
OP
TI

M
IZ

AT
IO

N-
BA

SE
D

CO
NT

RO
L

M
ET

HO
DS

Exercise
Summer semester 2025

Optimization-Based Control Methods

Exercise
Summer semester 2025

TU Wien
Automation and Control Institute
Complex Dynamical Systems Group

Gußhausstraße 27–29
1040 Wien
Phone: +43 1 58801 – 37615
Internet: https://www.acin.tuwien.ac.at

© Automation and Control Institute, TU Wien

Contents

1 Linear model predictive control and trajectory planning and 1
1.1 The three-tank system . 1

1.1.1 Mathematical model . 2
1.1.2 Steady state, linearization, and time discretization 3

1.2 Linear MPC based on subordinate time integration 5
1.3 Trajectory planning with CasADi . 9

2 Nonlinear model predictive control and receding horizon estimation 14
2.1 Nonlinear MPC based on CasADi . 14
2.2 MHE with a quadratic cost function . 17
2.3 Maximum-a-posteriori MHE . 23

3 Optimization-based estimation 25
3.1 Robot self localization in a convex enclosure 25
3.2 Robot self localization in a non-convex enclosure 28

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

1 Linear model predictive control and
trajectory planning and

The aim of this exercise is to get acquainted with optimization-based trajectory planning
and the implementation of model predictive control (MPC). To this end, a model predictive
control scheme, which incorporates linearized system dynamics, is designed for controlling
a three-tank laboratory model. Additionally, the open-source toolbox for nonlinear
optimization and algorithmic differentiation CasADi [Andersson2019] will be used for
a optimization-based trajectory planning for a mobile robot. Note that the exercises in
Section 1.2 and Section 1.3 are independent. In particular, the use of CasADi is not
required in Section 1.2.

This script is not intended to be self-contained. It is recommended to study at least
chapter 1 of the corresponding lecture notes for the VU Optimization-Based Control
Methods [OptiControlVO].

The zip-archive watertank_UE1.zip on the course homepage contains
Matlab/Simulink files for the mathematical description and simulation
of the water tank model considered in Section 1.1.

If you have any questions or suggestions regarding the exercise, please contact

• Kaspar Schmerling <schmerling@acin.tuwien.ac.at> or

1.1 The three-tank system
Figure 1.1 shows a schematic diagram of a three-tank laboratory system. Each of the
three tanks has the same base area Atank and an individual discharge valve. Additionally,
the tanks are coupled by two coupling valves. The water heights in the tanks are denoted
as h1, h2, and h3, and are physically restricted to

0 ≤ h1, h2, h3 ≤ 0.55m. (1.1)

The water heights can be influenced by the volumetric flows qi1 and qi3 of pump 1 and 2,
respectively. The respective volumetric flows are constrained by

0 ≤ qi1, qi3 ≤ qmax = 4.5 L/min = 75 · 10−6 m3/s. (1.2)

For the subsequent control design, the relative pump flows u1 and u3 are considered as
control inputs, i. e.,

qi1 = qmaxu1 (1.3a)
qi3 = qmaxu3 (1.3b)

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://web.casadi.org/
https://web.casadi.org/
https://www.acin.tuwien.ac.at/file/teaching/master/Optimierungsbasierte_Regelungsmethoden/SS2023/watertank_UE1.zip
mailto:schmerling@acin.tuwien.ac.at

1.1 The three-tank system Page 2

Pu
m

p
1

Pu
m

p
2

Tank 1
Tank 2

Tank 3

Outlet
valve 1

Outlet
valve 2

Outlet
valve 3

Coupling valve 12 Coupling valve 23
qi1 qi3

q12 q23
qo1 qo2 qo3

h1
h2

h3

Figure 1.1: Schematic diagram of the three-tank system.

1.1.1 Mathematical model
Based on the conservation of mass, the change of the water heights can be described as

d
dth1 = 1

Atank
(qi1 − q12 − qo1) (1.4a)

d
dth2 = 1

Atank
(q12 − q23 − qo2) (1.4b)

d
dth3 = 1

Atank
(qi3 + q23 − qo3). (1.4c)

Here, qo1, qo2, and qo3 describe the flows through the outlet valves and q12 and q23 denote
the volumetric flows through the respective coupling valves.

Assuming turbulent flow conditions, the volumetric flows through the three outlet valves
can be modeled as

qo1(h1) = αo1Ao1
√

2gh1 (1.5a)
qo2(h2) = αo2Ao2

√
2gh2 (1.5b)

qo3(h3) = αo3Ao3
√

2gh3, (1.5c)

with g as gravitational acceleration, the contraction coefficients αo1, αo2, and αo3, and
the effective cross sectional areas Ao1, Ao2, and Ao3. For the outlet valves 1 and 3, the
effective cross sectional area can be calculated from the effective diameters Do1 and Do3,
i. e.,

Ao1 = D2
o1π

4 Ao3 = D2
o3π

4 . (1.6)

Outlet valve 2 has an adjustable cross sectional area. However, for all subsequent exercises
and experiments Ao2 is assumed to have a constant value.

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

1.1 The three-tank system Page 3

Because the pressure drop over the outlet valves depends only on the water height in
the respective tank, the assumption of turbulent flow is valid as long as the water height
is sufficiently large, i. e., hi ⪆ 0.1m, i = 1, 2, 3. In contrast, the pressure drop over the
coupling valves scales with the differences h1 − h2 and h2 − h3. Thus, for small height
differences, the flow in the coupling valves becomes laminar, which necessitates the use of
a more involved volumetric flow model. To this end, the flow numbers

λ12(h1, h2) = D12
ρ

η

√
2g|h1 − h2| (1.7a)

λ23(h2, h3) = D23
ρ

η

√
2g|h2 − h3| (1.7b)

are defined, where D12 and D23 denote the equivalent hydraulic diameters of the valves,
and ρ and η are the density and dynamic viscosity of water, respectively. These flow
numbers characterize the flow regime within the coupling valves. The transition between
laminar and turbulent flow is characterized by the critical flow numbers λc12 and λc23.
For λi > λci, i ∈ {12, 23}, the flow is considered turbulent. The actual transition between
laminar and turbulent flow is modeled via the respective contraction coefficients as

α12(h1, h2) = α120 tanh
(2λ12(h1, h2)

λc12

)
(1.8a)

α23(h2, h3) = α230 tanh
(2λ23(h2, h3)

λc23

)
, (1.8b)

with the turbulent contraction coefficients α120 and α230. The volumetric flows through
the coupling valves are subsequently modeled as

q12(h1, h2) = α12(h1, h2)A12
√

2g|h1 − h2| sgn (h1 − h2) (1.9a)

q23(h2, h3) = α23(h2, h3)A23
√

2g|h2 − h3| sgn (h2 − h3), (1.9b)

with the effective cross sectional areas A12 and A23. All parameter values involved in the
models (1.5) and (1.9) are summarized in Table 1.1.

1.1.2 Steady state, linearization, and time discretization
In the considered experiments, the main control objective will be to establish, maintain a
desired steady state water height

h2,S = href
2 , (1.10)

with href
2 as desired value, in the second water tank. For the subsequent experiments we

consider u1 as primary control input. The second independent control input u3 should
mainly be used to improve transient control performance and to realize different set-points.
Thus, the additional assumption

u3,S = 0 (1.11)

is used for the initial steady state input u3,S. Based on this specifications, the steady
state heights in the first and third tank h1,S and h3,S, together with the necessary steady

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

1.1 The three-tank system Page 4

Variable Value Unit

Ts 200 ms
Atank 153.9 cm2

ρ 997 kg/m3

η 8.9 · 10−4 N s/m2

g 9.81 m/s2

αo1 0.0583 -
Do1 15 mm
αo2 0.1039 -
Ao2 1.0429 cm2

αo3 0.06 -
Do3 15 mm
α120 0.3038 -
D12 7.7 mm
A12 0.555 31 cm2

λc12 24 000 -
α230 0.1344 -
D23 15 mm
A23 1.767 15 cm2

λc23 29 600 -

Table 1.1: Parameter values of the three-tank model.

state input u1,S, can be calculated from (1.4). Together with the steady-state condition
ḣ1,S = ḣ2,S = ḣ3,S = 0 and (1.11), (1.4) with (1.3) reduces to

0 = qmaxu1,S − q12(h1,S, h2,S) − qo1(h1,S) (1.12a)
0 = q12(h1,S, h2,S) − q23(h2,S, h3,S) − qo2(h2,S) (1.12b)
0 = q23(h2,S, h3,S) − qo3(h3,S). (1.12c)

For a desired h2,S, (1.12) constitutes a system of three nonlinear equations in three
unknowns h1,S, h3,S, u1,S. Together with the initial specifications (1.10) and (1.11) the
solution to (1.12) fully specifies the desires steady state.

