
This document contains a post-print version of the paper

A new �atness-based control of lateral vehicle dynamics

authored by S. Antonov, A. Fehn, and A. Kugi

and published in Vehicle System Dynamics.

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or
copy editing. Please, scroll down for the article.

Cite this article as:

S. Antonov, A. Fehn, and A. Kugi, �A new �atness-based control of lateral vehicle dynamics�, Vehicle System Dynamics,
vol. 46, no. 9, pp. 789�801, 2008. doi: 10.1080/00423110701602696

BibTex entry:

@ARTICLE{acinpaper,

author = {Antonov, S. and Fehn, A. and Kugi, A.},

title = {A new flatness-based control of lateral vehicle dynamics},

journal = {Vehicle System Dynamics},

year = {2008},

volume = {46},

pages = {789--801},

number = {9},

doi = {10.1080/00423110701602696}

}

Link to original paper:

http://dx.doi.org/10.1080/00423110701602696

Read more ACIN papers or get this document:

http://www.acin.tuwien.ac.at/literature

Contact:

Automation and Control Institute (ACIN) Internet: www.acin.tuwien.ac.at
Vienna University of Technology E-mail: office@acin.tuwien.ac.at

Gusshausstrasse 27-29/E376 Phone: +43 1 58801 37601
1040 Vienna, Austria Fax: +43 1 58801 37699

Copyright notice:

This is an authors' accepted manuscript of the article S. Antonov, A. Fehn, and A. Kugi, �A new �atness-based control of lateral vehicle

dynamics�, Vehicle System Dynamics, vol. 46, no. 9, pp. 789�801, 2008. doi: 10.1080/00423110701602696 published in Vehicle System

Dynamics, copyright c© Taylor & Francis Group, LLC, available online at: http://dx.doi.org/10.1080/00423110701602696

http://dx.doi.org/10.1080/00423110701602696
http://dx.doi.org/10.1080/00423110701602696
http://www.acin.tuwien.ac.at/literature
www.acin.tuwien.ac.at
mailto:office@acin.tuwien.ac.at
http://dx.doi.org/10.1080/00423110701602696
http://dx.doi.org/10.1080/00423110701602696


Vehicle System Dynamics

Vol. 00, No. 00, Month 200x, 1–12

A New Flatness Based Control of Lateral Vehicle Dynamics
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This paper presents a new concept for Vehicle Dynamics Control (VDC). The control of the longitudinal vehicle dynamics is not discussed,
since we are assuming that it is much slower and weakly coupled to the lateral and yawing dynamics. The actuators are considered to
be the traction and the braking torques of the individual wheels and only the standard sensors of the common VDC system are used.
A modular interface to the subordinate wheel control system is provided by choosing the yaw torque as a fictitious control input. The
VDC system is designed by means of a two degrees–of–freedom control scheme. It is comprised of a flatness based feedforward part and
a stabilizing feedback part. The reference trajectory generation is introduced for the flat output which is given by the lateral velocity of
the vehicle. In this way an advantageous kind of body side–slip angle control is provided by means of standard VDC system hardware.
Extensive simulation studies show the excellent performance of the designed control concept.

Keywords: vehicle dynamics control, differential flatness, two degrees–of–freedom control, trajectory generation

1 Introduction

This paper deals with the Vehicle Dynamics Control (VDC) design for passenger vehicles. The first series
production VDC system was introduced by Robert Bosch GmbH [1] in 1994. The main purpose of this VDC
system is to support the driver in critical driving situations by ensuring better controllability of the vehicle.
This task is achieved by maintaining an almost identical vehicle behavior in all driving situations [2]. For
this purpose the lateral dynamics of the vehicle are controlled. In this VDC system the braking and the
traction torques of the individual wheels serve as the control inputs. Over the years VDC has shown great
performance in accident prevention [3,4]. The effectiveness and the reduction in the production costs have
facilitated the propagation of VDC as a standard equipment in many passenger vehicles.
Many reports dealing with VDC were published in recent years, e.g. [1, 5–8]. Different authors have

