
This document contains a post-print version of the paper

E�cient Scheduling of a Stochastic No-Wait Job Shop with Controllable
Processing Times

authored by A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi

and published in Expert Systems with Applications.

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or
copy editing. Please, scroll down for the article.

Cite this article as:

A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job shop with
controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.

2020.113879

BibTex entry:

@Article{acinpaper,

author = {A. Aschauer and F. Roetzer and A. Steinboeck and A. Kugi},

title = {Efficient Scheduling of a Stochastic No-Wait Job Shop with Controllable Processing Times},

journal = {Expert Systems with Applications},

year = {2020},

volume = {162},

pages = {113879},

doi = {10.1016/j.eswa.2020.113879},

url = {https://www.sciencedirect.com/science/article/pii/S0957417420306849},

}

Link to original paper:

http://dx.doi.org/10.1016/j.eswa.2020.113879

https://www.sciencedirect.com/science/article/pii/S0957417420306849

Read more ACIN papers or get this document:

http://www.acin.tuwien.ac.at/literature

Contact:

Automation and Control Institute (ACIN) Internet: www.acin.tuwien.ac.at
TU Wien E-mail: office@acin.tuwien.ac.at

Gusshausstrasse 27-29/E376 Phone: +43 1 58801 37601
1040 Vienna, Austria Fax: +43 1 58801 37699

Copyright notice:

This is the authors' version of a work that was accepted for publication in Expert Systems with Applications. Changes resulting from

the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be

re�ected in this document. Changes may have been made to this work since it was submitted for publication. A de�nitive version was

subsequently published in A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job shop with

controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

https://doi.org/10.1016/j.eswa.2020.113879
https://doi.org/10.1016/j.eswa.2020.113879
http://dx.doi.org/10.1016/j.eswa.2020.113879
https://www.sciencedirect.com/science/article/pii/S0957417420306849
http://www.acin.tuwien.ac.at/literature
www.acin.tuwien.ac.at
mailto:office@acin.tuwien.ac.at
https://doi.org/10.1016/j.eswa.2020.113879

Efficient Scheduling of a Stochastic No-Wait Job Shop
with Controllable Processing Times

Alexander Aschauera,∗, Florian Roetzera, Andreas Steinboecka, Andreas
Kugia,b

aTU Wien, Automation and Control Institute ACIN, Vienna, Austria
bCenter for Vision, Automation & Control, Austrian Institute of Technology, Vienna,

Austria

Abstract

This work derives a novel effective and efficient algorithm for a stochastic no-wait
job-shop scheduling problem with controllable processing times. Some of the
processing times are stochastic and the proposed solution effectively minimizes
the makespan and increases the robustness of the makespan against deviating
processing times. Therefore, a no-wait job shop with controllable deterministic
processing times is solved by a decomposition into timetabling and sequencing.
During timetabling, extra safety margins are added to the scheduled processing
times without delaying jobs. In the sequence optimization subproblem, an extra
penalty term is added to the cost function which punishes uncertain tasks at
positions that have an impact on the makespan. Simulation results based on real
plant data and tailor-made benchmark problems show that these measures can
reduce the standard deviation of the makespan dramatically. This significantly
improves the prediction accuracy of the scheduling method.

Keywords: no-wait job shop, controllable processing times, stochastic
scheduling, recursive timetabling, tabu search, dynamic tabu list

1. Introduction

This paper originates from a scheduling problem in the metals industry. A
hot rolling mill with several batch type reheating furnaces is considered. For
every slab (product), a production plan specifies the necessary production steps
(heating/reheating to a certain temperature, manipulating, rolling, straighten-
ing, cutting, ...). The nominal processing times are available. Heating times
can be extended up to given upper bounds without loss of product quality. The

∗Corresponding author
Email addresses: aschauer@acin.tuwien.ac.at (Alexander Aschauer),

roetzer@acin.tuwien.ac.at (Florian Roetzer), steinboeck@acin.tuwien.ac.at (Andreas
Steinboeck), kugi@acin.tuwien.ac.at (Andreas Kugi)

Preprint submitted to Elsevier November 17, 2020

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

nominal heating times serve as lower bounds. In the considered process, af-
ter the initial heating step the subsequent production steps must be performed
immediately to avoid unwanted cooling. A major source of uncertainty in the
processing times is the semiautomatic manipulation of the slabs on the roller
table. For the uncertain processing times, in particular for the manipulation
of the products, statistical information is available. The goals of the schedul-
ing are to determine a production schedule and an optimal product sequence
which maximize the throughput (minimize the makespan) and which are robust
against uncertainties of the processing times.

The described problem can be classified as a stochastic no-wait job-shop
scheduling problem with controllable processing times. Sometimes controllable
processing times means that some processing times can be reduced by allocating
extra resources to the corresponding machines. In the current paper, however,
heating times can be controlled within given bounds without any additional
costs. Even though, the main problem of variable processing times remains the
same.

1.1. Literature Review

Scheduling in hot rolling mills is a challenging and up-to-date problem.
Özgür et al. (2020) provide a thorough survey on scheduling methods for hot
rolling mills, which gives an overview of the optimization methods applied, the
constraints incorporated, and the levels of abstraction. Nevertheless, research
questions remain open and the problems identified in this paper have not been
addressed in this combination.

The job-shop scheduling problem (JSP) is one of the classical scheduling
problems and well studied in the literature. It is NP-hard (Lenstra et al., 1977)
and powerful heuristics have been presented for its solution, e. g., the shifting
bottleneck heuristic by Adams et al. (1988). The no-wait JSP is also NP-hard
(Lenstra & Rinnooy Kan, 1979) so that heuristic solution methods are needed
to solve larger problems. Extended surveys about no-wait scheduling problems
were published by Hall & Sriskandarajah (1996) and Allahverdi (2016). In
many works, the no-wait JSP is handled by a division into a timetabling and
a sequencing subproblem (Macchiaroli et al., 1999; Schuster & Framinan, 2003;
Bożejko & Makuchowski, 2009; Aschauer et al., 2017).

According to the survey of Shabtay & Steiner (2007), only very few works
consider controllable processing times in JSP. Grabowski & Janiak (1987) proved
that the JSP with controllable processing times is NP-hard and they proposed a
branch-and-bound algorithm. Mokhtari et al. (2011) investigated a no-wait JSP
with controllable processing times. They entitled this problem a no-wait job-
shop crashing problem and solved it by dividing it into a crashing, a timetabling,
and a sequencing subproblem. In this context, crashing means to determine the
durations of the controllable processing times. In (Mokhtari et al., 2011), only
lower or upper bound values are allocated to the controllable processing times.
Aschauer et al. (2017) solved the no-wait JSP with controllable processing times
by a decomposition into a timetabling and a sequencing subproblem. They
handled the controllable processing times by non-delay recursive timetabling.

2

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Pinedo (2016) addressed stochastic scheduling in detail and stated that
stochastic JSP with more than two machines did not receive much attention
in the literature. However, Jamili (2016) published an article about robust job-
shop scheduling. He calculated required buffer times to reach certain robustness
levels. Horng et al. (2012) presented an evolutionary algorithm for the stochas-
tic JSP. They used a rough stochastic scheduling model with short simulation
length to calculate the fitness value of a population. Framinan & Perez-Gonzalez
(2015) published a study on stochastic flow-shop scheduling problems. They
found out that, for most settings, the solutions derived for the corresponding
deterministic problems work extremely well also for the stochastic setting.

To the authors’ knowledge, systematic consideration of stochastic processing
times in no-wait JSP with controllable processing times has not been addressed
in the literature so far. The question if the controllable processing times can
be used to increase the robustness of the schedule should be answered in this
paper.

1.2. Contribution and Content

This work proposes a scheduling solution for a stochastic no-wait JSP with
controllable processing times. This problem has not been addressed in the lit-
erature in this combination. The stochastic processing times are handled by
deterministic scheduling based on their nominal values and subsequent evalua-
tion of the schedule in terms of the robustness of the makespan against deviating
processing times. The deterministic scheduling is done by a decomposition into
a timetabling and a sequencing subproblem. The recursive timetabling algo-
rithm from (Aschauer et al., 2017) represents an approach to handle the highly
interconnected problem from the perspective of individual tasks, which allows
an easier implementation. This algorithm is extended to add more tolerance
(i. e. safety margins) to the scheduled processing times without delaying jobs.
In order to evaluate the robustness of the schedule, an algorithm to calculate the
effective safety margins of the tasks with respect to increases of the makespan
is developed. The sequencing is done by a tabu search heuristic. Samarghandi
et al. (2013) showed that tabu search works well with most timetabling algo-
rithms. Moreover, tabu search is perfectly suitable for parallel computation.
The information about the safety margins and the makespan is used in the tabu
search optimization heuristic to find a robust product sequence with minimal
makespan. The method is tested in simulations with production data from a
real plant and based on tailor-made benchmark problems.