Remark: The solution to (1.12) is obtained by using the fsolve command in the
init_sim.m-file in the zip-archive watertank_UE1.zip, which is provided on the
course homepage.

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

1.2 Linear MPC based on subordinate time integration Page 5

Introducing the deviations from the respective steady-state quantities as

∆x =

h1

h2

h3

− xS, ∆u =
[
u1

u2

]
− uS, ∆y = h2 − h2,S (1.13)

with xS = [h1,S h2,S h3,S]T and uS = [u1,S u3,S]T yields the continuous-time linearized
dynamic model of the nonlinear system (1.4) in the form

∆ẋ = A∆x + B∆u (1.14a)
∆y = cT∆x, (1.14b)

see, e. g., [AutVO] for further details regarding the process of linearization. Note that
(1.14) constitutes a multiple input single output (MISO) system.

Remark: The matrices in the linearized model (1.14) can be calculated by the func-
tion calcLinearization in the zip-archive watertank_UE1.zip, which is provided
on the course homepage.

To facilitate a discrete-time controller implementation with sampling points tk = kTs,
k = 0, 1, . . . , and the sampling time Ts, a zero-order-hold discrete-time equivalent of (1.14)
is computed in the form

∆xk+1 = Φ∆xk + Γ∆uk (1.15a)
∆yk = cT∆xk (1.15b)

can be computed using the c2d routine in Matlab. Here, ∆xk, ∆uk and ∆yk denote the
steady-state deviations according to (1.13) at time step k, Φ is the discrete-time state
transition matrix and Γ is the discrete-time input matrix, see, e. g., [AutVO] for further
details.

1.2 Linear MPC based on subordinate time integration
Given that the state deviations ∆xk remain sufficiently small, (1.15) is a reasonable
approximation for the nonlinear system dynamics (1.4), evaluated on the discrete-time
grid tk = kTs, k = 0, 1, As with other control design strategies, the formulation and
implementation of an MPC becomes significantly easier if only linear system dynamics
are considered. Thus, to obtain a basic understanding for the implementational aspects
of MPC, it is meaningful to first study the necessary steps in the MPC design for the
linearized discrete-time system dynamics (1.15).

Subsequently, consider a linear MPC for the linear discrete-time dynamics (1.15) with
a prediction horizon of N equidistant samples and a control horizon of one sample. This
means that the MPC should calculate a new control input deviation ∆uk at every time

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://de.mathworks.com/help/ident/ref/dynamicsystem.c2d.html;jsessionid=660aa7a2ee03f1d7b9579fe1019d

1.2 Linear MPC based on subordinate time integration Page 6

step tk = kTs, k = 0, 1, . . . , by solving the optimal control problem

(∆ũ∗
n) = arg min

(∆ũn)
JN (k, (∆ỹn), (∆ũn)) (1.16a)

s.t. ∆x̃n+1 = Φ∆x̃n + Γ∆ũn , ∆x̃0 = ∆xk (1.16b)
∆ỹn = cT∆x̃n (1.16c)
xmin ≤ ∆x̃n + xS ≤ xmax , ∀n = 1, . . . , N (1.16d)
umin ≤ ∆ũn + uS ≤ umax , ∀n = 0, 1, . . . , N − 1 (1.16e)

with the state bounds xmin, xmax, the input bounds umin, umax, and the quadratic cost
function

JN (k, (∆ỹn), (∆ũn)) =
N∑

n=1
∥∆ỹn − ∆yref

k+n∥2
q +

N−1∑
n=0

(
∥∆ũn∥2

R1
+ ∥∆ũn − ∆ũn−1∥2

R2

)
.

(1.17)
Here, ∆yref = href

2 − h2,S is the desired deviation from the initial steady state h2,S, see
also (1.13), and ∆ũ−1 = ∆uk−1. This means that ∆ũ−1 equals the last realization of the
control input and is thus not a free variable in respect to the optimization problem (1.16).
The tuning parameters q, R1, and R2 define the weighting in the individual norms and
thus the contribution of the different terms in the cost function (1.17).

As will be shown in the remainder of this section, the restriction to linear system
dynamics allows to easily convert the state constraints in (1.16d) into linear inequality
constraints for the free control inputs ∆ũn. In this case, the application of the method
of subordinate time integration, see [OptiControlVO], is recommendable because it
facilitates a small number of free optimization variables and retains flexibility with respect
to state constraints. Following the method of subordinate time integration, only the
control inputs ∆ũn, n = 0, . . . , N − 1, are considered as free optimization variables in
(1.16) and are assembled in the vector

z =
[
∆uT

0 ∆uT
1 . . . ∆uT

N−1

]T
. (1.18)

Similarly, the reference output ∆yref
k+n over the prediction horizon n = 1, . . . , N is also

collected in a vector
rk =

[
∆yref

k+1 ∆yref
k+2 . . . ∆yref

k+N

]T
. (1.19)

Remark: If the reference trajectory ∆yref
k is not known in advance, and if no other

information is available, a constant reference is typically assumed over the prediction
horizon. In this case, (1.19) is replaced by

rk = ∆yref
k

[
1 1 . . . 1

]T
. (1.20)

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

1.2 Linear MPC based on subordinate time integration Page 7

The subordinate time integration of (1.16b) can be written in matrix form as
∆x̃1

∆x̃2
...

∆x̃N

 =

Φ
Φ2

...
ΦN

︸ ︷︷ ︸

Ψ

∆x̃0︸︷︷︸
∆xk

+

Γ 0 . . . 0

ΦΓ Γ . . . 0
...

...
...

ΦN−1Γ ΦN−2Γ . . . Γ

︸ ︷︷ ︸

Θ

∆ũ0

∆ũ1
...

∆ũN−1

︸ ︷︷ ︸

z

. (1.21)

Using (1.16c), this yields the predicted outputs
∆ỹ1

∆ỹ2
...

∆ỹN

 =

cTΦ
cTΦ2

...
cTΦN

︸ ︷︷ ︸

O

∆x̃0︸︷︷︸
∆xk

+

cTΓ 0 . . . 0

cTΦΓ cTΓ . . . 0
...

...
cTΦN−1Γ cTΦN−2Γ . . . cTΓ

︸ ︷︷ ︸

G

∆ũ0

∆ũ1
...

∆ũN−1

︸ ︷︷ ︸

z

. (1.22)

Together with the abbreviations

Q =

q 0 . . . 0
0 q . . . 0
...

...
0 0 . . . q

 (1.23)

R =

R1 + 2R2 −R2 0 0 . . . 0 0
−R2 R1 + 2R2 −R2 0 . . . 0 0

0 −R2 R1 + 2R2 −R2 . . . 0 0
...

...
...

...
...

0 0 0 0 . . . R1 + 2R2 −R2

0 0 0 0 . . . −R2 R1 + R2

(1.24)

sT =
[
−∆uT

k−1R2 . . . 0 0
]
, (1.25)

the cost function (1.17) can be rewritten as

JN (k, (∆ỹn), (∆ũn)) = (O∆xk + Gz − rk)TQ(O∆xk + Gz − rk)
+ zTRz + 2sTz + ∆uT

k−1R2∆uk−1, (1.26)

which can be rewritten as

JN (k, (∆ỹn), (∆ũn)) = zT
(
GTQG + R

)
︸ ︷︷ ︸

H

z +
(
2(O∆xk − rk)TQG + 2sT

)
︸ ︷︷ ︸

mT
k

z

+ (O∆xk − rk)TQ(O∆xk − rk) + ∆uT
k−1R2∆uk−1. (1.27)

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

1.2 Linear MPC based on subordinate time integration Page 8

The last two terms in (1.27) do not influence the optimal solution z∗, and can thus be
neglected in the subsequent optimization procedure.