treated the vehicle dynamics control task as a nonlinear optimization problem and developed different
solutions [9–11]. In [9] the side–slip angle of the vehicle is limited by using the receding horizon approach
and by minimizing the tire slips. The optimal solution is approximated by means of multiparametric
nonlinear programming. The contribution [10] solves a convex optimization problem to keep all tires as far
below their adhesion limits as possible. In [11] the authors aim at minimizing the tire slips and then present
control laws based on a nonlinear optimization technique in combination with singular perturbation theory.
Another trend in the literature is the use of differential geometric methods for the control design. Solutions
by means of exact input–output linearization are proposed in [12, 13]. The differential flatness technique
is adopted for vehicle dynamics control in the contributions [14, 15]. Therein the centralized longitudinal
tire forces and the steer angle of the front wheels are chosen as control inputs. The corresponding flat
output is identified as the longitudinal and lateral velocity components of a certain point located on the
vehicle’s longitudinal axis. This approach, although very interesting, suffers from the facts that the flat
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2 S. Antonov et al.

output depends on the vehicle mass and the moment of inertia about the vertical axis and that the control
law relies on quantities which are not directly available by measurements in a common VDC system. In
general, the common problem of the differential geometric and flatness based approaches is the generation of
reasonable and sufficiently differentiable reference trajectories. In recent publications [12–15] this question
is not explicitly treated.
Therefore, the focus of this paper is to close the gap between the reference trajectory generation and

the design of a complete flatness based VDC system which is based on the standard interface for the
actuator inputs and sensor information of common passenger vehicles. For this purpose the longitudinal
vehicle dynamics is assumed to be much slower and weakly coupled with the lateral and yawing dynamics.
This is why we will consider the longitudinal vehicle velocity as a known constant exogenous input of
the VDC system. The longitudinal dynamics control systems available in the vehicle, like the Antilock
Braking System (ABS) and the Traction Control System (TCS), are using individual wheel torques as
control inputs. To allow for a modular system design, as it is usually done in the existing vehicle control
concepts, the yaw torque is chosen as a suitable control input. It is used as a common interface in the
vehicle dynamics control design, see for example [1,6]. The corresponding wheel torque distribution can be
calculated by the given acceleration or deceleration demand with regard to the requested yaw torque. Note
that the maximum transmittable yawing torque depends on the actual grip conditions and results from
the tires’ saturation margin. The input of the VDC system, i.e. the driver’s command, is specified through
the measured steering angle and the actual longitudinal vehicle velocity. The control is based on the two
degrees–of–freedom tracking control structure described in [16,17]. It consists of the reference generation,
the feedforward control by means of an inverse system description and the stabilizing feedback. In our
case the reference generation relies on the linear vehicle model. In contrast to the known approaches [1,7]
the lateral vehicle velocity is chosen as the reference variable and not the yaw rate. In this way we are
achieving more agile vehicle response to the driver’s input. Another feature is that the knowledge of the
actual grip conditions is not necessary for the reference calculation. The proposed feedforward control
utilizes the flatness property of the nonlinear single–track vehicle model. The time derivative of the lateral
velocity is used as a feedback variable to stabilize the system. Thus, the presented approach only relies on
the standard VDC equipment of common vehicles, i.e. additional sensors or actuators are not required.
The paper is organized as follows. In Section 2 a nonlinear single–track vehicle model is presented.

It builds the basis for the subsequent nonlinear control design. Afterwards the linear vehicle model is
introduced for the purpose of reference trajectory generation. In Section 3 the differential flatness property
of the nonlinear vehicle model is proven. Section 4 deals with the vehicle dynamics control design. In
Section 5 the stability issues are discussed. The performance and the robustness of the developed concept
are shown in Section 6 by means of simulations with a detailed multibody vehicle model. Finally, in
Section 7 the results are summarized and an outlook is given.

2 Mathematical vehicle modeling

In this section two vehicle models are introduced: the first model provides the basis for the model based
control design, and the second model is suited for the reference generation.