In Section 2, the developed scheduling algorithm is presented. A problem
formulation is given and the extended recursive timetabling algorithm is de-
scribed in detail. Based on the timetabling result, an algorithm to calculate
the safety margins is developed. The sequence optimization is done by a tabu
search heuristic which needs the timetabling result and the safety margins to
calculate the cost function. Section 3 contains numerical results. First, the de-
veloped scheduling algorithm is applied to existing benchmarks of no-wait JSP
to show its performance compared to the state of the art. Then, scheduling
results for production data from the hot rolling mill are presented. Uncertain

3

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

processing times are approximated by a probability distribution and results for
stochastic processing times are presented. Furthermore, tailored benchmarks
of stochastic no-wait JSP with controllable processing times are created by a
modification of existing benchmarks. Based on these modified benchmark sce-
narios, the effectiveness of the stochastic scheduling approach is demonstrated.
Finally, conclusions are drawn in Section 4.

2. Scheduling

This section presents an efficient scheduling strategy for the stochastic no-
wait JSP with controllable processing times. The no-wait constraints connect
all production steps (tasks) of a single product (job) insofar as each task has to
start immediately after its predecessor. In no-wait environments with fixed pro-
cessing times, the starting time of the job, which is the starting time of its first
task, determines the temporal arrangement of all tasks of this job. With control-
lable processing times, however, the starting times of the individual tasks need
to be determined. The strategy of solving a no-wait JSP with fixed processing
times by dividing it into a timetabling and a sequencing subproblem decreases
complexity. This strategy can also be applied here, however, the complexity
of the timetabling increases. Despite the stochastic nature of the processing
times, deterministic timetabling is applied based on nominal values and allowed
upper bounds of the processing times. To account for the stochastic nature of
the processing times, the deterministic timetabling result is evaluated in terms
of safety margins with respect to deviations of the processing times. This in-
formation about safety margins and the standard deviations of the processing
times are incorporated into an extra penalty term of the sequence optimization
problem. All tasks that feature processing times with high standard deviations
and that are scheduled in time slots which directly affect the makespan are
penalized. In the literature, the sequence of these time slots is sometimes re-
ferred to as critical path. The sequence optimization is done by a tabu search
heuristic (Aschauer et al., 2017, 2018). Optimization goals are to minimize the
total production time (makespan) and its uncertainty in the form of stochastic
variations. In the following subsections, a problem formulation, algorithms for
the timetabling and the calculation of the safety margins, and the proposed
sequence optimization are presented. The results of these algorithms, i. e., a
sequence of jobs, a sequence of tasks or rather their respective starting times
are integrated in a so-called schedule.

2.1. Problem Formulation

The problem consists of a production lot of NJ jobs described by the set
{Jj |j = 1, . . . , NJ}. Each job Jj consists of NT,j tasks summarized in the set
{Tj,n|n = 1, . . . , NT,j}. The plant features in total NM machines described
by the set {Mm|m = 1, . . . , NM}. Each machine Mm can process only one
product at a time, and each task Tj,n is associated with a machine based on the
machine number mj,n ∈ {1, . . . , NM}. The processing time dj,n of a task Tj,n

4

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

is characterized by a lower bound dj,n, an upper bound dj,n, and a standard

deviation σj,n
1. Preemption of tasks is not allowed and tasks of the same job

are connected by no-wait constraints. Scheduling goals are the minimization of
the makespan Cm and its uncertainty characterized by its standard deviation
σm. These goals are incorporated into the following optimization problem.

min
tj,n

wT

[
Cm
σm

]
(1a)

s.t.

tj,n ≥ 0 j = 1, . . . , NJ , n = 1, . . . , NT,j (1b)

tj,n+1 − tj,n ∈ [dj,n, dj,n] j = 1, . . . , NJ , n = 1, . . . , NT,j − 1 (1c)

tendj,n ≤ tk,l ∨ tendk,l ≤ tj,n {(j, n, k, l)|mj,n = mk,l ∧ j 6= k} (1d)

Equation (1a) describes the optimization goal, which is to minimize the weighted
sum of the makespan Cm and its standard deviation σm. The user-defined
weighting vector wT = [w1, w2] has non-negative entries and the ratio w1/w2

prioritizes the optimization goals. The optimization variables are the starting
times tj,n of the tasks. The constraint (1b) guarantees non-negative starting
times tj,n. The constraint (1c) forces the task durations to lie within their lower
and upper bounds. The constraint (1d) ensures that each machine does not
handle more than one task at a time. The end times of the tasks follow as

tendj,n =

{
tj,n+1 n = 1, . . . , NT,j − 1

tj,n + dj,n n = NT,j .
(2)

The end time of a job is tendj,NT,j
. The makespan can be calculated as the maxi-

mum end time of all jobs, i. e.,

Cm = max
j

tendj,NT,j
. (3)

2.2. Timetabling

The purpose of the timetabling is to find feasible starting times for all
tasks contained in a schedule. Typically, the sequence of jobs is given and the
makespan should be minimized. Schuster (2006) showed that optimal timetabling
is NP-hard even for the no-wait JSP with fixed processing times. A computa-
tionally cheaper alternative is non-delay timetabling. Non-delay timetabling
generates a schedule job-wise in the order of the given job sequence. The term
non-delay means that the job to be scheduled finishes as early as possible (with-
out delay) subject to the previously scheduled jobs and the given constraints.

1In the scheduling problem of the hot rolling mill considered in this work, only the heating
times have specified lower and upper bounds. The lower and upper bounds of the remaining
processing times are equally set to the nominal values of the respective processing times, i. e.,
dj,n = dj,n = dj,n.

5

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

In other words, the end time of the job to be scheduled is minimized, given that
the schedule of the jobs which occur earlier in the sequence cannot be changed
anymore. Practical examples show that non-delay timetabling yields excellent
results (Schuster & Framinan, 2003).

2.2.1. Find Starting Times for One Job

The core algorithm of non-delay timetabling needs to find starting times
for all tasks of a job. Here, a modified version of the algorithm presented by
Aschauer et al. (2017) is used. The modification ensures that safety margins are
added to the processing times. These safety margins are added without delaying
the end time of the job and should help to compensate for elongated processing
times. The algorithm works recursively and every recursion addresses one task
Tj,n. The recursive algorithm is selected because the no-wait constraints link all
tasks of a job and the information of previous and subsequent tasks is needed to
make a scheduling decision. The recursive algorithm allows an implementation
from the perspective of individual tasks, which is more easily programmable
than an implementation by loops. The core algorithm is explained in all details
while the underlying functions are only explained textually.

Pseudo code of the recursive core algorithm, which is the function called
findSchedule, is presented in Algorithm 1. The inputs of the function are the
job number j, the task number n, an earliest possible starting time test, and a
latest possible starting time tlst. The values test and tlst define the time slot
when the preceding task Tj,n−1 could be finished, i. e., tendj,n−1 ∈ [test, tlst]. The
outputs of the function are the scheduled starting time tj,n of the task Tj,n, an
error flag err, and a potential starting time tpst. The starting time tj,n is set in
case of no error, i. e., err = 0, and the potential starting time tpst is set in case
of an error, i. e., err = 1.

The function findFirstSlotAfter finds the first free time slot [t1, t2] at
the machine Mmj,n that starts after test, i. e., t1 ≥ test, and which is sufficiently
long, i. e., t2 − t1 ≥ dj,n. For every machine Mm, the scheduled tasks of the
previous jobs are stored. Along the timeline, there occur slots when the ma-
chines are utilized and slots when the machines are free. Figure 1 illustrates an
example of the machine utilization. Here, t1 is the beginning of the first free
time slot after test and t2 is the end time of this slot. In case test lies after the
beginning of this slot and the slot is still long enough (t2 − test ≥ dj,n), t1 is
equal to test.

Due to the no-wait constraint, the time slot [t1, t2] is only feasible if t1 ≤ tlst,
otherwise an error occurs and the error err = 1 and the potential starting time
tpst = t1 are returned. This is the only possibility of generating a new error.
The error occurs because the starting time t1 of the free time slot starts after
the latest possible starting time tlst.