In summary, the linear MPC has to solve the constrained quadratic program

z∗ = arg min
z

zTHz + mT
k z (1.28a)

s.t. ∆xmin,k ≤ Θz ≤ ∆xmax,k (1.28b)
∆umin,k ≤ z ≤ ∆umin,k (1.28c)

with the bounds

∆xmin,k =

xmin − xS

xmin − xS
...

xmin − xS

− Ψ∆xk, ∆xmax,k =

xmax − xS

xmax − xS
...

xmax − xS

− Ψ∆xk (1.29a)

∆umin,k =

umin − uS

umin − uS
...

umin − uS

, ∆umax,k =

umax − uS

umax − uS
...

umax − uS

 (1.29b)

during online operation at every discrete time step k. The actual control input ∆uk is
then taken equal to the first (vector-valued) entry ∆ũ∗

0 of the optimal solution z∗, see
also (1.18). Carry out the following exercise at home to implement a linear MPC as
preparation for the lab course.

Remark: An efficient and numerically stable way to solve (1.28) is the quadprog
routine from the Matlab Optimization Toolbox. This solver provides different
optimization algorithms. However, to facilitate an easy code generation for use in
Simulink, it is necessary to select the ’active-set’ method.

Exercise 1.1 (Prepare at home). Get acquainted with the Matlab/Simulink model
of the three-tank system provided on the course homepage. Subsequently, implement
a linear MPC as Matlab function based on the linearized discrete-time dynamics
(1.15), a control horizon of one sample and a freely tunable prediction horizon of N
samples. To this end, proceed as follows:

1. The files available on the course homepage already include a function
[AA, BB] = calcLinearization(xR, parSys)

which calculates the matrices to parametrize the continuous-time linearized
dynamics (1.14). Use the Matlab routine c2d to calculate the discrete-time
representation (1.15) for the intended sampling time of Ts = 2s. Use the step
command in Matlab to validate the discretization.

2. Create a function

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://de.mathworks.com/help/optim/ug/quadprog.html
https://de.mathworks.com/help/ident/ref/dynamicsystem.c2d.html
https://de.mathworks.com/help/control/ref/dynamicsystem.step.html

1.3 Trajectory planning with CasADi Page 9

[Psi, Theta, OO, GG] = setupPredictionMatrices(sysD, N)

which assembles the constant matrices Ψ, Θ and O, G according to (1.21)
and (1.22), respectively. Use this function to assemble the respective matrices
during the initialization stage of the MPC. Save all relevant quantities in a
Matlab struct parMPC for further use.

3. Create a function
[HH, mm, dxmin, dxmax, dumin, dumax] =

setupOptimization(dx, dyref, duMinus1, parMPC)

which assembles H and mk from (1.27) and ∆xmin,k, ∆xmax,k and ∆umin,k,
∆umax,k according to (1.29).

4. Implement the linear MPC in a Matlab function in the three-tank simula-
tion model in Simulink with a sampling time of Ts = 2s. Use the function
setupOptimization to obtain the expressions required in (1.28) at every sam-
pling point followed by the quadprog routine from the Matlab Optimization
Toolbox to solve (1.28).

5. Test the MPC in Simulation for

N = 30
q = 1/m2

R1 =
[
1 0
0 10

]
, R2 =

[
1 0
0 1

]

xmin = 0, xmax =
[
0.4m 0.4m 0.4m

]T
umin = 0, umax =

[
1 1

]T
.

How do the different tuning parameters influence the control performance?
Does the MPC achieve zero steady-state error?

1.3 Trajectory planning with CasADi
Consider a mobile robot in a non-convex enclosure P as shown in Figure 1.2. The position
of the robot in the global coordinate frame is described by p =

[
xR yR

]T
. The movement

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://de.mathworks.com/help/optim/ug/quadprog.html

1.3 Trajectory planning with CasADi Page 10

Start

Stop

Robot

xR

yR

ψ
v

2 m

2m

1.2 m 0.
8m

x

y

Figure 1.2: A mobile robot in a non-convex enclosure P.

of the robot can be described by the dynamic model

d
dtx =

ẋR

ẏR

ψ̇

v̇

 = f(x,u) =

v cos(ψ)
v sin(φ)

0
0

+

0 0
0 0
v 0
0 1

u, (1.30)

with the control input vector

u =
[
u1

u2

]
. (1.31)

Here, ψ describes the orientation of the robot with respect to the x-axis and v is the
velocity of the robot in driving direction. The input u1 controls the acceleration of the
robot in driving direction while the input u2 can be associated with the steering angle of
the front wheel. Both control inputs are subjected to box constraints of the form

umin ≤ u ≤ umax, (1.32)

with

umin =
[
−5
−3

]
, umax =

[
5
3

]
. (1.33)

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

1.3 Trajectory planning with CasADi Page 11

The goal of the subsequent exercise is to plan an appropriate trajectory between the
starting configuration

xstart =
[
xstart

R ystart
R ψstart 0

]T
(1.34)

and the desired final configuration

xstop =
[
xstop

R ystop
R ψstop 0

]T
(1.35)

of the robot. Here, the planing of the trajectory has to incorporate the input constraints
(1.32) and the fact that the robot must stay within the boundaries of the enclosure, i. e.,
p(t) ∈ P, ∀t. These requirements can be encapsulated in a constrained optimal control
problem (OCP) of the form

min
T,u(·)

JT (u(τ)) (1.36a)

s.t ẋ(τ) = f(x(τ),u(τ)) , x(0) = xstart (1.36b)
x(T) = xend (1.36c)
g(x(τ)) ≤ 0 , ∀τ ∈ [0, T] (1.36d)
umin ≤ u(τ) ≤ umax , ∀τ ∈ [0, T], (1.36e)

where T denotes the initially unknown end time of the trajectory, which also constitutes a
optimization variable. The robot should travel from its initial starting configuration xstart

to its intended final configuration xend in an minimal amount of time. To this end,

JT (u) = T +
∫ T

0
∥u(τ)∥2

R dτ (1.37)

is considered as cost function in (1.36). The second term in (1.37) acts as an regularization
term which is tuned by an appropriate choice of the weighting matrix R. To simplify
the subsequent numerical solution procedure, the constraint p(t) ∈ P, ∀t, is relaxed to
(1.36d), where g is chosen as

g(x) =
(
xR − 2m

1.2m

)20
+
(
yR − 1m

0.8m

)20
− 2. (1.38)

In the subsequent exercises, the open source toolbox CasADi for nonlinear optimiza-
tion, algorithmic differentiation, and optimal control [Andersson2019] will be used to
numerically solve the OCP (1.36).

Exercise 1.2 (Prepare at home). Download the CasADi software package from
https://web.casadi.org/ and get acquainted with the basic functionalities. In
particular, perform the following task:

• Watch the intro video on the CasADi homepage.

• Study the exemplary instructions for solving the continuous-time optimal control
problem at https://web.casadi.org/blog/ocp/.

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://web.casadi.org/
https://web.casadi.org/
https://web.casadi.org/
https://web.casadi.org/
https://web.casadi.org/blog/ocp/

1.3 Trajectory planning with CasADi Page 12

CasADi provides the essential building-blocks for the construction of general-purpose or
specific-purpose solvers for continuous-time optimal control problems (OCPs). Based on
the assumption that the control input u is kept constant between individual discretization
points, the built-in features of CasADi can be used to cast (1.36) into a discrete-time
OCP on the time grid tk, k = 0, 1, . . . , in the form of

min
T,(uk)

JN ((uk)) (1.39a)

s.t xk+1 = FT (xk,uk) , x0 = xstart (1.39b)
xN = xend (1.39c)
g(xk(τ)) ≤ 0 , ∀k = 0, . . . , N − 1 (1.39d)
umin ≤ uk ≤ umax , ∀k = 0, . . . , N − 1 (1.39e)

with the cost function

JN ((ũn)) = T + T

N

N−1∑
n=0

∥ũn∥2
R. (1.40)

Here, N is the number of time steps that is used in the discretization of (1.36). The
formulation of the concrete optimization problem to solve numerically, can be realized
using direct discretization methods like subordinate time ingratiation, multiple shooting,
or full discretization, see [OptiControlVO]. For the implementation of state constraints
like those defined in (1.39d), full discretization is typically preferred due to its ease of
implementation and better convergence properties. Note that in CasADi the method of
full discretization is not explicitly stated instead, it is just understood as a special case of
the multiple shooting discretization.