2.1 Vehicle model for control design

The vehicle model for control design is based on the single–track model which goes back to the work [18].
As proposed in [18] the two wheels of one axle are merged to one wheel (see Figure 1). Therefore, this
model is also well know as the bicycle model [19,20]. The following assumptions are made:

• the vehicle is a rigid body and has only front steering;

• there is neither roll nor pitch motion;

• the vehicle center of mass lies in the road plane, i.e. there is no dynamic wheel load distribution;

• the wheel dynamics are of minor importance;

• the longitudinal dynamics of the vehicle are not considered;
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A New Flatness Based Control of Lateral Vehicle Dynamics 3

• the air drag is neglected.

Figure 1. Nonlinear single–track vehicle model.

The considered vehicle (see Figure 1) has the mass m and the moment of inertia about the vertical
axis Iz. The distances from the center of mass to the front axle and to the rear axle are given by lf and lr,
respectively. The steer angle of the front wheel is given by δf and the side–slip angle of the vehicle is denoted
by β. The velocities of the front vf and the rear axle vr differ from the velocity of the center of gravity v
due to the yawing motion ψ̇. The velocity v has the longitudinal vx and the lateral vy projections on the
body fixed reference frame xOy. The forces acting on the contact patch of the tires are centralized for each
axle. They are known as effective axle forces Ff and Fr and result from the side–slip angles at the front
and the rear axle, αf and αr, respectively. As previously mentioned the yaw torque Mz is introduced as a
fictitious control input. The longitudinal vehicle velocity vx is assumed to be a known constant vx = const.
The effective axle forces Ff and Fr are functions of the corresponding side–slip angles αf and αr [20], i.e.

Ff = Ff(αf) and Fr = Fr(αr). (1)

Typical characteristics of the effective axle forces F (α) for passenger vehicles are depicted in Figure 2.
These functions represent the main nonlinearities in the considered vehicle model. Normal drivers are using
the vehicle with lateral accelerations of less than 5 m/s2 [21], which corresponds to the approximately linear
region of the effective axle force characteristics, cf. Figure 2. However, if the vehicle moves on the road
with reduced grip conditions, i.e. on a wet or icy road, then the axle force characteristics change according
to the dotted line in Figure 2. In this case the nonlinear part of the force characteristics also applies for
small lateral accelerations.

Figure 2. Typical characteristics of the effective axle forces for passenger vehicles, black solid line corresponds to dry asphalt, dotted
line to wet asphalt, and grey solid line shows the linear approximation for normal driving situations.
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4 S. Antonov et al.

Since the vehicle is considered as a rigid body the side–slip angles of the front and rear axle, αf and αr,
and the body side–slip angle β take the form [19]

αf = − arctan

(
vy + ψ̇lf
vx

)
+ δf , αr = − arctan

(
vy − ψ̇lr
vx

)
and β = arctan

(
vy
vx

)
. (2)

The equations of motion for the vehicle’s center of mass are given by

d

dt
vy =

1

m

(
Ff(αf) cos δf + Fr(αr)

)
− vxψ̇ , (3a)

d

dt
ψ̇ =

1

Iz

(
Ff(αf)lf cos δf − Fr(αr)lr +Mz

)
. (3b)

The lateral acceleration of the vehicle is calculated by

ay =
d

dt
vy + vxψ̇ . (4)

2.2 Reference vehicle model

As already mentioned in the previous subsection the field of experience of a normal driver lies in the
linear region of the effective axle force characteristics, cf. Figure 2. Thus, the expected vehicle behavior
can be described by assuming linear effective axle force characteristics, see for example the solid grey line
in Figure 2. In this case the effective axle forces are given by

Ff(αf) = cfαf and Fr(αr) = crαr , (5)

where cf and cr are the so-called cornering stiffnesses of the front and rear axles, respectively. Substi-

tuting (5) into (3) and considering a small angle approximation in (2), i.e. arctan(vy+ψ̇lfvx
) ≈ vy+ψ̇lf

vx
and

arctan(vy−ψ̇lrvx
) ≈ vy−ψ̇lr

vx
as well as cos δf ≈ 1, we get the linear single–track vehicle model in the form

d

dt

[
vy

ψ̇

]
=

⎡
⎢⎢⎣
−cr + cf

mvx

crlr − cf lf
mvx

− vx

crlr − cf lf
Izvx

−crl
2
r + cf l

2
f

Izvx

⎤
⎥⎥⎦

[
vy

ψ̇

]
+

⎡
⎢⎣

cf
m
cf lf
Iz

⎤
⎥⎦ δf +

⎡
⎣
0

1

Iz

⎤
⎦Mz . (6)