If [t1, t2] is a feasible time slot, the recursion is either terminated at the
last task of the job (n = NT,j) or continued by a recursive function call of
findSchedule for the next task Tj,n+1. The current task Tj,n with the feasible
time slot [t1, t2] can finish the earliest at t1 +dj,n and the latest at the minimum

6

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Algorithm 1: The recursive algorithm findSchedule.

Input: job number j, task number n, earliest possible starting time
test, latest possible starting time tlst

Output: starting time of the task tj,n, error err, potential starting
time tpst

% Finding the first free time slot beginning after test
[t1, t2] = findFirstSlotAfter(test, dj,n,mj,n);

while 1 do
% Checking the time slot [t1, t2] for feasibility
if t1 ≤ tlst then

% Checking the termination criterion of the recursion
if n = NT,j then

tj,n = t1; err = 0; return;
else

% Recursive function call
[tj,n+1, err+1, tpst+1] =
findSchedule(j, n+ 1, t1 + dj,n,min(t2, tlst + dj,n));

% Checking the recursive function call for an error
if err+1 = 0 then

tj,n = sel2ndLst(t1, tj,n+1 − dj,n, tlst, tj,n+1 − dj,n − tol);
err = 0; return;

else
% Checking if the error is because of t2
if t2 < tpst+1 & tlst + dj,n ≥ tpst+1 then

% Finding the first free time slot lasting until tpst+1

[t1, t2] = findFirstSlotUntil(tpst+1, dj,n,mj,n);

else
% Returning the error err+1 to the previous task
err = 1; tpst = tpst+1 − dj,n; return;

end

end

end

else
err = 1; tpst = t1; return;

end

end

of t2 and tlst + dj,n. These times are forwarded to the next task as the earliest
possible starting time and the latest possible starting time, respectively. If the
function call for the next task returns without error (err+1 = 0), a scheduling
decision concerning the current task Tj,n can be made. This decision is made by
the function sel2ndLst, which was not contained in this form in the algorithm
presented in (Aschauer et al., 2017).

The function sel2ndLst selects the starting time tj,n of task Tj,n as the

7

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Figure 1: An example for the machine utilization and the selection of the first free time slot
[t1, t2] after test which is sufficiently long, i. e., t2 − t1 ≥ dj,n.

Figure 2: A typical example for the scheduling of task Tj,n. The function sel2ndLst selects

the starting time tj,n as the second latest out of the four potential times t1, tj,n+1 − dj,n,
tj,n+1 − dj,n − tol, and tlst. In this example, the selected time is tj,n = tj,n+1 − dj,n − tol.

second latest out of the four potential times t1, tj,n+1− dj,n, tj,n+1− dj,n− tol,
and tlst. The rationale behind this selection strategy is described in detail in the
following. The tuning parameter tol represents a safety margin insofar as a task
should start tol time units earlier than necessary. This does not cause a delay of
the end time of the job. A minimal end time of the job is already guaranteed by
the selection of the first free time slots after the earliest possible starting times
of the tasks during the buildup of the recursion. Whenever tj,n+1 > t1 + dj,n,
a possible safety margin can be added to the task which should preferably be
selected as tol. A valid schedule must fulfill tj,n ≤ tlst. Moreover, tj,n ≥ t1
and tj,n ≥ tj,n+1−dj,n are necessary conditions. Due to the previous inequality
conditions also t1 ≤ tlst and tj,n+1− dj,n ≤ tlst hold. By complete enumeration
of all permissible permutations of the four potential starting times, it can be
proved that the second latest time is the right choice, which always fulfills the
stated conditions and meets the goal best. The enumeration of the permissible
permutations is shown in the Appendix. Figure 2 shows a typical example for
the scheduling decision made by the function sel2ndLst.

When the call of findSchedule for the next task Tj,n+1 returns an error
(err+1 = 1), it also returns a suggestion tpst+1 for a new (later) starting time of
the next task. If t2 < tpst+1 and tlst+dj,n ≥ tpst+1 there is a chance to eliminate
the error err+1 here. In fact, a new (later) free time slot [t1, t2] is sought and
the while-loop is repeated. The function findFirstSlotUntil finds the first
free time slot at the respective machine Mmj,n

with t2 − t1 ≥ dj,n that take
until tpst+1, i. e., t2 ≥ tpst+1. If there is no chance to eliminate the error err+1

8

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

here, the flag err = 1 is returned to the previous function call together with the
potential starting time tpst = tpst+1 − dj,n.

The computational complexity of Algorithm 1 can significantly vary and
depends on the number of previously scheduled jobs and on the input data.
Without loss of generality, let us assume for this analysis that every job Jj has
the same number of tasks NT,j = NT . In a best-case estimation, every free time
slot immediately leads to a valid schedule and the complexity of Algorithm 1 is
O(NT). In a worst-case estimation, every free time slot, except for the last one,
leads to an error and the errors are returned over many recursions. An upper
bound for the number of erroneous free time slots is the total number of tasks of
all jobs NJNT . An upper bound for the number of recursions of one erroneous
free time slot is the number of tasks NT of the current job. Therefore, a worst-
case estimation of the complexity of Algorithm 1 is O(NJN

2
T). However, this

upper bound is very unlikely to be reached. The number of possible erroneous
free time slots is much lower for the first jobs to be scheduled and a transfer of an
error over many recursions rarely happens. In simulations, the computational
complexity of Algorithm 1 was always close to the lower bound O(NT). Note
that these considerations do not account for the complexity of the underlying
functions.

2.2.2. Timetabling of a Sequence

The job sequence is stored in a so-called permutation vector

p = [p1, . . . , pi, . . . , pNJ
]T . (4)

Each entry pi represents a job number, i. e., pi ∈ {1, . . . , NJ} with pi 6= pk for
i 6= k.

Timetabling according to Section 2.2.1 is executed sequentially in the order
j = p1, . . . , pNJ

. The function findSchedule is called for the first task Tj,1
of each job Jj with default values test = 0 and tlst = ∞ as earliest and latest
possible starting time, respectively, i. e.,

[tj,1, err] = findSchedule(j, 1, 0,∞). (5)

The choice tlst = ∞ and the fact that all machines are empty at least in the
distant future always guarantee a successful termination (err = 0) of the recur-
sion. The starting times tj,n, n = 2, . . . , NT,j of the remaining tasks of the job
Jj are of course also stored during the recursion.

After the termination of findSchedule for a job Jj , the required time slots
of the tasks [tj,n, t

end
j,n], with tendj,n according to (2), are reserved at the respective

machines Mmj,n . The timetabling continues with a call of findSchedule for
the next job according to the sequence p.

Because of the arrangement test = 0 as the earliest possible starting time of
the first tasks Tj,1, the actual production sequence of the jobs can differ from the
required sequence p. Strict adherence to the sequence is ensured by setting the
earliest possible starting time test of the task Tj,1, j = pi to the already scheduled
starting time tpi−1,1 of the previous job. However, Mokhtari et al. (2011) found

9

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

that such an extra constraint decreases the performance of the timetabling.
Since the sequence of the jobs should be optimized, the permutation vector p
can be seen as a planning sequence and the actual production sequence could
be derived from the obtained timetabling result if needed.

2.3. Sequencing

The sequencing searches for the optimal permutation vector p∗ which mini-
mizes a cost function. Schuster (2006) showed that the sequencing problem for
the no-wait JSP is NP-hard, which motivates the use of heuristic solution meth-
ods also here. The study of Samarghandi et al. (2013) demonstrates that the
tabu search heuristic performs well with many timetabling algorithms. There-
fore, it is also applied here. The scheduling goals are the minimization of the
makespan and its disturbances, cf. (1a). Disturbances of the makespan increase
its standard deviation σm. This occurs especially if tasks which have only little
safety margins are delayed.

2.3.1. Calculation of the Effective Safety Margins

Timetabling yields starting times for all tasks of all jobs. Based on these
starting times, effective safety margins for all tasks of all jobs can be calculated.
The effective safety margin is the extra time a task can take longer than its
minimum duration dj,n until it elongates the makespan Cm.

Algorithm 2 shows pseudo code to calculate all effective safety margins
[tolj,n], j = 1, ..., NJ , n = 1, ..., NT,j . The inputs of the algorithm are an array
with all starting times [tj,n] and the makespan Cm. The effective safety mar-
gins are initialized, i. e., tolj,n = −1, to recognize unassigned values. A function
sortDescending sorts the starting times [tj,n] in descending order and stores
them in the list task list. In a subsequent for-loop, effective safety margins are
calculated according to the order of task list. First, the indexes j and n of the
task to be investigated are determined.

