation is the only considered mode of heat exchange between the slabs and their envi-

ronment. Especially, high surface temperatures make thermal radiation the dominant mode of heat

exchange [15, 20, 25, 40]. Therefore, other types of heat transfer like conduction or convection are

negligible.

• At any time, the temperature of a participating surface is homogeneously distributed. This postulate

seems adequate for slab surfaces. For furnace wall surfaces, however, its validity depends largely on the

chosen size of the surface section, the distribution of burners, and the gaseous flow inside the furnace.

• The temperature T∓
z,i, which is measured by thermocouples in the furnace zone i ∈ {1, 2, . . . , N∓

z },
is an intermediate value of the local gas temperature and the surface temperature of the furnace wall.

In the proposed model, T∓
z,i is considered to equal the wall surface temperature in zone i. Therefore,

T∓
z,i is called the zone temperature. It is usually regulated by a burner controller (cf. Figure 2) and

serves as an input of the model.

• The transmissive properties of the gaseous medium inside the furnace are assumed to be negligible.

This assumption is correct if the medium does not emit thermal radiation and if rays passing the

medium are neither scattered nor absorbed or attenuated [1, 19]. Then, the medium is said to be

non-participating.

Evidently, this is a bold approximation since burner flames and flue gases transfer thermal energy to

the surfaces inside the furnace mainly through radiation and this effect is responsible for the bulk

of the heat input into the furnace. To compensate for the error introduced by this approximation,

the parameters describing the radiative properties of the participating surfaces are adapted such that

T∓
z,i can be regarded as a system input. Hence, T∓

z,i shall incorporate the effects of both the gaseous

medium and the furnace wall in zone i. It is emphasized that this yields a fairly imprecise but at least

computationally easily manageable model.
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• All participating surfaces are ideal diffuse reflectors. Bearing in mind the irregularly textured and mat

surfaces of a furnace system, this assumption comes close to reality.

• All participating surfaces behave as gray bodies. For the prevailing temperature range in a furnace, this

seems to be an acceptable approximation, which is adopted in most pertinent publications. However,

furnace models which explicitly allow for the spectral distribution of thermal radiation are reported

in [13, 22, 26].

Gray bodies have a spectrum that is proportional to that of black bodies with the proportionality

coefficient ε ∈ [0, 1]. The factor ε is known as emittance. Black bodies absorb all incident rays (ε = 1),

whereas gray bodies partially reflect incident radiation (ε < 1) [1, 19]. In reality, ε may vary with

the surface temperature. However, as discussed in [6, 35], the sensitivity of the radiative heat transfer

process on variations of ε is only minor, which justifies the disregard of this effect.

• All participating surfaces are opaque.

These stipulations are supplemented by assumptions concerning the geometry of the furnace, which is

outlined in Figure 1.

• Both the top and the bottom half of the furnace form a multi-surface enclosure. Radiative heat

exchange occurs neither between the furnace environment and the two enclosures nor between the

enclosures themselves.

• Since the furnace is considered infinitely wide and the slabs are considered infinitely long, the radiation

conditions are invariant with respect to x. The radiation problem can be interpreted as 2-dimensional.

• Skids are ignored when computing the radiative heat exchange. However, it is possible to approximately

account for their negative effect on the heat flux into the slabs by choosing the emissivity ε−j of the

bottom slab surface smaller than the emissivity ε+j of the top slab surface.

• Only the bottom and the top surface of a slab serve as interface for heat exchange between the slab and

its environment. Front, back, and lateral slab faces do not participate in the radiative heat exchange

process.

• For computing the radiative heat transfer, the thickness of the slabs is not taken into account, i. e., it

is assumed that all top slab surfaces are in the same plane. For the bottom slab surfaces, this holds

anyway.

4.2. Radiative heat transfer in a multi-surface enclosure

The so-called zone method (cf. [17]) furnishes a model of the radiative heat transfer in some gaseous

media surrounded by solid surfaces. The net radiation method (cf. [1, 19, 27]) is a simplified version of

this theory, applicable to systems with non-participating gaseous media, as assumed in this analysis. Other

sources of the following discussion are [27, 28, 31]. The total emissive power of a gray body surface i with

area Si is defined as σεiT
4
i , where σ is the Stefan-Boltzmann constant and Ti the absolute temperature of

the surface. For black bodies, the well-known Stefan-Boltzmann law is obtained by setting εi = 1. Let Hi

be the flux density of radiative energy which radiates onto the surface Si, as outlined in Figure 6a). Hi

is known as irradiance. Moreover, Bi is the flux density of radiation energy departing from the surface i
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Figure 6: a) Irradiance Hi and radiosity Bi of the surface section Si, b) multi-surface enclosure, c) geometric relation between
two infinitesimal surface sections.