In the following the external yaw torqueMz is considered to be zero, since the reference model must describe
the vehicle behavior without VDC interventions. Then, for a constant steer angle δf0, an equilibrium
point (vy0, ψ̇0) of the system (6) is given by

vy0 = − mv3xcf lf − vxcfcr(l
2
r + lf lr)

mv2x(crlr − cf lf) + cfcr(lf + lr)2
δf0 = kv(vx)δf0 , (7a)

ψ̇0 =
vxcfcr(lf + lr)

mv2x(crlr − cf lf) + cfcr(lf + lr)2
δf0 = kψ(vx)δf0 . (7b)

It can be easily shown by means of the Routh-Hurwitz stability criterion that the equilibrium point (7) is
asymptotically stable iff the following condition holds [19]:

mv2x(crlr − cf lf) + cfcr(lf + lr)
2 > 0. (8)
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Equations (7) represent the static linear vehicle model. Thus, they can be used to describe the quasi–static
vehicle response on the steer input δf . Consequently, they serve as a suitable reference model to specify
agile vehicle behavior. Please note that equation (7b) is the well known Ackermann’s equation [19].

3 Flatness property of the vehicle model

In the last years the differential flatness technique [17, 22–25] has gained popularity for the purpose
of nonlinear tracking control design. In this section the differential flatness property of the dynamical
system (3) is shown for the flat output y = vy by calculating the corresponding inverse system. The steer
angle δf and the longitudinal vehicle velocity vx = const. represent the driver’s command. Thus, the steer
angle δf is considered as a sufficiently smooth known time function δf = δf(t). It can be calculated from
the measured steering wheel angle δhand(t) by means of the corresponding kinematic transformation.
In a first step we will express the yaw rate ψ̇ as a function of the flat output y = vy, its time derivative

ẏ = v̇y and the exogenous input δf (t) by utilizing (3a) with (2)

mẏ − Ff

(
δf − arctan

(
y + ψ̇lf
vx

))
cos (δf)− Fr

(
− arctan

(
y − ψ̇lr
vx

))
+mvxψ̇ = 0. (9)

Clearly in view of Figure 2, equation (9) constitutes an implicit relation which cannot be solved analytically
in the general case. In the linear region of the axle force characteristics for small angles, i.e. Ff (αf) =

cf(δf − y+ψ̇lf
vx

), Fr (αr) = cr(−y−ψ̇lr
vx

) and cos (δf) = 1, the parametrization of the yaw rate ψ̇ according to
equation (9) is unique and reads as

ψ̇ =
vxcfδf − (cf + cr) y − vxmẏ

cf lf − crlr +mv2x
. (10)

Due to the fact that the axle force characteristics Ff (αf) and Fr (αr) are not monotonously increasing,
cf. Figure 2, the solution of the implicit equation (9) is no longer unique outside the linear region. However,
since the steer angle δf , as well as the flat output y and its time derivative ẏ are continuous, the solution
of equation (9) for the yaw rate ψ̇ must be continuous as well. Thus, in the case of multiple solutions we
choose ψ̇ which is closest to the one determined in the previous time step. Please note that we are always
starting in the linear region, where the solution of (9) is equal to the solution of (10). This approach
allows us to resolve the uniqueness problem and provides the physically relevant solution ψ̇ = ρ1 (y, ẏ, δf).
Differentiating (9) w.r.t. time t, we get

mÿ − ∂

∂αf
Ff (αf)

⎛
⎜⎝δ̇f −

vx

(
ẏ + ψ̈lf

)

v2x +
(
y + ψ̇lf

)2

⎞
⎟⎠ cos (δf) + Ff (αf) sin (δf) δ̇f +

∂

∂αr
Fr (αr)

⎛
⎜⎝

vx

(
ẏ − ψ̈lr

)

v2x +
(
y − ψ̇lr

)2

⎞
⎟⎠+

+vxψ̈ = 0.
(11)