Exercise 1.3 (Exercise during the lab). Use CasADi to solve the discrete-time OPC
(1.39) to find a suitable robot trajectory. To this end, proceed as follows:

1. Model the nonlinear system dynamics (1.30) as CasADi function. Use the
built-in integrator functionality with a Runge-Kutta integration scheme.

2. Set up the discrete-time OCP (1.39) with the corresponding cost function (1.40)
based on the method of full discretization. Add the additional constraint T ≥ 0.

3. Use the IPOPT routine to solve the resulting nonlinear program with

N = 100

R =
[
0.15 0

0 0.15

]

to calculate an appropriate trajectory for

xstart =
[
1.7m 0.3m 180◦ 0

]T
xend =

[
1.3m 1.7m 0◦ 0

]T
.

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://web.casadi.org/
https://web.casadi.org/
https://web.casadi.org/
https://web.casadi.org/
https://web.casadi.org/

1.3 Trajectory planning with CasADi Page 13

Provide the solver with a meaningful initial guess to speed up convergence.

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

2 Nonlinear model predictive control and
receding horizon estimation

The aim of this exercise is to study the implementation aspects of nonlinear model
predictive control (MPC) and nonlinear moving horizon estimators (MHE). The exercise
covers state estimation as well as joint state and parameter estimation. Continuing from
the previous exercise, the MPC and MHE designs in this exercise are formulated for the
nonlinear three-tank laboratory model presented in Section 1.1. The implementation of
the nonlinear estimation strategies makes use of the open-source toolbox for nonlinear
optimization and algorithmic differentiation CasADi [Andersson2019].

This script is not intended to be self-contained. It is recommended to study at least
chapter 2 of the corresponding lecture notes for the VU Optimization-Based Control
Methods [OptiControlVO]. Additionally, if you have not already done so for the first
exercise, download the CasADi software package from https://web.casadi.org/ and
get acquainted with the basic functionalities.

The zip-archive watertank_UE2.zip on the course homepage contains
Matlab/Simulink files for the mathematical description and simulation
of the water tank model considered in Section 1.1.

If you have any questions or suggestions regarding the exercise, please contact

• Nikolaus WÃ¼rkner <wuerkner@acin.tuwien.ac.at>

2.1 Nonlinear MPC based on CasADi
While the formulation and implementation of an MPC for a linear system model is rather
straightforward, the implementation of a nonlinear MPC formulation based on a nonlinear
system model can require considerable more work. To this end, it is meaningful to take
advantage of existing software tools during control design. If the intended hardware has
only limited computational resources, a more custom MPC implementation can be pursued
once the right problem formulation, optimization algorithm, and controller parameters
are determined.

Building on the knowledge from the first exercise, CasADi will be used to implement
an MPC for the nonlinear three-tank system from Section 1.1.

Exercise 2.1. Get acquainted with the basic steps for an MPC implementation
based on the CasADi software package. To this end, perform the following tasks:

• Study the exemplary instructions for implementing an interpreter-based MPC
in Matlab/Simulink at https://web.casadi.org/blog/mpc-simulink/.

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://web.casadi.org/
https://web.casadi.org/
https://web.casadi.org/
https://www.acin.tuwien.ac.at/file/teaching/master/Optimierungsbasierte_Regelungsmethoden/SS2024/watertank_UE2.zip
mailto:wuerkner@acin.tuwien.ac.at
https://web.casadi.org/
https://web.casadi.org/
https://web.casadi.org/blog/mpc-simulink/

2.1 Nonlinear MPC based on CasADi Page 15

• Study the exemplary instructions for implementing a C-code-based MPC in
Matlab/Simulink at https://web.casadi.org/blog/mpc-simulink2/ and
https://web.casadi.org/blog/s-function/.

The optimal control problems (OCP) relevant for MPC implementation is of the general
form

ũ∗(·) = arg min
ũ(·)

JT (t, ỹ(t), ũ(t)) (2.1a)

s.t ˙̃x(τ) = f(x̃(τ), ũ(τ)) , x̃(0) = x(t) (2.1b)
ỹ(τ) = cTx̃(τ) (2.1c)
xmin ≤ x̃(τ) ≤ xmax , ∀τ ∈ [0, T] (2.1d)
umin ≤ ũ(τ) ≤ umax , ∀τ ∈ [0, T], (2.1e)

with a cost function according to

JT (t, ỹ(t), ũ(t)) =
∫ T

0

(
∥ỹ(τ) − yref(t+ τ)∥2

q + ∥ũ(τ)∥2
R1

+ ∥ ˙̃u(τ)∥2
R2

)
dτ. (2.2)

Here, q, R1, and R2 define the weighting of the individual terms in (2.2) and xmin, xmax
and umin, umax constitute the state and input bounds, respectively. CasADi can be used
to cast (2.1) into a discrete-time OCP on the time grid tk = kTs, k = 0, 1, ..., in the form
of

(ũ∗
n) = arg min

(ũn)
JN (k, (ỹn), (ũn)) (2.3a)

s.t x̃n+1 = F(x̃n, ũn) , x̃0 = xk (2.3b)
ỹn = cTx̃n (2.3c)
xmin ≤ x̃n ≤ xmax , ∀n = 1, . . . , N (2.3d)
umin ≤ ũn ≤ umax , ∀n = 0, 1, . . . , N − 1 (2.3e)

with the cost function

JN (k, (ỹn), (ũn)) =
N∑

n=1
∥ỹn − yref

k+n∥2
q +

N−1∑
n=0

(
∥ũn∥2

R1
+ ∥ũn − ũn−1∥2

R2

)
. (2.4)

The number of time steps N is typically calculated from the continuous-time prediction
horizon T according to N = T/Ts. Based on (2.3), the MPC is realized as the evaluation
of a formal mapping

(xk, (yref
k+n),uk−1) → uk (2.5)

at every time step tk. The formulation of the concrete optimization problem can be realized
using direct discretization methods like subordinate time ingratiation, multiple shooting,
or full discretization, see [OptiControlVO]. As in the first exercise, full discretization is
preferred here due to its ease of implementation and better convergence properties.

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://web.casadi.org/blog/mpc-simulink2/
https://web.casadi.org/blog/s-function/
https://web.casadi.org/

2.1 Nonlinear MPC based on CasADi Page 16

Exercise 2.2 (Exercise during the lab). Use CasADi to implement a discrete-time
MPC for the three-tank system from Section 1.1 based on the nonlinear dynamics
(1.4) in Matlab/Simulink. To this end, proceed as follows:

1. Model the nonlinear system dynamics (1.1) with the parameters given in Table
1.1 as CasADi function. Use the built-in integrator functionality with a Runge-
Kutta integration scheme or directly implement the explicit Euler integration
scheme.

2. Set up the discrete-time OCP (2.3) with the corresponding cost function (2.4)
based on the method of full discretization. Formalize the solution of the OCP
as CasADi function, which receives the current state xk, the current output
reference yref

k and the previous control input uk−1, by using the SQP solver and
the qrqp method. For the implementation, assume that yref

k remains constant
over the prediction horizon.

3. Test the convergence of the subordinate OCP during initialization in Matlab.
Use a sampling time of Ts = 2s and

N = 30
q = 1/m2

R1 =
[
1 0
0 10

]
, R2 =

[
1 0
0 1

]

xmin = 0, xmax =
[
0.4m 0.4m 0.4m

]T
umin = 0, umax =

[
1 1

]T
.

as a starting point for tuning the controller. Calculate the optimal state estimate
for the input

xk =
[
0.31m 0.15m 0.14m

]T
(2.6a)

(yref
k+n) = (0.1 m)(1k+n) (2.6b)

uk−1 =
[
0.6 0.6

]T
(2.6c)

Remark: Numerical solvers are typically sensitive to badly scaled cost
functions. Ensure that every term in the cost function has roughly the
same oder of magnitude. Additionally, the solver should be provided with
a good initial condition for the iteration. For the first optimization step,
such an initial solution could be generated from an artificial test trajectory.