including the reflected fraction of Hi. Bi is known as radiosity and follows as

Bi = (1 − εi)Hi + σεiT
4
i . (11a)

The proportionality coefficient 1 − εi refers to Kirchhoff ’s law of thermal radiation [1, 19] and is called

reflectance. Drawing up the balance of heat fluxes at the surface i yields the net heat flux density qi = Hi−Bi

into the surface and the corresponding net heat flow

Qi = Siqi = Si(Hi −Bi). (11b)

Consider a multi-surface enclosure with N surface zones, as shown in Figure 6b), and let Si and Sj be the

areas of two sections of this enclosure. Hence, SjHj is the total radiative energy incident on the surface j.

The fraction of SjHj that is attributed to the emitting zone i is defined as sisjBi with the so-called direct

exchange area sisj (cf. [12, 17, 27, 28]). It is found by integration over all possible light beams traveling from

the emitter Si to the receiver Sj , i. e.,

sisj :=

∫

Si

∫

Sj

cos(θi) cos(θj)

πs2i,j
dSjdSi. (12)

As indicated in Figure 6c), si,j is the distance between two infinitesimal sections on the surfaces i and j. θi

and θj are the corresponding angles of incidence, i. e., the angles between the light ray and the perpendicular

to the surface section. It is emphasized that (12) only holds for non-participating media. The equation can

be explained by taking into account that

cos(θi) cos(θj)

πs2i,j
dSj

is the fraction of the viewing field of dSi occupied by dSj [27]. Because of the symmetric occurrence of i

and j in (12), sisj = sjsi, which is known as reciprocity relation. Depending on the complexity of the given

geometry, the multiple integral (12) may be computationally expensive. The problem can be alleviated by

assuming a planar configuration, like in this analysis.

To ensure a concise notation, some matrices and vectors are introduced before the balance of radiation
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energy in the multi-surface enclosure is drawn up.

ss = ssT = [ sisj ]i=1...N,j=1...N , S = [S1 S2 · · · SN ]T, ε = [ε1 ε2 · · · εN ]T,

B = [B1 B2 · · · BN ]
T
, H = [H1 H2 · · · HN ]

T
, E = σ[T 4

1 T 4
2 · · · T 4

N ]
T
,

Q = [Q1 Q2 · · · QN ]
T

Summing up the fractions sisjBi for each surface yields

diag {S}H = ssB. (13a)

The counterparts of (11) in matrix notation read as

B = (I − diag {ε})H + diag {ε}E (13b)

Q = diag {S} (H −B). (13c)

Elimination of B and H in (13) yields the net heat flows into the surface zones as

Q =
(
SS − diag {S}diag {ε}

)
E (14)

with the so-called total exchange areas

SS =
[
SiSj

]
i=1...N,j=1...N

= diag {S} diag {ε} [diag {S} − ss (I − diag {ε})]−1
ss diag {ε} . (15)

It can be shown that SS also obeys a reciprocity relation SiSj = SjSi or equivalently SS = SS
T
. To

be consistent with the energy balance, both ss and SS must satisfy some algebraic constraints known as

summation rules. The radiation system acquires a state of thermal equilibrium if all surface temperatures

become equal, leading to E = σT 41 with the common temperature T . 1 represents a vector of unity

components only. Thermal equilibrium requires Q = 0. The specialization of (13b) and (13c) for the state

of thermal equilibrium shows that B = H = E. Insertion into (13a) and (14) yields the summation rules

S = ss1, diag {S} ε = SS1. (16)

They can be helpful for checking numeric results of exchange areas or to reduce the workload for computing

the exchange areas. This may be particularly interesting if approximate techniques like the Monte-Carlo

method (cf. [20, 27, 38]) are employed for finding the exchange areas. However, in this analysis, the direct

and total exchange areas are computed by means of (12) and (15), respectively.

4.3. Results for the furnace system

The findings of the previous section are now applied to the enclosures made up of the bottom and the top

half of the furnace. Slabs which are currently reheated in the furnace have the bottom and top surface areas

S∓ = [S∓
jstart

, S∓
jstart+1, . . . , S

∓
jend

]T and the corresponding emissivities ε∓ = [ε∓jstart
, ε∓jstart+1, . . . , ε

∓
jend

]T.
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As shown in Figure 1, the furnace volume is separated into N−
z zones in the bottom half and N+

z zones

in the top half with the homogeneously distributed zone temperatures T∓
z = [T∓

z,1, T
∓
z,2, . . . , T

∓
z,N∓

z
]T. They

serve as inputs of the model. The state vectors of all slabs in the furnace are summarized in the vector

x(t) = [xT
jstart

(t),xT
jstart+1(t), . . . ,x

T
jend

(t)]T, which generally changes its size 3Ns with time. Utilizing the

results of the Galerkin discretization from Section 3.3, the surface temperatures of the slabs follow asM∓x(t)

with the Ns×3Ns sparse matrix M∓ =
[
δi,j [1 ∓1 2/3]

]
i=1...Ns,j=1...Ns

. Here, δi,j is the Kronecker delta.