Thus the parametrization ψ̈ = ρ2

(
y, ẏ, ÿ, δf , δ̇f

)
yields

ψ̈ =

∂

∂αf
Ff (αf) δ̇f cos (δf)−

∂
∂αf

Ff (αf) vxẏ

v2x +
(
y + ψ̇lf

)2 cos (δf)−
∂
∂αr

Fr (αr) vxẏ

v2x +
(
y − ψ̇lr

)2 −mÿ − Ff (αf) sin (δf) δ̇f

mvx +
∂

∂αf
Ff (αf)

lfvx

v2x +
(
y + ψ̇lf

)2 cos (δf)−
∂

∂αr
Fr (αr)

lrvx

v2x +
(
y − ψ̇lr

)2
, (12)

with αf and αr from (2) and ψ̇ = ρ1 (y, ẏ, δf) due to (9). Note that the axle characteristics Ff(αf) and Fr(αr)
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should be chosen for the controller design in order to guarantee that the denominator in (12) is not equal to

zero, which is normally the case for higher longitudinal velocities vx. By substituting ψ̈ = ρ2

(
y, ẏ, ÿ, δf , δ̇f

)

from (12) and ψ̇ = ρ1 (y, ẏ, δf) due to (9) into (3b), we directly obtain the parametrization of the control
input, i.e. the yaw torque Mz, in the form

Mz = ρ3

(
y, ẏ, ÿ, δf , δ̇f

)
= Izρ2

(
y, ẏ, ÿ, δf , δ̇f

)
− Ff (αf) lf cos (δf)− Fr (αr) lr . (13)

In summary, we have shown that the lateral velocity vy serves as a flat output for the nonlinear single
track model (2), (3).

4 Control approach

In this section the flatness based VDC scheme is introduced. We are suggesting to use the two degrees–
of–freedom control scheme as discussed in [16,17]. Thereby, the trajectory tracking problem is tackled by
means of a flatness based feedforward and a stabilizing feedback part in the controller. The trajectory
planning is carried out in the coordinates of the flat output. The corresponding block diagram is depicted
in Figure 3.

Figure 3. Block diagram of the vehicle dynamics control.

The reference trajectory vry for the flat output is calculated in Block 1 of Figure 3. As an appropriate
reference model the static linear vehicle model (7) is chosen to provide the maximum possible agility of the
closed-loop system and a driving feeling like in normal driving situations. Please note that equation (7b)
is the well known Ackermann’s equation which is traditionally used in the series–production VDC for the
reference values generation [1]. In contrast to this we are proposing to use (7a) and its time derivatives up
to the second order for the reference calculation1:

vry = kv(vx)δf , v̇ry = kv(vx)δ̇f and v̈ry = kv(vx)δ̈f . (14)

This approach is motivated by the fact that the lateral velocity vy is directly related to the side–slip angle
of the vehicle β via (2). In the case of small body side–slip angle β and constant longitudinal vehicle
velocity vx the lateral velocity is even proportional to the side–slip angle, i.e. β ≈ vy/vx. By controlling

1Note that the reference model requires the knowledge of the steer angle δf and its time derivatives up to the second order δ̇f , δ̈f . The
steer angle of the front wheel δf can be simply calculated out of the measured steering wheel angle δhand. The required time derivatives

δ̇f and δ̈f can be obtained for example by means of the derivative estimator proposed e.g. in [26].
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the lateral velocity vy of the vehicle, we indirectly control the side-slip angle and thus directly address
the driving feeling and the vehicle stability. Furthermore, we avoid the consideration of the actual grip
conditions. In contrast, classical VDC approaches are based on a yaw rate control concept. Therefore, in
order to limit the side–slip angle, a bound on the reference yaw rate ψ̇r depending on the actual grip
conditions has to be imposed. The valuable feature of our approach is the changeover to the control of the
lateral velocity vy.
The inverse system description (Block 2 ) is used as a feedforward part. It is based on (13) and yields

the feedforward yaw torque Mff
z

Mff
z = ρ3(v

r
y, v̇

r
y, v̈

r
y, δf , δ̇f) . (15)