Figure 3 illustrates the calculation of the effective safety margin tolj,n of the
task Tj,n. Tasks in the same row belong to the same job and tasks of the same
color are executed at the same machine. The next task of the same job is Tj,n+1

and the next task at the same machine is Tk,l.
In Algorithm 2, first, the effective safety margin depending on the next task

of the same job and, second, the effective safety margin depending on the next
task at the same machine is calculated. The final effective safety margin tolj,n
of the task Tj,n is the minimum of both values.

The effective safety margin depending on the next task of the same job is
calculated by the effective safety margin tolj,n+1 of the next task Tj,n+1 plus
the task’s own safety margin tj,n+1 − (tj,n + dj,n). Due to tj,n+1 > tj,n, tj,n+1

occurs earlier in task list and the effective safety margin tolj,n+1 of task Tj,n+1

has already been calculated. If Tj,n is the last task of a job (n = NT,j), the
safety margin of this task is Cm − (tj,n + dj,n).

For the effective safety margin depending on the next task at the same
machine, first, the next task Tk,l starting after task Tj,n at machine Mmj,n

=

10

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Algorithm 2: The algorithm for the calculation of the effective safety
margins.

Input: starting times of all tasks [tj,n], makespan Cm
Output: effective safety margins of all tasks [tolj,n]
% Initializing the effective safety margins
[tolj,n] = [−1];
% Sorting the tasks in descending order of their starting times
task list = sortDescending([tj,n]);
for i = 1 : length(task list) do

[j, n] = getIndex(task list[i]);
% Effective safety margins due to the next task of the same job
if n < NT,j then

tolj,n = tolj,n+1 + tj,n+1 − (tj,n + dj,n);

else
tolj,n = Cm − (tj,n + dj,n);

end
% Effective safety margin due to the next task at the same machine
[k, l, end] = getNext(tj,n,mj,n);
while !end do

% Minimum of previous value and new effective safety margin
tolj,n = min(tolj,n, tolk,l + tk,l − (tj,n + dj,n));

if l > 1 then
if tolk,l−1 ≥ 0 then

% Minimum of previous value and new effective safety
margin
tolj,n = min(tolj,n, tolk,l−1 +(tk,l−1 +dk,l−1)−(tj,n+dj,n);
break;

else
[k, l, end] = getNext(tk,l−1,mk,l−1);

end

else
break;

end

end

end

Mmk,l
has to be identified. This is done by the function getNext. If Tj,n is the

last task at the respective machine Mmj,n
, getNext sets the flag end = 1. The

while-loop is entered if end is not set. The effective safety margin depending
on the next task at the same machine is calculated as the sum of the effective
safety margin tolk,l of the next task Tk,l and the safety margin tk,l− (tj,n+dj,n)
between the starting time tk,l of task Tk,l and the minimal end time tj,n + dj,n
of task Tj,n. The minimum of this value and the previously stored value tolj,n
is taken. Due to tk,l > tj,n, the effective safety margin tolk,l has already been

11

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Figure 3: An example for calculating the effective safety margin of the task Tj,n depending on
the next task of the same job and on the next task at the same machine. Tasks in the same
row belong to the same job and tasks with the same color are executed at the same machine.

calculated.
Because of the no-wait constraint, a delayed start of task Tk,l would also

delay the previous task Tk,l−1 of job Jk. Therefore, the first if-clause in the while-
loop checks if task Tk,l has a previous task (l > 1) and the second if-clause checks
if the effective safety margin tolk,l−1 of the previous task Tk,l−1 has already been
calculated (tolk,l−1 ≥ 0). If tolk,l−1 has been calculated, it can be used in the
calculation of the effective safety margin (tolk,l−1+(tk,l−1+dk,l−1)−(tj,n+dj,n))
of the task Tj,n. The minimum of this value and the previously stored value
tolj,n is taken and the while-loop terminates. Else, the next task starting after
task Tk,l−1 at the machine Mmk,l−1

is identified by the function getNext and
the while-loop continues.

The computational complexity of Algorithm 2 is estimated by lower and
upper bounds. The while-loop in Algorithm 2 is only rerun if the effective
safety margin tolk,l−1 has not been assigned before. This can only happen if
tk,l−1 ≤ tj,n, which is at most possible once per machine. Thus, the maximum
possible number of iterations of the while-loop is the number of machines NM .
Without loss of generality, let us again assume for this analysis that every job
Jj has the same number of tasks NT,j = NT and therefore, the total number of
tasks is NJNT . This leads to a best-case complexity of Algorithm 2 of O(NJNT)
if the while-loop is never rerun and to a worst-case complexity of O(NMNJNT).
Simulations showed that the while-loop is hardly ever rerun and practically, the
computational complexity of Algorithm 2 is always close to its lower bound
O(NJNT). Note that these considerations do not account for the complexity of
the underlying functions.

2.3.2. Tabu Search

Tabu search is a heuristic local search algorithm which iteratively tries to
improve a cost function. It was invented by Glover & Laguna (1997). Its basic
idea is to generate a neighborhood N (p) of the current permutation vector p
and continue the search at the best performing neighbor. To avoid unwanted
loops and oscillations (revisiting of previous solutions) during the search, a so
called tabu list is maintained, which prohibits certain neighbors for a limited

12

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

number of iterations. Tabu search is perfectly suitable for parallel computation.
The calculations of the cost functions of the single neighbors are independent
of each other and can thus be easily parallelized. In the current work, the
cost functions of the neighbors are evaluated in a parallel for-loop based on the
openMP-package in the programming language C.

For the problem considered in this paper, the cost function J(p) is de-
signed as the weighted sum of the makespan and potential disturbances of the
makespan, i. e.,

J(p) = Cm + wstoch

NJ∑

j=1

NT,j∑

n=1

max{0, 3σj,n − tolj,n}. (6)

Compared to the cost function (1a), disturbances of the makespan are not con-
sidered by its standard deviation σm but by the second term in (6). The cal-
culation of the standard deviation σm would be computationally too expen-
sive. The makespan Cm is calculated based on (3) and the effective safety
margins tolj,n of all tasks Tj,n, j = 1, . . . , NJ , n = 1, . . . , NT,j are derived by
Algorithm 2. Both, equation (3) and Algorithm 2, need the timetabling re-
sult of the sequence p as input. A penalty value for a potential disturbance is
added if the effective safety margin tolj,n of a task is less than three times the
standard deviation σj,n of the task. The standard deviations σj,n of all tasks
Tj,n, j = 1, . . . , NJ , n = 1, . . . , NT,j are given in advance. The weighting factor
of the potential disturbances is wstoch ≥ 0.

The sequence p0 used to initialize the tabu search is built by a construction
heuristic described in (Aschauer et al., 2017). This construction heuristic builds
up the sequence job by job. It evaluates all remaining unscheduled jobs and adds
the best fitting job to the sequence.

Beginning from p0, the iteration rule of the tabu search is

pk+1 = arg min
p∈N (pk)

J(p). (7)

Here, the neighborhood N (pk) of the permutation vector pk is the set of all
permutations that can be generated by an exchange or shift operation, except
for the permutations which are ’tabu’. More details about exchange and shift
operations can be found in (Aschauer et al., 2018). Three tabu mechanisms are
implemented to force the algorithm to explore new regions of the solution space
and to avoid loops and oscillations, i. e.,

(1) Permanent storage of the evaluated permutation vectors p0, . . . ,pk.

(2) Temporal storage of previously evaluated neighbors N (p0), . . . ,N (pk) in
a first-in-first-out (FIFO) list with fixed list size.

(3) Temporal storage of the positions of the exchange or shift operations that
generated the best permutation vectors p1, . . . ,pk in a FIFO list with
dynamic list size.

In this work, the best sequencing results were achieved by applying all three tabu
mechanisms. Tabu list (1) prevents the algorithm from revisiting exactly the

13

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

same permutation vector. The tabu lists (2) and (3) enforce a broader search.
The strategy to update the dynamic list size of the tabu list (3) is as follows. A
counter is incremented if the cost function remains the same (J(pk+1) = J(pk))
or decremented if the cost function changes (J(pk+1) 6= J(pk)). If the counter
exceeds a certain threshold, the list size is set to a very high value (e. g., b0.9NJc
with the flooring operator b·c). If the counter falls below this threshold again,
the list size is set back to its normal value. The very large list size implies that
after some iterations almost all positions of the exchange or shift operations are
’tabu’ and the algorithm is forced to explore new regions. The tabu list for the
positions is cleared if no neighbors can be found anymore, i. e., if N (pk) = {}.