Therefore, the temperatures of all participating surfaces can be assembled as a vector [(T∓
z )

T, (M∓x(t))T]T

and the corresponding total exchange area matrix SS
∓

can be computed according to (15) for both the

bottom and the top furnace half. Eventually, this allows the calculation of the net heat flux densities into

the slabs as

q∓(t) =
[
q∓jstart

(t) q∓jstart+1(t) · · · q∓j
end

(t)
]T

= P∓
z

(
T∓

z

)4
+ P∓

s

(
M∓x(t)

)4
(17a)

with

P∓
z =

[
P∓
z,i,j

]
i=jstart...jend

j=1...N∓
z

= σ diag
{
S∓}−1 [0

Ns×N∓
z

INs×Ns

]
SS

∓
[
I
N∓

z ×N∓
z

0
Ns×N∓

z

]
(17b)

P∓
s =

[
P∓
s,i,j

]
i=jstart...jend
j=jstart...jend

= σ diag
{
S∓}−1 [0

Ns×N∓
z

INs×Ns

]
SS

∓
[
0
N∓

z ×Ns

INs×Ns

]
− σ diag

{
ε∓
}
. (17c)

The 4th power in (17a) is applied to each component of the respective vector. Equation (17) constitutes a

radiation boundary condition which couples the dynamic systems of the slabs in the furnace. Throughout

this paper, it is assumed that slabs are either fully inside or fully outside the furnace. If this were not the

case, the concerned value q∓j (t) from (17a) would have to be scaled by the ratio between the total slab surface

area S∓
j and its portion that is participating in the radiative heat exchange process before it is inserted into

(7) or (10).

Since, the slabs change their position, both P∓
z and P∓

s depend on t. Moreover, they are independent of

the absolute size of the furnace, i. e., just the shape and the relative size of the participating surfaces play a

role. The section is concluded with some remarks on the properties of (17), which highlight that the above

results are in line with the second law of thermodynamics.

It is assumed that both P∓
z and P∓

s have at least one non-zero element in each row. Otherwise, the

heat input into the respective slab would be independent of the surface temperatures T∓
z or M∓x(t),

respectively. This is only possible for special cases like εj = 0, which are ruled out in this analysis. In

practice, P∓
z and P∓

s do not have any zero entries because there is radiative interaction between all surfaces

18

Post-print version of the article: A. Steinboeck, D. Wild, T. Kiefer, and A. Kugi, “A mathematical model of a slab reheating furnace
with radiative heat transfer and non-participating gaseous media”, International Journal of Heat and Mass Transfer, vol. 53, no. 25-26,
pp. 5933–5946, 2010. doi: 10.1016/j.ijheatmasstransfer.2010.07.029
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.07.029


of an enclosure—at least through reflection. At any time, the components of P∓
z and P∓

s satisfy

0 ≤ P∓
z,i,j < σ, |P∓

s,i,j | < σ, (18a)

P∓
s,i,j




≥ 0 if i 6= j

< 0 else
,

jend∑

j=jstart

P∓
s,i,j < 0, (18b)

N∓
z∑

j=1

P∓
z,i,j+

jend∑

j=jstart

P∓
s,i,j = 0. (18c)

From (18b) and the Gershgorin circle theorem [11], it can be deduced that P∓
s is a Hurwitz matrix. (18c)

follows directly from (16). (18) confirms that

• q∓j ∀ j ∈ J is monotonically non-decreasing with [1 ∓1 2/3]xi ∀ i ∈ J , i 6= j,

• q∓j ∀ j ∈ J is monotonically non-rising with [1 ∓1 2/3]xj , and

• q∓j ∀ j ∈ J is monotonically non-decreasing with T∓
z,i ∀ i ∈ {1, 2, . . . , N∓

z }.