The input of the feedforward control is the driver’s command in the form of the steering motion δf , δ̇f
and the actual vehicle velocity vx. Additionally, the reference values for the lateral vehicle velocity vry and
its time derivatives up to the second order, v̇ry and v̈ry, are provided according to (14). The robustness
of the considered control scheme as to disturbances and parameter variations is assured by means of the
stabilizing feedback of the time derivative of the lateral velocity v̇y (Block 5 )

v̇y = ay − vxψ̇. (16)

Thereby, only the standard sensor signals of the lateral acceleration ay and of the yaw rate ψ̇ are utilized.
A simple proportional–integral (PI) controller (Block 6 )

M fb
z = kp(v̇

r
y − v̇y) + ki

∫ t

0
(v̇ry − v̇y) dt (17)

is used as a feedback controller where kp and ki serve as free tuning parameters.
The required yaw torque M c

z = Mff
z +M fb

z , consisting of the feedforward part Mff
z and the feedback

part M fb
z , constitutes the output interface of the VDC system. This torque is realized by means of a

subordinate control system and corresponding actuators (Block 3 ). The maximum transmittable yaw
torque is determined by the actual grip ratio µ and is therefore depicted as a µ–dependent saturation
element in Figure 3. The description of the realization of the fictitious control input Mz by means of the
wheel torques is beyond the scope of this paper. However, this interface is an industrial standard in VDC
systems for passenger vehicles and can for instance be found in [1, 6]. Block 4 refers to the test vehicle
equipped with the sensors for the lateral acceleration ay, the yaw rate ψ̇, and the longitudinal velocity vx.

5 Stability considerations

Clearly, the control performance and the driving stability of the vehicle in terms of [5] are evaluated by
means of extensive simulations with a detailed multibody vehicle model. For analyzing the stability of the
closed–loop system and for estimating an admissible range of the controller parameters kp and ki in (17),
let us consider the nonlinear single–track model according to equations (2) and (3), linearized around an
arbitrary equilibrium point Mz =Mz0, δf = δf0, vy = vy0 and ψ̇ = ψ̇0:

d

dt

[
∆vy

∆ψ̇

]
= A

[
∆vy

∆ψ̇

]
+Bδ∆δf +BM∆Mz . (18)

Post-print version of the article: S. Antonov, A. Fehn, and A. Kugi, �A new �atness-based control of lateral vehicle dynamics�, Vehicle

System Dynamics, vol. 46, no. 9, pp. 789�801, 2008. doi: 10.1080/00423110701602696

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

http://dx.doi.org/10.1080/00423110701602696


8 S. Antonov et al.

Thereby, the symbol ∆ describes the deviation of the corresponding quantity from the equilibrium point.
Furthermore, the dynamics matrix A and the vector BM read as

A =

[
− 1
m (χf + χr)

1
m (χrlr − χf lf)− vx

1
Iz
(χrlr − χf lf) − 1

Iz

(
χf l

2
f + χrl

2
r

)
]
, BM =

[
0
1
Iz

]
, (19)

with the abbreviations

χf =

(
∂

∂αf
Ff

)
(αf0)

vx cos (δf0)

v2x +
(
vy0 + ψ̇0lf

)2 and χr =

(
∂

∂αr
Fr

)
(αr0)

vx

v2x +
(
vy0 − ψ̇0lr

)2 , (20)

where αf0 and αr0 denote the side–slip angles of the front and rear axles due to (2) calculated for the
equilibrium point under consideration. Note that matrix Bδ from (18) will not be explicitly stated here
since it has no influence on the stability of the closed–loop system. The feedback law due to equation (17)
applied to the linearized system (18) for v̇ry = 0 takes the form

∆Mz = −kp∆v̇y − ki∆vy =
[

kp
Izm

(χf + χr)− ki
Iz

, −kp
Iz

(
1
m (χrlr − χf lf)− vx

)]

︸ ︷︷ ︸
K

[
∆vy

∆ψ̇

]
, (21)

and thus the dynamics matrix Ac = A+BMK of the closed–loop system results in

Ac =

[
− 1
m (χf + χr)