Figure 4 shows the evaluation of the cost function J(pk) during the search
with different numbers of tabu lists. The dotted line represents the cost function
of the best permutation found and the final best value is written on the right.
Figure 4 contains convergence plots for the data set ’la26’ of the results in
Section 3.1, which are representative for all investigated problems. The spikes
in the convergence plots originate from the dynamic list size of the tabu list (3).
A constant or periodically changing cost function J(pk) indicates a loop and
the algorithm does not provide further improvements. No single tabu list can
prevent the algorithm from oscillating. The tabu lists (1) and (3) break these
oscillations but a periodic pattern is observed at the beginning. The best result
is achieved by applying all three tabu lists.

3. Results

Numerical results are presented, first, for standard no-wait JSP with fixed
processing times. For this class of problems, benchmarks and optimal solu-
tions are available in the literature. Solving these benchmark problems by the
developed scheduling algorithm will demonstrate its outstanding performance.
Second, processing times of the considered plant are analyzed in detail, a prob-
ability distributions of uncertain processing times is derived, and scheduling
results with plant data are presented. Third, new benchmark problems similar
to the considered plant environment are created and the stochastic scheduling
results are compared against results from purely deterministic scheduling. All
computations are performed on a PC with 3700Mhz Intel i7 quad-core processor,
16GB RAM, and Windows 10 operating system. The data handling is done in
Matlab while the scheduling algorithms are implemented in the programming
language C and called from the Matlab environment via mex functions.

3.1. Deterministic Scheduling Results of Benchmark Problems

To demonstrate the performance of the developed scheduling algorithm,
benchmark problems of no-wait JSP with fixed processing times, which have
already been investigated in the literature, are scheduled.

A benchmark problem of size NM ×NJ is specified by a data set containing
the fixed processing times dj,n and the machine numbers mj,n of all tasks Tj,n,
j = 1, . . . , NJ , n = 1, . . . , NM . For every job Jj , the number of tasks NT,j

14

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Figure 4: Convergence plots of data set ’la26’ with different numbers of tabu lists.

equals the number of machines NM , i. e., each job is processed once at every
machine. The data sets are indicated by name abbreviations of the inventing

15

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Table 1: Scheduling results for small no-wait JSP benchmark problems.

data set size Coptm CSchum ∆Schu
% CMok

m ∆Mok
% Cm ∆%

la01 5× 10 971 1043 7.42 975 0.41 975 0.41
la02 5× 10 937 990 5.66 937 0.00 963 2.77
la03 5× 10 820 832 1.46 820 0.00 820 0.00
la04 5× 10 887 889 0.23 888 0.11 887 0.00
la05 5× 10 777 817 5.15 784 0.90 781 0.51
ft10 10× 10 1607 1620 0.81 0 0.00 1607 0.00

orb01 10× 10 1615 1663 2.97 1615 0.00 1615 0.00
orb02 10× 10 1485 1555 4.71 1518 2.22 1485 0.00
orb03 10× 10 1599 1603 0.25 1617 1.13 1599 0.00
orb04 10× 10 1653 1653 0.00 1653 0.00 1684 1.88
orb05 10× 10 1365 1415 3.66 1385 1.47 1370 0.37
orb06 10× 10 1555 1555 0.00 1557 0.13 1555 0.00
orb07 10× 10 689 706 2.47 711 3.19 711 3.19
orb08 10× 10 1319 1319 0.00 1319 0.00 1319 0.00
orb09 10× 10 1445 1535 6.23 1445 0.00 1445 0.00
orb10 10× 10 1557 1618 3.92 1581 1.54 1580 1.48
la16 10× 10 1575 1637 3.94 1575 0.00 1575 0.00
la17 10× 10 1371 1430 4.30 1371 0.00 1384 0.95
la18 10× 10 1417 1555 9.74 1507 6.35 1417 0.00
la19 10× 10 1482 1610 8.64 1491 0.61 1491 0.61
la20 10× 10 1526 1705 11.73 1541 0.98 1526 0.00

average 4.12 0.95 0.61

authors and can be downloaded from the OR-library ([dataset] Beasley, 1990).
The presented algorithm can easily handle this type of benchmark problems

by setting the lower and upper bounds of the processing times to the given fixed
processing times, i. e., dj,n = dj,n = dj,n. For deterministic scheduling, σj,n = 0,
which implies J(p) = Cm in (6).

Table 1 shows scheduling results for several small no-wait JSP benchmark
problems. For these small problems, optimal makespan values Coptm , which can
for example be derived by the branch and bound algorithm by Mascis & Pac-
ciarelli (2002), are available.

CSchum are the makespan values achieved by Schuster (2006) with a tabu
search algorithm after 500 iterations. CMok

m are the makespan values obtained by
Mokhtari et al. (2011) with a genetic algorithm. The makespan Cm is achieved
by the presented algorithm after 500 tabu search iterations. The stopping cri-
terion of 500 tabu search iterations is used to allow for a fair comparison with
existing results from the literature. Moreover, a fixed number of iterations
has the benefit of almost identical computational times for identical problem
sizes. In some cases, the makespan Cm could be further improved by more
iterations. The results of all three solution methods are compared against the

16

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

optimal makespan Coptm . As a measure of suboptimality, the relative deviations
in percent are calculated in the form

∆% =
Cm − Coptm

Coptm

100. (8)

This yields an average suboptimality of only 0.61 % for the presented algorithm.
For comparison, Schuster (2006) reached an average suboptimality of 4.12 %
and Mokhtari et al. (2011) reached an average suboptimality of 0.95 %. The
computational times for all small no-wait JSP benchmark problems are well
below 1 s and therefore not explicitly given.

For the larger no-wait JSP benchmark problems presented in Table 2, strictly
optimal solutions are not available. Therefore, the makespan results CSchum pub-
lished by Schuster (2006) are used as benchmark values for these large problems.
The values CSchum were obtained by a tabu search algorithm after 500 iterations
within the computational time TSchustc . Bożejko & Makuchowski (2009) im-
proved these results on average by 1.54 % using a hybrid tabu search algorithm
that requires the same computational time. The algorithm developed in the
current paper improves the results of Schuster (2006) on average by 3.02 % and
requires the remarkably smaller computational time Tc. This improvement has
two main reasons: a) accelerated hardware2, b) parallel evaluation of the cost
functions of the neighborhood permutations during the tabu search on all avail-
able CPU cores.

These examples demonstrate the effectiveness and the efficiency of the pro-
posed algorithm.

3.2. Plant Environment

For the scheduling problem of the industrial hot rolling mill considered in
this paper (cf. Section 1), some of the processing times are subject to stochastic
disturbances. The most uncertain processing step is the semiautomatic ma-
nipulation of the products on the roller table. The disturbances of the other
processing times are very small. Therefore, only the processing times of the
semiautomatic manipulation are considered as stochastic.

3.2.1. Probability Distribution

For the semiautomatic manipulation, a sufficiently large sample of 1845
recorded real processing times is available for statistical evaluation. Figure
5 shows the frequency distribution h(d) of the durations d of semiautomatic
manipulation and a fitted probability density function in the form of a β-
distribution. The β-distribution is a good choice for an asymmetric proba-
bility density on a limited interval. The probability density function of the

2The computation is done on a PC with 3700Mhz Intel i7 quad-core processor, 16GB
RAM, and Windows 10 operating system. Schuster (2006) used a PC with 1400Mhz Athlon
processor running the operating system Windows 2000.