Furthermore, (18) confirms that for any j ∈ J and for any t,

q∓j (t) = 0 ⇒ min
{
{T∓

z,1, T
∓
z,2, . . . , T

∓
z,N∓

z
} ∪ {[1 ∓1 2/3]xi|i ∈ J, i 6= j}

}
≤

[1 ∓1 2/3]xj(t) ≤ max
{
{T∓

z,1, T
∓
z,2, . . . , T

∓
z,N∓

z
} ∪ {[1 ∓1 2/3]xi|i ∈ J, i 6= j}

}
.
(19)

These remarks may be useful for translating temperature bounds into constraints of the heat flux densities,

or vice versa. They simplify the determination of extremal values. For instance, the considerations leading

to (19) show that for the model inputs T∓
z being held at some constant value, the steady state solution

requires that all slab temperatures are within the minimum and the maximum of T∓
z .

5. Assembled dynamic system

The results of the previous sections are combined to obtain a dynamic system describing the furnace.

5.1. Continuous-time system

Specializing (7) and (8) for each slab inside the furnace and utilizing (17) yield the continuous-time

system

ẋ(t) = Ax(t) +B−
(
P−

z

(
T−

z

)4
+ P−

s

(
M−x(t)

)4)
+B+

(
P+

z

(
T+

z

)4
+ P+

s

(
M+x(t)

)4)
(20a)

with the sparse matrices

A =
[
δi,jaj

]
i=jstart...jend,j=jstart...jend

, B∓ =
[
δi,jb

∓
j

]
i=jstart...jend,j=jstart...jend

. (20b)

They depend on both x(t) (cf. (7b) and (8)) and t. Recall, that P∓
z and P∓

s also depend on t. The system

(20) is locally Lipschitz in x(t) and piecewise continuous in t. Discontinuities may occur at t = tsl , i. e.,

when slabs are moved. Therefore, existence and uniqueness of the solution of (20) is ensured.
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For slabs j 6∈ J , i. e., slabs that are currently outside the furnace, some other thermodynamic model

or q∓j (t) = 0 or ẋj(t) = 0 may be used. The latter option is chosen in this analysis. Using the input

transformation u = ([(T−
z )

T, (T+
z )

T]T)4 shows that (20) constitutes an input affine system, which may be

beneficial for controller design or dynamic optimization.

5.2. Discrete-time system

By analogy to the continuous-time case, the combination of (10) and (17) yields

xk+1 =Akxk +B1−
k

(
P−

z,k

(
T−

z (tk)
)4

+ P−
s,k

(
M−xk

)4)
+B1+

k

(
P+

z,k

(
T+

z (tk)
)4

+ P+
s,k

(
M+xk

)4)

+B2−
k

(
P−

z,k

(
T−

z (tk+1)
)4

+ P−
s,k

(
M−xk+1

)4)
+B2+

k

(
P+

z,k

(
T+

z (tk+1)
)4

+ P+
s,k

(
M+xk+1

)4)

(21)

with

xk =
[
xT
jstart,k

xT
jstart+1,k · · · xT

jend,k

]T
, P∓

z,k = lim
τ→0+

P∓
z

∣∣
t=tk+τ

, P∓
s,k = lim

τ→0+
P∓

s

∣∣
t=tk+τ

.

Similar to (20b), Ak, B
1∓
k , and B2∓

k are the assemblies of aj,k, b
1∓
j,k, and b2∓j,k from (10), respectively. It is

emphasized that the piecewise linear shape of q∓(t) is a basic assumption of this approach. Therefore, the

radiation boundary conditions defined by (17) are generally only satisfied at the sampling points tk but not

at times t ∈ (tk, tk+1). By analogy to the stipulations for the continuous-time case given in Section 5.1, the

trivial mapping xj,k+1 = xj,k is used for slabs j 6∈ J , i. e., slabs that are currently outside the furnace.

The difference equation (21) can be numerically solved for xk+1, e. g., by means of the Newton-Raphson

method, which exhibits quadratic convergence. When searching for xk+1, xk proved to be a good starting

point. Convergence problems have not been observed, even for coarse discretization of the time domain.

The fact that (21) is an implicit equation is beneficial for the numeric stability of the integration method.

6. Stability analysis

It is assumed that the state space model (20) describes the real furnace accurately enough to transfer

results of the stability analysis to the real system. It was observed in Section 4 that the radiative heat

transfer model conforms to the second law of thermodynamics. At first glance, by virtue of this law, a

stability analysis of the real system with the chosen inputs T∓
z seems dispensable. Indeed, the system

cannot become unstable as long as zone temperatures T∓
z serve as system inputs rather than air and fuel

supply rates, which are integrated in the system. This is a fundamental rationale for selecting T∓
z as inputs

of the proposed model.