1
m (χrlr − χf lf)− vx

1
Iz
(χrlr − χf lf) +

kp
Izm

(χf + χr)− ki
Iz

− 1
Iz

(
χf l

2
f + χrl

2
r

)
− kp

Iz

(
1
m (χrlr − χf lf)− vx

)
]
. (22)

It can be easily verified by means of the Routh–Hurwitz stability criterion that Ac is a Hurwitz matrix iff
the inequality conditions

kp <
m
(
χf l

2
f + χrl

2
r

)
+ Iz (χf + χr)

mvx − (χrlr − χf lf)
and ki <

vxm (χrlr − χf lf) + χfχr (lr + lf)
2

mvx − (χrlr − χf lf)
(23)

hold for the controller parameters kp and ki, with χf and χr due to (20) provided that mvx−(χrlr − χf lf) >
0. In fact the actual values of the controller parameters kp and ki are determined by tuning the performance
of the closed–loop system in simulation studies and experimental tests.
However, one should bear in mind that although we can guarantee exponential stability around every

possible equilibrium point, this analysis does not rigorously prove the stability of the nonlinear closed–
loop system comprising the nonlinear vehicle model, the feedforward, and the feedback controller. Clearly,
the analysis made so far for the linearized model only gives a necessary condition for stability and the
inequality conditions (23) can be considered to provide useful estimates for the bounds of the controller
gains. The reader should note that most of the stability conditions being given for vehicle dynamics control
in the literature are based on linearization arguments and thus are only necessary but not sufficient for
the nonlinear vehicle model. The reason for this is that a rigorous stability proof of the overall nonlinear
closed–loop system is indeed a very difficult task. For the two degrees–of–freedom control structure, as
proposed in this paper, it is well known that in the case when the model for controller design is ideally
matching the real system and has consistent initial conditions, then the feedforward controller Mff

z due
to (15) inserted into the system equations (2), (3) for the yaw torque Mz yields the system in Brunovsky
canonical form [27]. In order to cope with model uncertainties and disturbances the feedback part due
to (17) is included. The resulting error dynamics is a nonlinear time–varying system and its stability
can be investigated by utilizing the Theorem of Kelemen, see, e.g., [28–30]. This theorem provides a
sufficient condition and thus often turns out to be rather restrictive. The application of this theorem to
a number of selected points of practical interest for the closed–loop system under consideration proves a
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stable behavior. Nevertheless, the investigation of all possible operating points is in our case numerically
extremely expensive and thus was omitted.

6 Simulation studies

In this section the performance of the presented control approach is tested by means of simulations with
a detailed multibody vehicle model implemented in SIMPACK [31]. The considered vehicle model has 49
states and 35 constraints, and accordingly possesses 14 degrees–of–freedom. As a tire model Pacejka’s
Magic Formula [20,32] is chosen. The testing maneuver is a single lane change performed at the velocity of
25 m/s (90 km/h). The amplitude of the steering wheel angle is chosen to bring the vehicle to its physical
limits, i.e. lateral accelerations of about 10 m/s2.

Figure 4. Simulation results of the uncontrolled detailed vehicle model, black solid line — steer angle δf , dashed black line — reference
trajectory vry , grey solid lines — actual values.

Figure 4 shows the test maneuver performed without the control system. The black solid line refers
to the steer angle δf , the dashed black line to the reference trajectory vry and the grey solid lines to the
actual trajectories of the vehicle model, respectively. At 2.5 s the steer angle δf starts to decrease but the
side–slip angle β is still increasing for the next second. At 3 s the steer angle δf even changes its sign but
the side–slip angle β, the yaw rate ψ̇, and the lateral acceleration ay maintain the same sign until the end
of the maneuver. Obviously the vehicle does not follow the steering input of the driver which corresponds
to an unstable vehicle behavior.
The proposed control system (cf. Figure 3) was implemented with a sampling time of 1 ms and has

shown a robust behavior. For the sake of clarity we present in Figure 5 and Figure 6 simulation results
without sensor noise. During the simulations the stabilizing yaw torque Mz (shown with the solid grey
line) is directly applied to the vehicle, i.e. the actuators are not explicitly considered. The feedforward part
Mff
z of the yaw torque is shown with the dashed black line. There is only a small corrective action of the

feedback controller to compensate model inaccuracies of the simplified inverse system. The lateral velocity
vy tracks the corresponding reference trajectory vry well and the side–slip angle β stays within ±5◦. Please
note that the side–slip angle β, the lateral velocity vy, and the lateral acceleration ay are crossing zero