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://web.casadi.org/
https://web.casadi.org/
https://web.casadi.org/

2.2 MHE with a quadratic cost function Page 17

4. Generate C-code for the previously defined function to set up a Simulink
s-function which can be used to simulate the MPC in conjunction with the
three-tank model.

5. Implement and test the developed MPC in Simulink. How do the different
tuning parameters influence the control performance? Does the MPC achieve
zero steady-state error?

2.2 MHE with a quadratic cost function
Moving horizon estimation (MHE) provides a fairly general and flexible framework for
real-time state and parameter estimation. This estimation is performed by solving the
optimization problem

(x̂k−N , (ŵn)) =
arg min
(x̃k−N ,(w̃n))

JN (k, x̃K−N , (w̃n)) (2.7a)

s.t. x̃n+1 = Fn(x̃n, w̃n) ∀n = k −N, . . . , k − 1 (2.7b)
ṽn = yn − hn(x̃n) ∀n = k −N, . . . , k − 1 (2.7c)
x̃n ∈ Xn ∀n = k −N, . . . , k (2.7d)
w̃n ∈ Wn , ṽn ∈ Vn , ∀n = k −N, . . . , k − 1. (2.7e)

Here, k indicates the current time step tk = kTs with the sampling period Ts. N is the
length of the estimator horizon, x̂k−N is the current estimate of the state N time steps
prior to the current time index k, and (w̃n), n = k −N, . . . , k − 1, is the current estimate
of the sequence of process disturbances during the estimation horizon. In general, the
cost function in (2.7a) has the form

JN (k, x̃k−N , (w̃n)) = Bk−N (x̃k−N) +
k−1∑

n=k−N

bn(w̃n, ṽn), (2.8)

where Bk−N describes the initial costs and bn penalizes the estimated process disturbances
w̃n and estimated measurement noise ṽn over the estimator horizon. Equation (2.7b)
describes the discrete-time model of the system used by the estimator, (2.7c) models the
available measurements, and (2.7d) incorporates state constraints into the optimization
problem. Uncertainties due to model errors and measurement noise are considered by the
process disturbance wk and the measurement noise vk in (2.7b) and (2.7c), respectively.
Prior knowledge about these uncertainties can be considered via constraints in (2.7e). See
[OptiControlVO] for a more detailed description of the optimization problem (2.7).

In (2.7b), the influence of any control input uk is modeled implicitly by the time variance
of the nonlinear mapping Fk. To implement an MHE for the three-tank system, it is
more convenient to explicitly state the influence of the control input uk. Additionally,
since no other information is available, a additive process disturbance wk in the system
dynamics is assumed and the constraints in (2.7e) are dropped. Furthermore, the height

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

2.2 MHE with a quadratic cost function Page 18

measurements of the considered three-tank system constitute a linear output equation. In
summary, (2.7b) and (2.7c) can thus be simplified to

xk+1 = F(xk,uk) + wk (2.9a)
yk = Cxk + vk. (2.9b)

Note that the nonlinear mapping F in (2.9a) is considered to be time-invariant.
As a first option, the MHE for the three-tank system should feature quadratic cost

functions Bk−N and bn, i. e.,

Bk−N (x̃k−N) = ∥x̃k−N − x̄k−1∥2
S

= (x̃k−N − x̄k−1)TS(x̃k−N − x̄k−1) (2.10a)
bn(w̃n, ṽn) = ∥w̃n∥2

Q + ∥ṽn∥2
R

= w̃T
n Qw̃n + ṽT

n Rṽn, (2.10b)

with the positive definite weighting matrices S, Q, R, and the a-priori state estimate
x̄k−1. With (2.9) in (2.10b), and by introducing the local time index j = k −N + n, the
cost function (2.8) can be simplified to

JN (k, (x̃j)) =

∥x̃0 − x̄k−1∥2
S +

N−1∑
j=0

(
∥ x̃j+1 − F(x̃j ,uk−N+j)︸ ︷︷ ︸

w̃j

∥2
Q + ∥ yk−N+j − Cx̃j︸ ︷︷ ︸

ṽj

∥2
R

)
. (2.11)

Due to the assumption of additive process disturbances and the absence of constraints like
(2.7e), the system dynamics (2.9) are directly incorporated into the cost function. This
allows to simplify the optimization problem (2.7) in the form

(x̃∗
j) = arg min

(x̂j)
JN (k, (x̃j)) (2.12a)

s.t. xmin ≤ x̃j ≤ xmax , ∀j = 0, . . . , N. (2.12b)

Note that, in contrast to (2.7), the state sequence (x̃∗
j) constitutes the only optimization

variable in (2.12). Based on (2.12), a iteration of the MHE is the evaluation of the formal
mapping

(x̄k−1, (yk−N+n), (uk−N+n)) → (x̂k, x̄k) (2.13)

at every time step tk. Here, the state estimate x̂k is the last item x̃∗
N of the optimal

sequence (x̃∗
j) and the a-priori state estimate for the next optimization problem x̄k is

taken as the second item x̃∗
1 of (x̃∗

j).
For diagonal S, Q, R to asses the influence of the individual weighting matrices. The

starting cost weight S controls how much the MHE trusts the previous estimate x̄k−1.
Smaller values of S cause faster forgetting of previous estimates. The weighting matrix Q
rates the reliability of the internal process model. Large values of Q mean that deviations
from the provided dynamic model are more heavily penalized. Finally, R weights the
measurement noise and thus, the reliability of the output model (2.9b).

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

2.2 MHE with a quadratic cost function Page 19

Remark: The interpretation of Q and R is essentially the same as in the design
of a Kalman filter, see [RegSys1VO]. However, in the presented ad-hoc choice
of quadratic costs in (2.10), Q and R have no immediate stochastic meaning. A
stochastic interpretation of the cost function (2.12) is possible based on the maximum-
a-posteriori MHE design covered in Section 2.3, see also [OptiControlVO].

Exercise 2.3 (Prepare at home). Use CasADi to implement an MHE on the discrete-
time grid tk = kTs for the three-tank system from Section 1.1. The MHE receives
the water height measurements from the first and third tank, i. e.,

yk =
[
h1,k h3,k

]T
, (2.14)

to estimate the system state

xk =
[
h1,k h2,k h3,k

]T
(2.15)

based on the nonlinear dynamics (1.4) in Matlab/Simulink. To this end, proceed
as follows:

1. Model the nonlinear system dynamics (1.1) with the parameters given in Table
1.1 as CasADi function. Use the built-in integrator functionality with a Runge-
Kutta integration scheme or directly implement the explicit Euler integration
scheme to obtain F in (2.9a).

Remark: Reuse the CasADi function from the first task in Exercise 2.2.

2. Set up the solution of the optimization problem (2.12) with the corresponding
cost function (2.11). Formalize the solution routine as a CasADi function in
the sense of (2.13). It receives the a-priori estimate x̄k−1 and the vectors

Uk =
[
uT

k−N uT
k−N+1 . . . uT

k−1

]T
∈ R2N (2.16a)

Yk =
[
yT

k−N yT
k−N+1 . . . yT

k−1

]T
∈ R2N (2.16b)

to calculate the current state estimate x̂k as well as the a-priori estimate x̄k for
the next time step. Use the CasADi SQP solver and the qrqp method.

3. Test the convergence of the solution routine during initialization in Matlab.

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://web.casadi.org/
https://web.casadi.org/
https://web.casadi.org/
https://web.casadi.org/
https://web.casadi.org/

2.2 MHE with a quadratic cost function Page 20

Use a sampling time of Ts = 2s and

N = 10

S =

1/m2 0 0

0 1/m2 0
0 0 1/m2

Q =

1/m2 0 0

0 0.1/m2 0
0 0 1/m2

 R =
[
1/m2 0

0 1/m2

]

xmin = 0,

xmax =
[
0.55m 0.55m 0.55m

]T
as a starting point for tuning the estimator. Calculate the optimal state estimate
for the function inputs

x̄k−1 =
[
0.125m 0.1m 0.125m

]T
(2.17a)

Uk =
[
1 1 . . . 1

]T
. (2.17b)

Use x̄k−1 as initial condition and the entries of Uk in the integrator function
from task 1 to calculate nominal (wk = 0, vk = 0 in (2.9)) entries for Yk.

4. Generate C-code for the solution routing function and set up a Simulink
s-function which can be used to simulate the MHE in conjunction with the
three-tank model.