17

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Table 2: Scheduling results for large no-wait JSP benchmark problems.

data set size CSchum CBozm ∆Boz
% Cm ∆% TSchuc [s] Tc[s] TSchuc /Tc

la26 10× 20 2664 2738 2.78 2691 1.01 14 2.3 6.1
la27 10× 20 2968 2794 -5.86 2881 -2.93 27 2.3 11.9
la28 10× 20 2886 2741 -5.02 2759 -4.40 24 2.3 10.6
la29 10× 20 2671 2596 -2.81 2589 -3.07 12 2.3 5.3
la30 10× 20 2939 2791 -5.04 2712 -7.72 12 2.3 5.3
la31 10× 30 3822 3869 1.23 3736 -2.25 151 11.5 13.1
la32 10× 30 4186 4045 -3.37 4070 -2.77 176 12.2 14.4
la33 10× 30 3869 3751 -3.05 3725 -3.72 120 12.6 9.5
la34 10× 30 3957 3936 -0.53 3772 -4.68 102 12.8 8.0
la35 10× 30 3908 3918 0.26 3938 0.77 120 12.1 9.9
la36 15× 15 2993 2893 -3.34 2837 -5.21 9 1.8 5.1
la37 15× 15 3171 3107 -2.02 3054 -3.69 7 1.8 4.0
la38 15× 15 2734 2706 -1.02 2737 0.11 6 1.7 3.5
la39 15× 15 2804 2725 -2.82 2860 2.00 9 1.7 5.3
la40 15× 15 2977 2804 -5.81 2594 -12.87 12 1.7 7.2
abz7 15× 20 1820 1775 -2.47 1713 -5.88 20 5.7 3.5
abz8 15× 20 1815 1727 -4.85 1714 -5.56 51 5.5 9.4
abz9 15× 20 1781 1705 -4.27 1710 -3.99 52 5.5 9.5

swv01 10× 20 2396 2424 1.17 2330 -2.75 11 2.2 4.9
swv02 10× 20 2492 2484 -0.32 2417 -3.01 16 2.0 8.0
swv03 10× 20 2489 2404 -3.42 2435 -2.17 17 2.2 7.6
swv04 10× 20 2520 2545 0.99 2580 2.38 23 2.1 10.8
swv05 10× 20 2482 2489 0.28 2494 0.48 22 2.2 10.1
swv06 15× 20 3502 3463 -1.11 3352 -4.28 29 5.8 5.0
swv07 15× 20 3343 3299 -1.32 3309 -1.02 32 6.0 5.4
swv08 15× 20 3611 3567 -1.22 3529 -2.27 29 5.9 4.9
swv09 15× 20 3436 3439 0.09 3349 -2.53 39 5.8 6.7
swv10 15× 20 3569 3561 -0.22 3488 -2.27 23 6.0 3.8
swv11 10× 50 5586 5634 0.86 5502 -1.50 1736 133.7 13.0
swv12 10× 50 5358 5465 2.00 5559 3.75 2212 134.7 16.4
swv13 10× 50 5546 5807 4.71 5587 0.74 2360 142.2 16.6
swv14 10× 50 5483 5458 -0.46 5362 -2.21 1602 131.3 12.2
swv15 10× 50 5516 5619 1.87 5470 -0.83 2077 136.4 15.2
swv16 10× 50 6337 6233 -1.64 5793 -8.58 1347 127.3 10.6
swv17 10× 50 5884 5900 0.27 5760 -2.11 1760 119.8 14.7
swv18 10× 50 6247 5931 -5.06 5754 -7.89 1430 128.8 11.1
swv19 10× 50 6308 6283 -0.40 5836 -7.48 1481 135.4 10.9
swv20 10× 50 6019 5945 -1.23 5829 -3.16 1843 123.2 15.0
yn1 20× 20 2654 2630 -0.90 2598 -2.11 68 10.3 6.6
yn2 20× 20 2705 2647 -2.14 2502 -7.50 41 11.0 3.7
yn3 20× 20 2644 2465 -6.77 2575 -2.61 134 10.7 12.6
yn4 20× 20 2705 2630 -2.77 2627 -2.88 53 10.4 5.1

average -1.54 -3.02 8.9

β-distribution is

fβ(x) =

{
1

B(α,β)x
α−1(1− x)β−1 0 < x < 1

0 otherwise,
(9)

18

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Figure 5: Frequency distribution of the duration of semiautomatic manipulation.

which is controlled by the parameters α and β (Papoulis & Pillai, 2002). B(α, β)
is the beta-function, i. e.,

B(α, β) =

∫ 1

0

xα−1(1− x)β−1dx, (10)

which is needed for normalization. A transformation of (9) to the interval
[ds, ds + dr] of possible processing times yields the probability density function

f(d) =
1

dr
fβ

(
d− ds
dr

)
, (11)

which is fitted to the empirical frequency distribution h(d) shown in Figure 5.
An optimization problem

arg min
α,β,ds,dr

∑

samples

|h(d)− f(d)|2 (12a)

s.t. dr ≤ dmax − dmin (12b)

is formulated and solved by the Matlab optimizer fmincon to estimate the
parameters α, β, ds, and dr. The optimizer fmincon is executed with the default
optimization algorithm interior-point. Constraint (12b) limits the probability
density function (11) to the range of the samples. Here, dmax and dmin are the
samples with maximal and minimal duration, respectively.

The expected value of the β-distribution from (9) is E(x) = α/(α+ β) and
its variance is var(x) = αβ/((α+β+1)(α+β)2). For the timetabling, the lower
and upper bounds dj,n and dj,n of the processing times of the semiautomatic
manipulation are chosen equal to the expected value of d according to (11), i. e.,

dj,n = dj,n = E(d) = ds + dr
α

α+ β
. (13)

19

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

The standard deviation σj,n of semiautomatic manipulation tasks is the stan-
dard deviation of d according to (11), i. e.,

σj,n =
√
var(d) =

dr
α+ β

√
αβ

α+ β + 1
. (14)

Random numbers d̃j,n to simulate the stochastic processing times of the semi-
automatic manipulation tasks can therefore be calculated as

d̃j,n = ds + drBrnd(α, β)

= dj,n + σj,n(α+ β)

√
α+ β + 1

αβ

(
Brnd(α, β)− α

α+ β

)
. (15)

Brnd(α, β) is a random number distributed in the interval (0, 1) according to
the β-distribution from (9).

3.2.2. Scheduling Results

For a production lot containing 27 jobs, scheduling results of the original
sequence, a deterministic optimization, and a stochastic optimization are com-
pared. Each job has between 4 and 28 tasks. The original sequence is the
production sequence of the jobs realized at the plant, which was manually cho-
sen by an experienced operator. Unfortunately, the realized starting times of the
tasks are not available. Therefore, the starting times of the tasks for the original
sequence are calculated by Algorithm 1 with tol = 0. The scheduling result of
the original sequence is marked with the superscript orig. Deterministic opti-
mization means that the scheduling procedure of Section 2 is executed without
measures against disturbances of the processing times (tol = 0 in Algorithm
1 and wstoch = 0 in the cost function (6)). This scheduling result is marked
with the superscript det. In comparison, the stochastic optimization also con-
siders deviating processing times (tol = 30 s, various values of wstoch). These
results are further called stochastic and marked with the superscript stoch. The
scheduling results are evaluated in a Monte Carlo simulation (1000 runs) with
randomly generated processing times d̃j,n of semiautomatic manipulation tasks
according to equation (15). Table 3 shows the mean values Cm of the obtained
makespan and the standard deviations σm. The mean makespan Cm is improved
by 4.77 % by the deterministic optimization compared to the original sequence
and the standard deviation σm deteriorates by 7.6 %. The standard deviation
σm of the makespan can be reduced by up to 57.6 % by the stochastic scheduling
approach compared to the original sequence depending on the weighting factor
wstoch. The results from Table 3 show that a weighting factor wstoch = 2.0 yields
a good compromise between improved makespan and reduced uncertainty.

3.3. Stochastic Scheduling Results of Benchmark Problems
The stochastic no-wait JSP with controllable processing times has not been

addressed in the literature so far. Therefore, benchmark problems are generated
and deterministic and stochastic scheduling results are compared against each
other.

20

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Table 3: Comparison of deterministic and stochastic scheduling results for a production lot of
the considered hot rolling mill.

wstoch Corigm Cdetm Cstochm ∆% σorigm σdetm σstochm ∆%

48848.2

46517.5 -4.77

60.4

65.0 7.6
0.5 46631.2 -4.54 48.7 -19.4
1.0 46753.8 -4.29 44.2 -26.8
2.0 46635.8 -4.53 30.3 -49.8
4.0 46909.5 -3.97 25.6 -57.6

3.3.1. Generation of Benchmark Problems

Benchmark problems for the stochastic no-wait JSP with controllable pro-
cessing times are generated based on the existing benchmark problems listed
in Table 2. Each benchmark problem consists of NJ jobs and each job of NM
tasks. For each task Tj,n, j = 1, . . . , NJ , n = 1, . . . , NM , a processing time
dj,n and the respective machine number mj,n are given. Based on this given
data and Table 4 the stochastic benchmark problems are generated.