Post-print version of the article: S. Antonov, A. Fehn, and A. Kugi, �A new �atness-based control of lateral vehicle dynamics�, Vehicle

System Dynamics, vol. 46, no. 9, pp. 789�801, 2008. doi: 10.1080/00423110701602696

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

http://dx.doi.org/10.1080/00423110701602696


10 S. Antonov et al.

Figure 5. Simulation results of the proposed control approach with the detailed vehicle model, black solid line — steer angle δf ,
dashed black line — reference trajectory vry and feedforward yaw torque Mff

z correspondingly, grey solid lines — actual values.

Figure 6. Simulation results of the proposed control approach with the detailed vehicle model and incorporated physical limitation of
the yaw torque Mz , black solid line — steer angle δf , dashed black line — reference trajectory vry and feedforward yaw torque Mff

z
correspondingly, grey solid lines — actual values.
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at the same time as the steer angle δf . The yaw rate ψ̇ reaches the zero point even earlier. This shows
that the usage of the inverse system allows us to achieve the maximum possible agility of the vehicle. The
spikes in the lateral acceleration ay result from suspension impacts and do not occur during less critical
driving maneuvers.
Figure 6 shows the simulation results for the case where the physical limits for the stabilizing yaw

torque Mz are taken into account. There is some maximum force that can be transmitted from the road
to the vehicle according to the grip conditions. In this case the lateral velocity vy can no longer follow the
reference trajectory. Nevertheless, the control system tries to do its best to stabilize the vehicle. As shown
in Figure 6 also in this case the side–slip angle is never exceeding 5◦. Hence, with the proposed control
concept a good trade–off between agility and stability is obtained.
Additionally, the robustness of the controller as to parameter variations and disturbances was tested by

means of numerous simulations. It turned out that the proposed control concept shows a good robustness
property.

7 Conclusion

In this contribution a systematic mathematical modeling and nonlinear control design for a vehicle dy-
namics control system (VDC) was presented. In order to provide a modular concept the yaw torque Mz

was chosen as the control input to the system. The nonlinear control design relies on a flatness based
feedforward controller and a simple linear feedback law of the time derivative of the flat output, which
in our case is given by the lateral vehicle velocity vy. Advantageously this allows us to realize a body
side-slip angle control of the vehicle by means of the standard VDC system hardware. Simulation results
have shown excellent control performance and a favorable trade-off between agility and stability of the
vehicle. Further research deals with the consideration of the actuator dynamics and an extension of the
control concept by parameter estimation algorithms.
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[11] Chou, H., and D’Andréa–Novel, B., Global vehicle control using differential braking torques and active suspension forces, Vehicle
System Dynamics, vol. 43, no. 4, pp. 465–482, 2005.

[12] Rittenschober, T., Fischer, P., Schlacher, K., and Fuchshummer, S., Fahrdynamikregelung mit differentialgeometrischen Metho-
den der Regelungstechnik, In Tagungsband Internationales Forum Mechatronik, Bayerisches Kompetenznetzwerk für Mechatronik,
pp. 31–50, June 2005, Augsburg, Germany.

[13] Burgio, G., and Zegelaar, P., Integrated vehicle control using steering and brakes, Int. J. of Control, vol. 79, no. 5, pp. 534–541,
May 2006.

[14] Fuchshummer, S., Schlacher, K., and Rittenschober, T., Ein Beitrag zur nichtlinearen Fahrdynamikregelung: die differentielle Flach-
heit des Einspurmodells, e & i, vol. 122, no. 9, pp. 319–324, 2005.

[15] Fuchshummer, S., Schlacher, K., and Rittenschober, T., Nonlinear Vehicle Dynamics Control – A Flatness Based Approach, Proc.
of the 44th IEEE CDC-ECC, pp. 6492–6497, December 2005, Séville, Spain
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