For linear dynamical systems, the dynamics of the open-loop control error equals that of the system itself,

and the dynamic behavior is invariant with respect to shifts in the state space. Hence, the suitability of a

linear system for open-loop control can be inferred from its stability properties. Generally, nonlinear systems

like (20) do not exhibit these favorable features and, consequently, require a separate proof of stability of

the dynamics of the open-loop control error and a definition of the region of convergence.
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Therefore, the motivation of the following stability analysis is not to repeat what seems obvious according

to the second law of thermodynamics, but to investigate the mathematical model in terms of its open-loop

control error. Conditions will be derived, which ensure that some initial control error decreases exponentially.

Under these conditions, open-loop operation of the furnace system is at least justified, although the dynamic

behavior of the controlled system may be significantly improved if feedback is introduced. In fact, the

reference [34] points out some drawbacks entailed by the absence of feedback control, especially if the

controlled furnace system exhibits appreciable uncertainties.

To simplify the analysis, c̄j and λ̄j from (8) are assumed to be constant throughout this section. Before

the complete furnace model is evaluated, the principle of the stability analysis is demonstrated for a single

slab.

6.1. A single slab

Consider that there is only a single slab j whereas all other surface temperatures in the furnace—including

the surface temperatures of other slabs defined by their states—serve as inputs of the dynamic system of

slab j. Fortunately, the dynamic system follows directly by extracting the relevant rows of (20), i. e.,

ẋj(t) =ajxj(t) + b−j P
−
s,j,j

(
[1 −1 2/3]xj(t)

)4
+ b+j P

+
s,j,j

(
[1 1 2/3]xj(t)

)4

+ uj(t,T
−
z ,T

+
z ,xjstart

, . . . ,xj−1,xj+1, . . . ,xjend
)

(22)

with some input function uj emerging from an appropriate decomposition of the matrices B∓P∓
z , B

∓P∓
s ,

and M∓.

Let x̃j(t) be a reference trajectory which obeys (22) with the corresponding set of reference inputs T̃
−
z ,

T̃
+

z , x̃jstart
, . . . , x̃j−1, x̃j+1, . . . , x̃jend

. For instance, this reference solution may have been found by

dynamic optimization or it may be a steady state solution. Consider that the initial conditions xj,0 and x̃j,0

of the original system and of the reference solution, respectively, deviate from each other. Open-loop control

by applying the above reference inputs is justified if the error xj − x̃j in some sense decreases with t, which

can be shown by analyzing the error dynamics of (22). To simplify the analysis, the regular coordinate

transformation

zj = V xj , V =

[
1 0 0
1 −1 2/3
1 1 2/3

]
(23)

is introduced. Since, the components of zj represent the mean temperature and the surface temperatures

of the slab, the reasonable restriction zj ∈ D = {v ∈ R3|v > δ1} with some small δ > 0 will be used

throughout the paper. Here, v > δ1 means that the inequality relation holds true for all corresponding

components of v and δ1, i. e., each component of v exceeds δ. Transforming the reference solution x̃j(t)

in the same manner, i. e., z̃j = V x̃j ∈ D, and introducing the error ej = zj − z̃j > δ1− z̃j yield the error

dynamics

ėj(t) = ãjej(t) +
(
b̃
−
j P

−
s,j,j [0 1 0] + b̃

+

j P
+
s,j,j [0 0 1]

)((
ej(t) + z̃j(t)

)4 −
(
z̃j(t)

)4)
(24a)
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with

ãj = −
12λ̄j

ρj c̄jD
2
j

[ 0 0 0
−5 3 2
−5 2 3

]
, b̃

∓
j =

1

ρj c̄jDj

[ 1
6± 3
6∓ 3

]
. (24b)

Using the positive definite Lyapunov function candidate

w(ej) =
30

Dj

∫ Dj/2

−Dj/2

([
hj,1(y) hj,2(y) hj,3(y)

]
V −1ej

)2
dy = eTj pej , p =

[ 36 −3 −3
−3 4 −1
−3 −1 4

]
,

it follows that

ẇ(ej) = eTj

(
pãj + ãT

j p
)
ej + eTj

60

ρj c̄jDj

diag
{
0 P−

s,j,j P+
s,j,j

}((
ej + z̃j

)4 − z̃4
j

)

with negative semidefinite

pãj + ãT
j p = −

120λ̄j

ρj c̄jD
2
j

[ 6 −3 −3
−3 2 1
−3 1 2

]
.

Because of eTj ((ej + z̃j)
4 − z̃4

j) ≥ δ3eTj ej for ej > δ1 − z̃j and z̃j ∈ D and since there exists a suitable

constant P̄j such that P∓
s,j,j < P̄j < 0 (cf. (18b)),

ẇ(ej) ≤ w̄(ej) = eTj

(
pãj + ãT

j p+
60δ3P̄j

ρj c̄jDj

diag {0 1 1}
)
ej

with negative definite w̄(ej). The above results require that the slab j is inside the furnace—otherwise,

ėj(t) = 0 and ẇ(ej) = 0.