The lower bounds dj,n of the processing times are set to the given processing
times of the benchmark problems, i. e.,

dj,n = dj,n. (16)

The upper bounds dj,n are chosen to be approximately 10 % higher, i. e.,

dj,n = d1.1dj,ne, (17)

with the ceiling operator d·e.
Moreover, for the generated benchmark problems, it is assumed that ap-

proximately half of the jobs are subject to stochastic disturbances. For these
stochastic jobs Jj , j = 1, . . . , bNJ

2 c, it is assumed that approximately half of
the tasks have stochastic processing times. Tasks Tj,n of the stochastic jobs
which are executed on machines with uneven machine numbers (mj,n uneven)
are chosen to be stochastic.

To model the stochastic processing times d̃j,n, the shifted and stretched β-
distribution (11) with α = 2 and β = 5 is used. To be able to calculate stochastic
processing times d̃j,n according to (15), shifts ds|j,n and ranges dr|j,n are needed.
Therefore, on the one hand, the expected values of the stochastic processing
times are set to the given processing times of the benchmarks problems, i. e.,
E(d̃j,n) = dj,n. According to equation (13) the shifts ds|j,n of a stochastic
processing time follows as

ds|j,n = dj,n − dr|j,n
2

7
. (18)

On the other hand, the ranges dr|j,n of the stochastic processing times are cho-
sen to be machine dependent and defined by percentages of the given processing

21

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Table 4: Machine dependent percentages of the range of the stochastic processing times.

machine number m 1 3 5 7 9 11 13 15 17 19
percentage p%(m) 20 40 60 50 30 10 20 30 40 50

times of the benchmarks problems. As stated above, only tasks which are ex-
ecuted on machines with uneven machine numbers are subject to stochastic
disturbances. The percentages p%(m) for these machines are given in Table 4
and the range dr|j,n of the stochastic processing times can be calculated as

dr|j,n =
p%(mj,n)

100
dj,n. (19)

Based on (14) and (19), the standard deviations σj,n of the stochastic tasks
follow in the form

σj,n =
p%(mj,n)

100
dj,n

√
5

14
. (20)

For the other tasks, the standard deviations are σj,n = 0. According to (15),
random numbers to simulate the stochastic processing times can be computed
in the form

d̃j,n = dj,n + σj,n
14√

5

(
Brnd(2, 5)− 2

7

)
. (21)

3.3.2. Scheduling Results

The benchmark problems generated in Section 3.3.1 are scheduled both de-
terministically with tol = 0 and wstoch = 0 as well as stochastically with tol = 10
and wstoch = 1. These scheduling results are evaluated in a Monte Carlo simu-
lation (1000 runs) with randomly generated processing times according to (21).
The mean values Cm of the obtained makespans and their standard deviations
σm are given in Table 5 for deterministic and stochastic scheduling. The mean
makespan is almost identical on average but the standard deviation is reduced
by 41.45 % on average by the stochastic scheduling approach.

4. Conclusions

In this paper, an effective and efficient algorithm is presented to handle
stochastic no-wait JSP with controllable processing times. So far, this problem
has not been addressed in the literature and also its deterministic counterpart
received only very little attention. However, the problem is of high practical
relevance. Many industrial processes are subject to no-wait constraints (e. g.,
handling of hot or perishable goods, lack of storage) and very often the process-
ing times can be controlled within certain bounds. No-wait constraints dramat-
ically restrict the scheduling. Flexibility in at least some of the processing times
can thus be beneficially used for both a tighter and a more robust schedule.

22

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Table 5: Comparison of deterministic and stochastic scheduling results for benchmark prob-
lems of stochastic no-wait JSP with controllable processing times.

data set size Cdetm Cstochm ∆% σdetm σstochm ∆% Tc
la26 10× 20 2681.7 2689.9 0.31 8.7 5.2 -39.83 5.0
la27 10× 20 2690.8 2788.7 3.64 4.8 6.0 26.42 4.9
la28 10× 20 2642.7 2691.2 1.84 8.3 8.5 2.31 4.8
la29 10× 20 2483.3 2431.6 -2.08 10.9 8.2 -24.41 5.0
la30 10× 20 2660.3 2744.6 3.17 9.7 2.4 -75.50 5.1
la31 10× 30 3687.0 3783.2 2.61 3.1 9.6 213.15 29.8
la32 10× 30 4068.4 4192.1 3.04 10.2 1.6 -84.76 31.4
la33 10× 30 3703.4 3642.9 -1.63 12.3 4.9 -60.04 31.4
la34 10× 30 3682.9 3791.8 2.96 9.4 6.2 -33.78 28.1
la35 10× 30 3864.2 3713.6 -3.90 15.0 6.1 -59.49 28.6
la36 15× 15 2647.6 2790.3 5.39 9.0 2.8 -68.65 2.4
la37 15× 15 2933.7 2995.8 2.12 5.8 6.9 18.93 2.5
la38 15× 15 2584.1 2546.0 -1.48 7.6 5.1 -32.46 2.2
la39 15× 15 2649.8 2721.3 2.70 7.6 2.8 -63.20 2.6
la40 15× 15 2680.6 2660.1 -0.77 8.1 0.6 -92.31 2.7
abz7 15× 20 1610.2 1613.5 0.21 4.0 1.5 -61.14 10.3
abz8 15× 20 1657.7 1582.6 -4.53 2.7 3.6 31.45 11.1
abz9 15× 20 1541.3 1623.2 5.32 4.4 1.1 -75.48 10.5

swv01 10× 20 2288.2 2314.5 1.15 6.2 3.5 -44.22 5.7
swv02 10× 20 2436.7 2436.0 -0.03 9.6 0.3 -97.08 5.7
swv03 10× 20 2356.2 2404.3 2.04 7.6 1.4 -81.72 5.6
swv04 10× 20 2446.6 2429.7 -0.69 7.5 1.8 -75.57 5.6
swv05 10× 20 2411.3 2309.0 -4.24 4.7 3.2 -32.35 6.1
swv06 15× 20 3306.9 3314.0 0.22 7.7 0.0 -100.00 11.3
swv07 15× 20 3086.3 3136.7 1.63 5.7 3.1 -46.82 11.5
swv08 15× 20 3375.5 3444.5 2.05 12.7 3.0 -76.32 12.0
swv09 15× 20 3220.4 3169.3 -1.59 3.7 4.3 14.49 15.2
swv10 15× 20 3415.7 3393.3 -0.66 7.5 1.5 -79.82 15.1
swv11 10× 50 5462.3 5476.7 0.26 7.3 5.9 -19.41 341.5
swv12 10× 50 5476.6 5416.0 -1.11 5.5 0.6 -89.95 332.4
swv13 10× 50 5592.0 5507.3 -1.52 8.7 1.4 -84.37 331.5
swv14 10× 50 5320.2 5309.3 -0.20 6.6 2.8 -57.44 341.5
swv15 10× 50 5250.0 5227.8 -0.42 2.2 2.1 -4.72 330.9
swv16 10× 50 6028.8 5844.9 -3.05 13.1 9.2 -29.89 310.5
swv17 10× 50 5883.1 5590.7 -4.97 16.0 13.7 -14.43 312.9
swv18 10× 50 5690.2 5762.0 1.26 16.4 5.7 -65.40 330.6
swv19 10× 50 5957.6 5959.4 0.03 13.2 6.2 -52.90 327.3
swv20 10× 50 5671.9 5518.7 -2.70 13.9 9.0 -35.22 302.4
yn1 20× 20 2397.9 2381.5 -0.69 6.7 3.7 -45.51 19.6
yn2 20× 20 2447.8 2300.4 -6.02 5.5 3.0 -45.64 17.9
yn3 20× 20 2313.1 2307.0 -0.26 6.5 2.8 -57.38 18.9
yn4 20× 20 2405.2 2445.1 1.66 4.9 2.9 -40.38 18.8

average 0.03 -41.45

23

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

The proposed solution solves the deterministic problem by a decomposition
into a timetabling and a sequencing subproblem. An extension in the deter-
ministic timetabling adds extra safety margins to the scheduled times without
delaying the end times of the jobs. In the sequence optimization subproblem,
an extra penalty term is added to the cost function to punish uncertain tasks
at intolerant positions, i. e., positions that have certainly or most probably a
direct influence on the makespan.

Scheduling results were presented, first, for existing benchmarks of no-wait
JSP with fixed processing times to demonstrate the outstanding performance of
the presented scheduling solution compared to the state of the art. The results
by Schuster (2006), Mokhtari et al. (2011), and Bożejko & Makuchowski (2009)
are outperformed on average.