5. Implement and test the developed MHE in Simulink. Implement the MHE
in the enabled subsystem in the provided Simulink file to allow for an easy
activation and deactivation of the estimator. How do the different tuning
parameters influence the control performance? Does the MHE state estimate
converge to the true state?

Remark: The Simulink file in the zip-archive watertank_UE2.zip on
the course homepage contains a Matlab function block which collects
and provides the vectors (2.16). Additionally, the function has an enable
output to indicate that N samples have been collected and Yk and Uk are
ready to be used in the MHE.

In principle, the presented MHE framework does not differentiate between system
states and unknown parameter values. Thus, additional parameter estimates can be easily
incorporated into the over-all estimation strategy. For the considered three-tank system,
this means, for instance, that the valve position of the coupling valve 23 in Figure 1.1 can
be estimated during online operation. To this end, the initial model of the volumetric flow

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://de.mathworks.com/help/simulink/slref/enabledsubsystem.html

2.2 MHE with a quadratic cost function Page 21

through the outflow valve 3 in (1.5c) is augmented by a scaling parameter cα ∈ [0,∞),
which results in

qo3(h3) = cααo3Ao3
√

2gh3. (2.18)
To allow for comparatively quick changes in the valve opening (e. g. due to a manual
change in valve position), it is assumed that the unknown parameter cα adheres to the
random-walk model

cα,k+1 = cα,k + wα,k (2.19)
on the discrete time grid tk = kTs with the process disturbance wα,k. The dynamic model
(2.19) can be combined with (2.9) to obtain the augmented system dynamics

zk+1 = Fz(zk,uk) + wz,k (2.20a)
yk = Czzk + vz,k (2.20b)

with

zk =
[

xk

cα,k

]
, Fz(zk,uk) =

[
F(xk, cα,k,uk)

cα,k

]
, Cz =

[
C 0

]
. (2.21)

By analogy to (2.11) and (2.12), the MHE is then based on the optimization problem

(z̃∗
n) = arg min

(ẑn)
JN (k, (z̃n)) (2.22a)

s.t. xmin ≤ x̃n ≤ xmax , ∀n = 0, . . . , N (2.22b)
cα,min ≤ c̃α,n , ∀n = 0, . . . , N, (2.22c)

with the cost function

JN (k, (z̃n)) =

∥z̃0 − z̄k−1∥2
Sz

+
N−1∑
n=0

(
∥ z̃n+1 − Fz(z̃n, ũk−N+n)︸ ︷︷ ︸

w̃z,k

∥2
Qz

+ ∥ yk−N+n − Czz̃n︸ ︷︷ ︸
ṽn

∥2
R

)
(2.23)

and the weighting matrices Sz, Qz, and R.

Exercise 2.4 (Prepare at home). Augment the MHE developed in Exercise 2.3 by an
estimator for the parameter cα used in (2.18). Use CasADi to implement the MHE
on the discrete-time grid tk = kTs with Ts = 2s in Matlab/Simulink. To this end,
proceed as follows:

1. Building on the result of task 1 in Exercise 2.3, model the augmented nonlinear
system dynamics (2.20) as CasADi function. Again, use the built-in integrator
functionality with a Runge-Kutta integration scheme or directly implement the
explicit Euler integration scheme.

2. Set up the solution of the optimization problem (2.22) with the corresponding
cost function (2.23). Formalize the solution routine as a CasADi function, which
receives the a-priori estimate z̄k−1 and the vectors Uk and Yk as in (2.16) to
calculate the current state estimate ẑk as well as the a-priori estimate z̄k for

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://web.casadi.org/
https://web.casadi.org/
https://web.casadi.org/

2.2 MHE with a quadratic cost function Page 22

the next time step. Use the CasADi SQP solver and the qrqp method.

3. Test the convergence of the solution routine in Matlab. Use a sampling time
of Ts = 2s and

N = 10

Sz =

1/m2 0 0 0

0 1/m2 0 0
0 0 1/m2 0
0 0 0 1

Qz =

1/m2 0 0 0

0 0.1/m2 0 0
0 0 1/m2 0
0 0 0 1e−5

, R =
[
1/m2 0

0 1/m2

]

xmin = 0,
cα,min = 0

xmax =
[
0.55m 0.55m 0.55m

]T
as a starting point for tuning the estimator. Calculate the optimal state estimate
for the function inputs

z̄k−1 =
[
0.125m 0.1m 0.125m 1

]T
(2.24a)

Uk =
[
1 1 . . . 1

]T
. (2.24b)

Use z̄k−1 as initial condition and the entries of Uk in the integrator function
from task 1 to calculate to calculate nominal (wz,k = 0, vk = 0 in (2.20))
entries for Yk.

4. Generate C-code for the solution routine and set up a Simulink s-function
which can be used to simulate the MHE in conjunction with the three-tank
model.

5. Implement and test the MHE including the parameter estimator in Simulink.
Similar to task 5 in Exercise 2.3, implement the MHE in an enabled subsystem
to allow for an easy activation and deactivation of the estimator. How do the
different tuning parameters influence the control performance? Does the MHE
state estimate converge to the true state?

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://web.casadi.org/
https://de.mathworks.com/help/simulink/slref/enabledsubsystem.html

2.3 Maximum-a-posteriori MHE Page 23

Additional exercises

2.3 Maximum-a-posteriori MHE
While the ad-hoc choice of a quadratic cost function for the MHE as in (2.11) is typically
a good starting point, it gives no clear indication how to choose the weighting matrices S,
Q, and R. To avoid this shortcoming and to facilitate for the incorporation of additional
(probabilistic) prior knowledge regarding the process disturbance wk or the measurement
noise vk, a maximum-a-posteriori MHE design can be used.

In the maximum-a-posteriori MHE design, the initial state in the estimation horizon
x0, the process disturbance wk, and the measurement noise vk are treated as random
variables. In literature, random variables are always treated as dimensionless quantities.
Thus, it is customary to formulate the maximum-a-posteriori MHE in the normalized
state ξk, normalized process disturbance ωk, and the normalized measurement noise νk.

Remark: The choice of reference values used for scaling between xk, wk, vk and ξk,
ωk, νk can have a significant influence on the convergence properties of the numerical
solvers. Ensure that ξk, ωk, and νk have roughly the same oder of magnitude.

The MHE cost function (2.8) is built from the knowledge of the respective probability
density functions Pξ0 , Pωk

, and Pνk
. If other information is not available, it is customary

to assume normal distributions. For ξ0 ∈ R3, ωk ∈ R3, and νk ∈ R2, this results in the
probability density functions

Pξ0(ξ0) = 1√
(2π)3 det(S−1)

exp
(

−1
2(ξ0 − ξ̄)TS(ξ0 − ξ̄)

)
(2.25a)

Pωk
(ωk) = 1√

(2π)3 det(Q−1)
exp

(
−1

2ωT
k Qωk

)
(2.25b)

Pνk
(νk) = 1

2π det(S−1) exp
(

−1
2νT

k Rνk

)
. (2.25c)

S−1, Q−1, and R−1 are covariance matrices and ξ̄ is both the a-priori estimate and the
expected value of the initial state ξ0.

Remark: The probability density functions in (2.25) are defined over the entire
Rm, m = 2, 3. Possible inequality constraints for ξ0, ωk, or νk my be integrated
into (2.25) by replacing the given probability density functions by their respective
truncated counterparts.

If the maximum-a-posteriori MHE should also estimate the scaling parameter cα in
(2.18), it is necessary to model the stochastic properties of cα. One possibility would be
to model a transient change of cα by the random (2.19) and to specify probability density
functions for the initial value cα,0 and the process disturbance wα,k. However, in this
section a slightly different approach is pursued. In fact, cα is assumed to be an unknown
constant random variable described by an appropriate probability density function.