Hence, according to Lyapunov’s direct method [21, 39], the equilibrium ej(t) = 0 ∀ t of (24) is uniformly

stable. Moreover, it is even exponentially stable if the slab j is always inside the furnace. These results do not

hold globally, since ej > δ1− z̃j and z̃j ∈ D. However, this is just a weak restriction because temperature

ranges below δ are practically irrelevant. Consequently, it is safe to operate the system (22) with open-loop

control if c̄j and λ̄j are constant and if zj(t), z̃j(t) ∈ D.

6.2. The furnace system with immobile slabs

Assuming that the slabs do not move, sufficient conditions for exponential stability of the system (20)

will be given. Therefore, A, B, P∓
z , and P∓

s are constant, and only slabs j ∈ J inside the furnace are

considered. Introduction of the equality constraints S− = S+, P−
z = P+

z , and P−
s = P+

s requires that the

shapes of the multi-surface enclosures formed by the bottom and the top half of the furnace are symmetric.

Again, let x̃(t) be a reference trajectory which obeys (20) with the corresponding reference inputs T̃
−
z and

T̃
+

z , and consider that the initial conditions x0 and x̃0 deviate from each other.

To show that the error x− x̃ in some sense decreases with t, it is helpful to apply the transformation (23)

to each slab. Let z̃(t) be the reference solution corresponding to the transformed state vector z(t). Also,

the constraints zj(t), z̃j(t) ∈ D are used for each slab. Then, the dynamics of the error e = z− z̃ > δ1− z̃
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reads as

ė(t) = Ãe(t) +
(
B̃

−
P−

s M̃
−
+ B̃

+
P+

s M̃
+
)(

(e(t) + z̃(t))4 − (z̃(t))4
)

(25)

with the sparse matrices M̃
−
=
[
δ3i,j+1

]
i=1...Ns,j=1...3Ns

and M̃
+
=
[
δ3i,j

]
i=1...Ns,j=1...3Ns

. By analogy to

(20b), Ã and B̃
∓

are the assemblies of ãj and b̃
∓
j from (24b), respectively. Using the positive definite

Lyapunov function candidate W (e) = eTPe with symmetric positive definite matrices

P = P T =
[
Pi,jp

]
i=jstart...jend,j=jstart ...jend[

Pi,j

]
i=jstart...jend
j=jstart...jend

= − diag
{[

ρj c̄jDjS
∓
j

]
j=jstart...jend

}
(P∓

s )
−1 diag

{[
ρj c̄jDj

]
j=jstart...jend

}
,

it follows that

Ẇ (e) = eT
(
PÃ+Ã

T
P
)
e−eT60

[
δi,jρj c̄jDjS

∓
j diag {0 1 1}

]
i=jstart...jend,j=jstart ...jend

(
(e+ z̃)

4 − z̃4
)

and

Ẇ (e) ≤ W̄ (e) = eT
(
PÃ+ Ã

T
P − δ3240

[
δi,jρj c̄jDjS

∓
j diag {0 1 1}

]
i=jstart ...jend,j=jstart...jend

)
e.

Therefore, it remains to provide conditions for the symmetric matrix

PÃ+ Ã
T
P =

[
Pi,j

(
pãj + ãT

i p
)]

i=jstart...jend
j=jstart ...jend

= −60

[
Pi,j(di + dj)

[ 6 −3 −3
−3 2 1
−3 1 2

]]

i=jstart...jend
j=jstart ...jend

with

dj =
λ̄j

ρj c̄jD
2
j

to be negative semidefinite. It can be shown that it is negative semidefinite if the symmetric matrix

[
Pi,j(di + dj)

]
i=jstart...jend,j=jstart...jend

(26)

is positive definite. Pre- and postmultiplying (26) by

P∓
s
T
diag

{[
ρj c̄jDj

]
j=jstart...jend

}−1

and diag
{[

ρj c̄jDj

]
j=jstart...jend

}−1

P∓
s ,

do not change its definiteness and yield the symmetric matrix −
[
S∓
i P∓

s,i,j(di + dj)
]
i=jstart...jend,j=jstart ...jend

.

Utilizing the Gershgorin circle theorem [11], positive definiteness of the latter is ensured if

−2P∓
s,i,idi >

jend∑

j=jstart
j 6=i

P∓
s,i,j(di + dj) ∀ i ∈ J . (27a)
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For practical computations, it may be more convenient to use the condition

1 >
1

2

(
1 +

max
j∈J

{dj}

min
j∈J

{dj}

)
max
i∈J

{
−

jend∑

j=jstart
j 6=i

P∓
s,i,j

P∓
s,i,i

}
, (27b)

which is a conservative estimate of (27a). It follows from (18b) that the last factor of (27b) never exceeds

unity. Hence, if the values of dj do not vary too much, PÃ+Ã
T
P is negative semidefinite. It is emphasized

that the conditions (27) are sufficient but not necessary for negative definiteness of PÃ+ Ã
T
P .