Second, scheduling results for a hot rolling mill demonstrate the practical
relevance of the considered problem. The best configuration yielded an improve-
ment of the mean makespan of 4.53 % and an improvement of the standard
deviation of 49.8 % compared to the original sequence.

Finally, benchmark problems for stochastic no-wait JSP with controllable
processing times were generated by modification of existing no-wait JSP bench-
marks. For these benchmark problems, stochastic scheduling reduced the av-
erage standard deviation of the makespan by around 40 % while the mean
makespan remained almost unchanged compared to the deterministic scheduling
result.

Future research may address the consideration of additional safety margins
for the occurrence of errors in the production process.

Acknowledgments

The overall support of the industrial research partner Plansee SE, especially
by Michael Eidenberger-Schober, Joachim Resch, and Gernot Reichl, is grate-
fully acknowledged.

This research work has been performed in the EU project Power Semicon-
ductor and Electronics Manufacturing 4.0 (SemI40), which is funded by the
programme Electronic Component Systems for European Leadership (ECSEL)
Joint Undertaking (grant agreement no. 692466) and the programme “IKT der
Zukunft” (project no. 853343) of the Austrian Ministry for Transport, Innova-
tion and Technology (bmvit) between May 2016 and April 2019. More informa-
tion on IKT der Zukunft can be found at https://iktderzukunft.at/en/. More-
over, the project SemI40 is co-funded by grants from Germany, Italy, France,
and Portugal.

References

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck
procedure for job shop scheduling. Management Science, 34 , 391–401.
doi:10.1287/mnsc.34.3.391.

24

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Allahverdi, A. (2016). A survey of scheduling problems with no-wait
in process. European Journal of Operational Research, 255 , 665–686.
doi:10.1016/j.ejor.2016.05.036.

Aschauer, A., Roetzer, F., Steinboeck, A., & Kugi, A. (2017). An efficient algo-
rithm for scheduling a flexible job shop with blocking and no-wait constraints.
IFAC-PapersOnLine, 50 , 12490–12495. doi:10.1016/j.ifacol.2017.08.2056.

Aschauer, A., Roetzer, F., Steinboeck, A., & Kugi, A. (2018). Scheduling of a
flexible job shop with multiple constraints. IFAC-PapersOnLine, 51 , 1293–
1298. doi:10.1016/j.ifacol.2018.08.354.

[dataset] Beasley, J. E. (1990). jobshop1. OR-Library. URL:
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/jobshopinfo.html.

Bożejko, W., & Makuchowski, M. (2009). A fast hybrid tabu search algorithm
for the no-wait job shop problem. Computers & Industrial Engineering , 56 ,
1502–1509. doi:10.1016/j.cie.2008.09.023.

Framinan, J., & Perez-Gonzalez, P. (2015). On heuristic solutions for the
stochastic flowshop scheduling problem. European Journal of Operational
Research, 246 , 413–420. doi:10.1016/j.ejor.2015.05.006.

Glover, F., & Laguna, M. (1997). Tabu Search. Springer. doi:10.1007/978-1-
4615-6089-0.

Grabowski, J., & Janiak, A. (1987). Job-shop scheduling with resource-time
models of operations. European Journal of Operational Research, 28 , 58–73.
doi:10.1016/0377-2217(87)90169-x.

Hall, N. G., & Sriskandarajah, C. (1996). A survey of machine scheduling
problems with blocking and no-wait in process. Operations Research, 44 ,
510–525. doi:10.1287/opre.44.3.510.

Horng, S.-C., Lin, S.-S., & Yang, F.-Y. (2012). Evolutionary algorithm for
stochastic job shop scheduling with random processing time. Expert Systems
with Applications, 39 , 3603–3610. doi:10.1016/j.eswa.2011.09.050.

Jamili, A. (2016). Robust job shop scheduling problem: Mathematical models,
exact and heuristic algorithms. Expert Systems with Applications, 55 , 341–
350. doi:10.1016/j.eswa.2016.01.054.

Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Computational complexity of
discrete optimization problems. Annals of Discrete Mathematics, 4 , 121–140.
doi:10.1016/s0167-5060(08)70821-5.

Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of
machine scheduling problems. Annals of Discrete Mathematics, 1 , 343–362.
doi:10.1016/s0167-5060(08)70743-x.

25

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Macchiaroli, R., Mole, S., & Riemma, S. (1999). Modelling and opti-
mization of industrial manufacturing processes subject to no-wait con-
straints. International Journal of Production Research, 37 , 2585–2607.
doi:10.1080/002075499190671.

Mascis, A., & Pacciarelli, D. (2002). Job-shop scheduling with blocking and no-
wait constraints. European Journal of Operational Research, 143 , 498–517.
doi:10.1016/s0377-2217(01)00338-1.

Mokhtari, H., Nakhai, I., Abadi, K., & Zegordi, S. H. (2011). Production ca-
pacity planning and scheduling in a no-wait environment with controllable
process times: An integrated modeling approach. Expert Systems with Appli-
cations, 38 , 12630–12642. doi:10.1016/j.eswa.2011.04.051.

Özgür, A., Uygun, Y., & Hütt, M.-T. (2020). A review of planning and schedul-
ing methods for hot rolling mills in steel production. Computers & Industrial
Engineering , . doi:10.1016/j.cie.2020.106606. In press.

Papoulis, A., & Pillai, S. U. (2002). Probability, Random Variables and Stochas-
tic Processes. McGraw-Hill.

Pinedo, M. L. (2016). Scheduling . Springer. doi:10.1007/978-3-319-26580-3.

Samarghandi, H., ElMekkawy, T. Y., & Ibrahem, A.-M. M. (2013). Studying
the effect of different combinations of timetabling with sequencing algorithms
to solve the no-wait job shop scheduling problem. International Journal of
Production Research, 51 , 4942–4965. doi:10.1080/00207543.2013.784410.

Schuster, C. J. (2006). No-wait job shop scheduling: tabu search and complexity
of subproblems. Mathematical Methods of Operations Research, 63 , 473–491.
doi:10.1007/s00186-005-0056-y.

Schuster, C. J., & Framinan, J. M. (2003). Approximative procedures for
no-wait job shop scheduling. Operations Research Letters, 31 , 308–318.
doi:10.1016/s0167-6377(03)00005-1.

Shabtay, D., & Steiner, G. (2007). A survey of scheduling with control-
lable processing times. Discrete Applied Mathematics, 155 , 1643–1666.
doi:10.1016/j.dam.2007.02.003.

26

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

Appendix

Selection of the Starting Times

potential starting times

t1, tj,n+1 − dj,n, tj,n+1 − dj,n − tol, tlst

pre-conditions

t1 ≤ tlst
tj,n+1 − dj,n ≤ tlst

necessary conditions

tj,n ≥ t1
tj,n ≥ tj,n+1 − dj,n
tj,n ≤ tlst

goal

tj,n+1 − tj,n = dj,n + tol

Table 6: Enumeration of the starting times which fulfill the pre-conditions. The second latest
time always fulfills the necessary conditions and is closest to the stated goal.

tlst ≥ tj,n+1 − dj,n − tol ≥ t1 ≥ tj,n+1 − dj,n
tlst ≥ tj,n+1 − dj,n − tol ≥ tj,n+1 − dj,n ≥ t1
tlst ≥ t1 ≥ tj,n+1 − dj,n − tol ≥ tj,n+1 − dj,n
tlst ≥ tj,n+1 − dj,n ≥ tj,n+1 − dj,n − tol ≥ t1
tlst ≥ t1 ≥ tj,n+1 − dj,n ≥ tj,n+1 − dj,n − tol
tlst ≥ tj,n+1 − dj,n ≥ t1 ≥ tj,n+1 − dj,n − tol

tj,n+1 − dj,n − tol ≥ tlst ≥ t1 ≥ tj,n+1 − dj,n
tj,n+1 − dj,n − tol ≥ tlst ≥ tj,n+1 − dj,n ≥ t1

︸ ︷︷ ︸
= tj,n

27

Post-print version of the article: A. Aschauer, F. Roetzer, A. Steinboeck, and A. Kugi, �E�cient scheduling of a stochastic no-wait job

shop with controllable processing times,� Expert Systems with Applications, vol. 162, p. 113 879, 2020. doi: 10.1016/j.eswa.2020.113879

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.eswa.2020.113879