Consistent with (2.25), the actual probability density function is formulated in the
normalized parameter γα, which is obtain from cα by scaling with an adequate reference

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

2.3 Maximum-a-posteriori MHE Page 24

value. Because cα, and in consequence γα, is physically restricted to the interval [0,∞],
it is meaningful to consider a one-sided probability density function Pγα to describe the
parameter uncertainty. A reasonable choice in this regard is the log-normal distribution

Pγα(γα) = 1
γασ

1√
2π

exp
(

−(ln(γα) − µ)2

2σ2

)
, γα ≥ 0 (2.26)

with the shape parameters µ and σ. For (2.26), the a-priori estimate of the modal value
γ̄α is given by

γ̄α = exp
(
µ− σ2

)
. (2.27)

Exercise 2.5 (Exercise during the lab). Design a maximum-a-posteriori MHE which
includes a parameter estimator for cα based on the probability density functions
(2.25) and (2.26). To this end, proceed as follows:

1. Use the given probability density functions to derive a cost function following
the procedure described in [OptiControlVO]. Compare the obtained cost
function with the ad-hoc choice (2.23). What are the differences? Is it possible
to interpret (2.23) in a stochastic sense? What are meaningful choices for the
a-priori estimates of the modal values ξ̄ and γ̄α in (2.25) and (2.26)? Which
parameters can be used to tune the response of the maximum-a-posteriori
MHE?

2. Incorporate the newly derived cost function into the optimization problem
(2.22). Formalize the solution routine as a CasADi function, which receives the
a-priori estimates ξ̄ and γ̄α as well as the vectors Uk and Yk as in (2.16). Use
the CasADi SQP solver and the qrqp method.

3. Test the convergence of the solution routine in Matlab. Use a sampling time
of Ts = 2s.

4. Generate C-code for the solution routine and set up a Simulink s-function
which can be used to simulate the MHE in conjunction with the three-tank
model.

5. Implement and test the developed maximum-a-posteriori MHE in Simulink.
Again, implement the MHE in an enabled subsystem to allow for an easy
activation and deactivation of the estimator.

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://web.casadi.org/
https://web.casadi.org/
https://de.mathworks.com/help/simulink/slref/enabledsubsystem.html

3 Optimization-based estimation
The aim of this exercise is to get acquainted with the procedure for optimization-based
parameter estimation and optimal sensor placement. To this end, self-localization problems
of a mobile robot in different two-dimensional enclosures will be studied.

This script is not intended to be self-contained. It is recommended to study at least
chapter 3 of the corresponding lecture notes for the VU Optimization-Based Control
Methods [OptiControlVO].

If you have any questions or suggestions regarding the exercise please contact

• Vojtech Mlynar <mlynar@acin.tuwien.ac.at> or

3.1 Robot self localization in a convex enclosure
Consider a mobile (differential drive) robot in a quadratic enclosure as shown in Figure 3.1.
To perform a meaningful task, the robot needs to be aware of its position p =

[
xR yR

]T
with respect to the global coordinate frame. To this end, N beacons are placed at the
positions bn =

[
xn yn

]T
, n = 1, . . . , N , inside the enclosure. These beacon positions are

known by the robot. Each beacon sends out a signal, which allows the robot to determine
its distance

ρn = ∥p − bn∥2 + vn =
√

(xR − xn)2 + (yR − yn)2 + vn, (3.1)
n = 1, . . . , N , to the respective beacon. The uncertainty in the distance determination is
modeled by the measurement noise vn with the variance qn. With N beacons available, it
is customary to stack (3.1) to obtain the nonlinear functional relation

ρ = f(p,b1, . . . ,bN) + v (3.2)

with

f(p,b1, . . . ,bN) =

√

(xR − x1)2 + (yR − y1)2√
(xR − x2)2 + (yR − y2)2

. . .√
(xR − xN)2 + (yR − yN)2

 (3.3)

ρ =
[
ρ1, ρ2, . . . , ρN

]T
and v =

[
v1, v2, . . . , vN

]T
. Subsequently, the aim is to use (3.2) to

calculate an estimate p̂ of the actual robot position p.

Exercise 3.1 (Prepare at home). Design and test an optimization-based estimator
for the robot position p. Proceed as follows:

1. Create a function getDistances in Matlab which models f in (3.2), i. e., which

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

mailto:mlynar@acin.tuwien.ac.at

3.1 Robot self localization in a convex enclosure Page 26

Beacon 1

Beacon 2

Beacon 3

Robot

xR

yR

r1 r2

r3

b1

b2

b3

2 m

2m

x

y

Figure 3.1: A mobile robot in a quadratic enclosure with three beacons for localization.

calculates the noise free distance measurements ρn for a known robot location
p and known beacon locations bn, n = 1, . . . , N .

2. The robot is following the trajectory

xR(t) = (1m) − (0.6m) cos(2πt) (3.4a)
yR(t) = (1m) − (0.6m) sin(2πt), (3.4b)

t ∈ [0, 1]. Use the function getDistances to set up the optimization problem

p̂ = arg min
p̃

∥ρ − f(p̃,b1, . . . ,bN)∥2
Q−1 (3.5a)

s.t. 0 ≤ x̃R ≤ 2m (3.5b)
0 ≤ ỹR ≤ 2m (3.5c)

with Q as noise covariance matrix, for calculating an estimate p̂ of the robot
position p from noisy measurement data in ρ. Use the Matlab routine fmincon
to solve (3.5).

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://de.mathworks.com/help/optim/ug/fminunc.html

3.1 Robot self localization in a convex enclosure Page 27

3. Consider the following three sets of beacon locations

B1 =
{

b1 =
[
0.5m
0.5m

]
,b2 =

[
1m

1.5m

]
,b3 =

[
1.5m
0.5m

]}
(3.6a)

B2 =
{

b1 =
[
0.5m
0.5m

]
,b2 =

[
0.5m
1m

]
,b3 =

[
0.5m
1.5m

]}
(3.6b)

B3 =
{

b1 =
[
0.5m
0.5m

]
,b2 =

[
0.5m
1.5m

]
,b3 =

[
1.5m
0.5m

]
,b4 =

[
1.5m
1.5m

]}
(3.6c)

and assume equal noise covariances for qn for each beacon. Compare the
estimated and the true trajectory of the robot for the given sets of beacon
locations and the different noise variances qn = 1 · 10−6 m2, qn = 5 · 10−4 m2,
and qn = 1 · 10−3 m2. To this end, discretize the robot trajectory with 100
points. Use the estimate of the previous point in the trajectory as initial guess
in the optimization for the current point.

In particular for a low number of beacons, the estimation accuracy of the localization
algorithm heavily depends on the specific beacon placement. To improve the estimation
accuracy of the localization algorithm, the number and positions of the beacons should be
optimized.

Exercise 3.2 (Prepare at home). Analyze and optimize the properties of the estima-
tion strategy developed in Exercise 3.1 based on the sensitivity

S(p,b1, . . . ,bN) = ∂f
∂p

∣∣∣∣
p,b1,...,bN

. (3.7)

Proceed as follows:

1. Extend the function getDistances created in task 1 of Exercise 3.1 to also
calculate and return the sensitivity matrix S according to (3.7) for a known
robot location p and known beacon locations bn, n = 1, . . . , N .

2. Visualize the A- and D-optimality criteria related to S for all possible robot
positions 0 ≤ xR ≤ 2m, 0 ≤ yR ≤ 2m and the beacon sets in (3.6). Use a grid
spacing of 4cm and the Matlab routine imagesc or surf.

3. Visualize the (approximate) spatial direction of the largest variance of the
position estimator developed in Exercise 3.1 for all possible robot positions
0 ≤ xR ≤ 2m, 0 ≤ yR ≤ 2m and the beacon sets in (3.6). Use the Matlab
routines eig and quiver.

4. Calculate the optimal positions b∗
n for N = 3 and N = 4 beacons by solving

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://de.mathworks.com/help/matlab/ref/imagesc.html
https://de.mathworks.com/help/matlab/ref/surf.html
https://de.mathworks.com/help/matlab/ref/eig.html
https://de.mathworks.com/help/matlab/ref/quiver.html

3.2 Robot self localization in a non-convex enclosure Page 28

the optimization problem

b∗
1, . . . ,b∗

N = arg min
b̃1,...,b̃N

∫ 2m

0

∫ 2m

0
r(R(p)) dxR dyR (3.8a)

s.t. 0 ≤ x̃n ≤ 2m , ∀n = 1, . . . , N (3.8b)
0 ≤ ỹn ≤ 2m ,∀ n = 1, . . . , N (3.8c)

with r according to the D-optimality measure and

R(p) = ST(p, b̃1, . . . , b̃N)Q−1S(pij , b̃1, . . . , b̃N) (3.9)

or
R(p) = S̃T(p, b̃1, . . . , b̃N)S̃(pij , b̃1, . . . , b̃N), (3.10)

where Q denotes again the noise covariance matrix and S̃ is the column nor-
malized version of S, see [OptiControlVO]. Consider the beacon sets in (3.6)
as initial conditions in the optimization. Find a suitable discretization of (3.8a)
and use the Matlab routine fmincon to solve (3.8).