Lyapunov’s direct method [21, 39] shows that the equilibrium e(t) = 0 ∀ t of (25) is exponentially stable.

This result does not hold globally, since e > δ1 − z̃ and z̃j ∈ D ∀ j ∈ J . Consequently, it is safe to

operate the system (20) with open-loop control if the slabs are not moved, if c̄j and λ̄j are constant, if zj(t),

z̃j(t) ∈ D ∀ j ∈ J , if S− = S+, P−
z = P+

z , and P−
s = P+

s , and if (27a) holds.

Given some initial error e(t0) at t0, exponential stability of the system (25) ensures that

‖e(t)‖22 ≤ ‖e(t0)‖22
k2
k1

e−
k3
k2

(t−t0) ∀ t ≥ t0 (28)

(cf. [21, 39]) with

k1 = µmin(P ), k2 = µmax(P ),

k3 = µmin

(
− PÃ− Ã

T
P + δ3240

[
δi,jρj c̄jDjS

∓
j diag {0 1 1}

]
i=jstart...jend,j=jstart...jend

)
,

where µmin(·) and µmax(·) are the minimum and maximum eigenvalue of the respective matrix. Hence, the

period

∆tmin =
k2
k3

ln

(
k2
k1

)
(29a)

is sufficient to ensure

‖e(t)‖22 ≤ ‖e(t0)‖22 ∀ t ≥ t0 +∆tmin. (29b)

6.3. The furnace system with moving slabs

In contrast to the assumption of the previous section, slabs recurrently change their position. Once, a slab

j has left the furnace, the proposed model defines ẋj(t) = 0. Therefore, the system cannot be asymptotically

stable, unless all considered slabs would remain in the furnace for ever—an unrealistic scenario.

If the real furnace operation is analyzed for an infinite period of time, the number of slabs grows without

bounds. However, to simplify the following analysis, only Ns (Ns ≪ Ns < ∞) slabs will be considered. The

fact that Ns is a finite number is not a restriction because the slabs may repeatedly enter the furnace or

the slab movement may be stopped sometimes in the distant future.

Like in the previous sections, let z̃j(t) ∀ j ∈ {1, 2, . . . , Ns} be the reference solution corresponding to

24

Post-print version of the article: A. Steinboeck, D. Wild, T. Kiefer, and A. Kugi, “A mathematical model of a slab reheating furnace
with radiative heat transfer and non-participating gaseous media”, International Journal of Heat and Mass Transfer, vol. 53, no. 25-26,
pp. 5933–5946, 2010. doi: 10.1016/j.ijheatmasstransfer.2010.07.029
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.07.029


T̃
−
z and T̃

+

z . Then, the convergence of the error

es(t) =
[
eT1 (t) eT2 (t) · · · eTNs(t)

]T
, ej = zj − z̃j ∀ j ∈ {1, 2, . . . , Ns}

towards the equilibrium es(t) = 0 may be analyzed by means of the positive definite Lyapunov function

candidate

W s(es) = ‖es‖22.

Recall that the slabs are moved at the pushing times tsl , which refer to the sampling points of the discrete-

time dynamical system of the error es. Furthermore, consider ∆tmin,l to be the minimum time period

according to (29a) that is valid in the interval [tsl , t
s
l+1). Therefore, if tsl+1 > tsl + ∆tmin,l ∀ l ∈ N, (29b)

ensures

W s(es(tsl+1)) ≤ W s(es(tsl )), (30)

such that according to Lyapunov’s direct method the discrete-time system with the series (es(tsl )) is uniformly

stable [39]. Note that the equality in (30) only holds if during the interval [tsl , t
s
l+1) ej(t) = 0 ∀ j ∈ J .

Finally, the trajectory es(t) remains finite within each interval [tsl , t
s
l+1) because of ‖e(tsl )‖22 ≤ W s(es(tsl ))

and (28). Consequently, it is safe to operate the system (20) with open-loop control if zj(t), z̃j(t) ∈ D ∀ j ∈
{1, 2, . . . , Ns} and if within each time interval [tsl , t

s
l+1) the parameters c̄j and λ̄j are constant, S− = S+,

P−
z = P+

z , and P−
s = P+

s , and (27a) holds.

7. Example problem

The slab temperature profile is an important output of the proposed model. Since the derived set of

equations (cf. (20), (21)) contains only physical parameters which are (at least roughly) known, there is

basically no need for parameter identification, and the model can be used as is. However, for verification

purposes only, a measurement experiment was done on a pusher-type reheating furnace (cf. [40]) withN∓
z = 5

zones and the values were compared with results from the discrete-time model (21).

Admittedly, the accuracy of the mathematical model could be improved by identification of model

parameters. In this case, sufficient measurement data would be required for both parameter estimation and

verification. Note that only an independent data set—not exploited in the identification process—is suitable

for verification. As discussed in [34], the need for multiple measurement series usually renders parameter

identification for a furnace model a laborious and costly task. However, improving the accuracy can enhance

the utility of the model and, hence, compensates for the additional effort during the implementation phase.

Nevertheless, in this study, it was refrained from engaging with identification.

For the verification experiment, a 365mm thick test slab j was equipped with a data acquisition unit

enclosed by a water-cooled and insulated housing. Several thermocouples were assembled inside the slab

at defined y-positions and connected to the data acquisition system. Hence, it was possible to record the

complete temperature trajectory of the slab. Zone temperature values T∓
z were obtained from existing
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thermocouples, which are located on the inner surface of the refractory furnace wall. The test slab entered
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Figure 7: Measured zone temperatures, a) bottom half of the furnace, b) top half of the furnace.

the furnace at the time t = 0 and was withdrawn at t = tj,exit. For this period, the measured zone

temperatures are shown in Figure 7. The values served as inputs for the proposed simulation model (21).

For clarity and comparability, all plots have been scaled such that both the period [0, tj,exit] and the range

between the initial slab temperature Tj,0 and the mean value of the measured final slab temperature profile

T̄j,exit are mapped to the interval [0, 1].

The corresponding temperature trajectory Tj(y, t) of the instrumented slab is shown in Figure 8 for the

positions y = −0.3Dj and y = 0, i. e., for a near-surface region and the core of the slab. The simulation was

executed with sampling periods ∆tk < 2min. Generally, ∆tk varies because sampling points tk must occur

at least at pushing times tsl . The results of (21) are compared to the measurement values and results of the

elaborate simulation model presented in [40].

The computation time required by the reduced model is approximately 0.7% of the time consumed by the

model described in [40]. As demonstrated in [37], the computational effort can be further reduced without

significant loss of accuracy if the sampling period ∆tk is increased. The results showed sufficient robustness

against variations of ∆tk. In view of the intended purpose of the model, e. g., control and optimization, the

achieved accuracy and the moderate computational costs are considered as an acceptable compromise.

8. Conclusion

A mathematically simple model of industrial slab reheating furnaces was developed and implemented

for a pusher-type reheating furnace. However, the proposed method can be easily transferred to other slab

reheating furnaces. The model allows the computation of a 1-dimensional approximation of the transient

temperature field Tj(y, t) of each slab, even if material parameters are significantly nonlinear. The dynamic

subsystems of the slabs are coupled by radiation boundary conditions. Here, the zone temperatures T∓
z (t)

serve as model inputs and play an important role for the radiative heat transfer in the slab reheating furnace.
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Figure 8: Trajectories of the slab temperature, a) for a near-surface region, b) for the core of the slab.

For a single slab with Neumann boundary conditions, the heat conduction problem (1) was solved by

means of the Galerkin method with H = 3 trial functions (6). Based on the assumption of piecewise

linear heat flux inputs (9) into the slab surfaces, the obtained ODE (7) and (8) was integrated yielding a

discrete-time system (10). Here, the temperature dependence of the material parameters was approximately

accounted for.

Next, the net radiation method was utilized for determining the heat flux densities (17) into the slabs as a

function of the surface temperatures in the furnace. A number of assumptions concerning the geometry and

the radiative behavior of the surfaces and the atmosphere in the furnace helped to keep the mathematical

model as simple as possible. It was shown that the obtained results are in line with the second law of

thermodynamics.

Some conditions were discussed which justify open-loop control of the system. Moreover, measurement

results from an instrumented slab demonstrated the acceptable accuracy of the proposed method. Since all

parameters of the model reflect physical quantities of the real system, laborious identification processes are

effectively avoided.

The main advantages of the proposed mathematical model are acceptable accuracy combined with mod-

erate computational costs, good convergence behavior, even for large sampling periods, sufficient consid-

eration of temperature-dependent material parameters, and adequate incorporation of radiation boundary

conditions. The benefit of the small model dimensions should become particularly apparent in real-time

applications. Hence, the mathematical model may be adequate for implementation in supervisory process

control, trajectory planning, optimization, or controller design for reheating furnaces.
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