Remark: The number of sampling points in the discretization of (3.8a)
heavily influences the computation time of the optimizer. Keep the number
of points reasonably low to facilitate a faster computation time. Similarly,
choose adequate tolerances for fmincon.

5. Compare the estimated and the true trajectory of the robot for the obtained
optimal beacon locations and the different noise variances qn = 1 · 10−6 m2,
qn = 5 · 10−4 m2, and qn = 1 · 10−3 m2.

3.2 Robot self localization in a non-convex enclosure
For a convex shaped enclosure as in Figure 3.1, it is always guaranteed that all beacons
are visible to the robot. For a non-convex enclosure as in Figure 3.2, the set of possible
robot locations P is non-convex and visibility of all beacons is generally not guaranteed.
Essentially, this means that only those distance measurements ρn can be included in (3.2)
where the respective beacon is actually visible. Apart from the number of beacons which
are necessary for self localization of the robot, the non-convex shape of the enclosure also
influences the optimal positioning of beacons. Throughout the subsequent exercises, these
difficulties will be treated in more detail.

Exercise 3.3 (Exercise during the lab). Design and test an optimization-based
estimator for the robot position p in the non-convex enclosure shown in Figure 3.2.
Proceed as follows:

1. In addition to the function getDistances from Exercise 3.1 and 3.2 create a
function getObstruction in Matlab to model the visibility of each beacon from

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://de.mathworks.com/help/optim/ug/fminunc.html
https://de.mathworks.com/help/optim/ug/fminunc.html

3.2 Robot self localization in a non-convex enclosure Page 29

Beacon 1

Beacon 2

Beacon 3

Robot

xR

yR

2 m

2m

1.2 m 0.
8m

x

y

Figure 3.2: A mobile robot in a non-convex enclosure with possible hidden beacons.

the robots position p ∈ P based on the known beacon locations bn ∈ P, n =
1, . . . , N . To determine the visibility of each beacon within getObstruction,
calculate the line of sight between the robot and each beacon and accumulate
the length ℓn of the line of sight which is outside the enclosure. This integral
values (sums) ℓn should constitute the return values of getObstruction.

2. The individual beacons can be considered visible, if the respective return value
of getObstruction is zero. Based on this information, delete all rows in (3.2)
which do not correspond to visible beacons.

3. The robot is performing the trajectory

xR(t) = (1.6m) − (1.2m) 5
√

sin2(πt)sgn(sin(πt)) (3.11a)

yR(t) = (1m) − (0.7m) 5
√

cos2(πt)sgn(cos(πt)), (3.11b)

t ∈ [0, 1]. Use the functions getDistances and getObstruction to set up the
optimization problem

p̂ = arg min
p̃

∥ρred − fred(p̃,b1, . . . ,bN)∥2
Q−1

red
(3.12a)

s.t. p̃ ∈ P (3.12b)

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

3.2 Robot self localization in a non-convex enclosure Page 30

for calculating an estimate p̂ of the robots position p. Here, ρred and fred
indicate the rows of ρ and f in (3.2) which corresponding to visible beacons
and Qred is the respective covariance matrix. Use the Matlab routine fmincon
to solve (3.12).

4. Consider the following three sets of beacon locations:

B1 =
{

b1 =
[
0.2m
0.2m

]
,b2 =

[
0.6m
0.2m

]
,b3 =

[
0.2m
0.6m

]
,

b4 =
[
0.2m
1.4m

]
,b5 =

[
0.2m
1.8m

]
,b6 =

[
0.6m
1.8m

]}
(3.13a)

B2 =
{

b1 =
[
0.2m
0.2m

]
,b2 =

[
1.8m
0.2m

]
,b3 =

[
0.2m
0.6m

]
,

b4 =
[
0.2m
1.4m

]
,b5 =

[
0.2m
1.8m

]
,b6 =

[
1.8m
1.8m

]}
.

(3.13b)

Compare the estimated and the true trajectory of the robot for these beacon
locations and the different noise variances qn = 1 · 10−6 m2, qn = 5 · 10−4 m2,
and qn = 1 · 10−3 m2.

To ensure an appropriate localization accuracy for every possible robot position p ∈ P,
the actual beacon placement is significantly more critical for the non-convex enclosure in
Figure 3.2 than it is for the simple convex enclosure in Figure 3.1. In this regard, it is
natural to ask for the optimal beacon placement in this case.

Exercise 3.4 (Exercise during the lab). Analyze and optimize the properties of the
estimation strategy developed in Exercise 3.3. To improve the speed of convergence
when solving the subsequent optimization problem, i. e., to avoid problems with
vanishing gradients, the analysis is based on the sensitivity for all (including hidden)
beacons

S(p,b1, . . . ,bN) = ∂f
∂p

∣∣∣∣
p,b1,...,bN

. (3.14)

The visibility of the individual beacons is taken into account by using the return
values ℓn of the function getObstruction to modify the actual covariances qn of the
measurement noise vn according to

q̄n = qn + λℓn, (3.15)

where λ ≈ 100m is an additional tuning parameter of the optimization procedure.
Subsequently, proceed as follows:

1. Visualize the A- and D-optimality criteria related to S for all allowed robot
positions p ∈ P and the beacon sets in (3.6). Use a grid spacing of 4cm and

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://de.mathworks.com/help/optim/ug/fminunc.html

3.2 Robot self localization in a non-convex enclosure Page 31

the Matlab routine imagesc or surf.

2. Visualize the (approximate) spatial direction of the largest variance of the
position estimator developed in Exercise 3.3 for all possible robot positions
p ∈ P and the beacon sets in (3.13). Use the Matlab routine quiver.

3. Calculate the optimal positions b∗
n forN = 6 beacons by solving the optimization

problem

b∗
1, . . . ,b∗

N = arg min
b̃1,...,b̃N

∫
P
r(R(p)) dp (3.16a)

s.t. bn ∈ P , ∀n = 0, . . . , N (3.16b)

with r according to the D-optimality measure and

R(p) = ST(pij , b̃1, . . . , b̃N)Q̄−1S(p, b̃1, . . . , b̃N), (3.17)

where Q̄ denotes the modified noise covariance matrix built from (3.15). Con-
sider the beacon sets in (3.13) as initial conditions in the optimization. Find a
suitable discretization of (3.16a) and use the Matlab routine fmincon to solve
(3.16).

Remark: The number of sampling points in the discretization of (3.16a)
heavily influences the computation time of the optimizer. Keep the number
of points reasonably low to facilitate a faster computation time. Similarly,
choose adequate tolerances for fmincon.

4. Compare the estimated and the true trajectory of the robot for the obtained
optimal beacon locations and the different noise variances qn = 1 · 10−6 m2,
qn = 5 · 10−4 m2, and qn = 1 · 10−3 m2. Assume equal noise covariances for each
beacon.

Exercise Optimization-Based Control Methods (Summer semester 2025)
©, Automation and Control Institute, TU Wien

https://de.mathworks.com/help/matlab/ref/imagesc.html
https://de.mathworks.com/help/matlab/ref/surf.html
https://de.mathworks.com/help/matlab/ref/quiver.html
https://de.mathworks.com/help/optim/ug/fminunc.html
https://de.mathworks.com/help/optim/ug/fminunc.html

	1 Linear model predictive control and trajectory planning and
	1.1 The three-tank system
	1.1.1 Mathematical model
	1.1.2 Steady state, linearization, and time discretization

	1.2 Linear MPC based on subordinate time integration
	1.3 Trajectory planning with CasADi

	2 Nonlinear model predictive control and receding horizon estimation
	2.1 Nonlinear MPC based on CasADi
	2.2 MHE with a quadratic cost function
	2.3 Maximum-a-posteriori MHE

	3 Optimization-based estimation
	3.1 Robot self localization in a convex enclosure
	3.2 Robot self localization in a non-convex enclosure

