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In order to successfully automate levelling processes, in particular for heavy plates, the
deflection of the leveller has to be compensated based on a deflection model. In this work,
a detailed mathematical deflection model of a hot leveller with bending mechanism and its
experimental validation are presented. The roll intermesh profiles are calculated based on the
deflection of the work rolls which are elastically supported by support rolls, frames, posts and
adjustment screws. The deflection model is suited to compensate the effect of the deflection
on the roll intermesh and the plate flatness as well as to assess the loads of critical parts,
e. g., the support rolls. A new experimental design to measure the deflection of a leveller is
presented and successfully applied for model validation. The work roll deflection is measured
directly by means of displacement sensors that are inserted in cut-outs of test plates. These
test plates are modelled as linear elastic stripes. For normal load levels, the relative accuracy
(repeatability) of the roll intermesh prediction of the model is better than 0.08mm.

Keywords: hot rolling mills; precision leveller; deflection modelling; deflection
measurement

1. Introduction

In hot rolling mills, levellers are applied to reduce residual stresses and flatness
defects of hot-rolled steel plates. To reduce developable flatness defects, alternating
bending and the plastification of the plate at each roll have to be precisely controlled
in longitudinal direction of the plate. At the same time, the roll intermesh along
the plate width has to be controlled to reduce non-developable flatness defects.
Moreover, levelling forces up to several meganewtons may occur that lead to elastic
deformations of the machine, especially when levelling heavy plates. For quality
reasons, these deformations have to be compensated. Furthermore, overloading must
be avoided because it may cause expensive failure of leveller equipment. In order to
increase quality and throughput, the automation of levelling processes is promoted
both by manufacturers and by operators of levellers. In general, automation systems
of levellers have to cope with the challenges mentioned above.

For rolling equipment, the deflection of the machine is usually compensated by
means of additional set points for the references of the position controllers of the
main adjustment variables. For this, the set point is calculated with a deflection
model of the machine. If the load can be fully measured online, the deflection com-
pensation can be performed dynamically in terms of feedback control. In the context
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of automatic gauge control (AGC), this method is often referred to as gaugemeter
control [1]. Typically, the exact load distribution along the rolls of rolling mills or
levellers is not available in real-time. In this case, based on a process model and
the deflection model the additional set point can be applied in a feedforward sense.
However, accurate models of both the process and the deflection are required.

Various models of the levelling process can be found in the literature; some of them
may serve as a basis for leveller automation. However, the deflection of the leveller
is just marginally considered and often neglected. Levelling models for sheet metal,
including elaborated material models with work hardening, are presented in [2] and
[3]. The latter also describes the basics of levelling non-developable flatness defects
by means of work roll bending. An analytical model which may be used to analyse the
influence of lateral work roll profiles on non-developable flatness defects is provided
in [4]. In all aforementioned works, the deflection of the leveller structure is not
considered but the work roll positions are used as geometrical boundary conditions
to solve the deformation problem of the levelled sheet. In [5], a levelling model with
coupled deflection of each work roll is discussed. However, the model does not provide
a roll deflection profile. Examples of successful model-based leveller automation are
given in [6] and [7]. As they focus on levelling models and strategies, they mention
the deflection of the leveller only rudimentary.

For recently built levellers, deflection models may be available from an integrated
CAD/FEM design process, cf. the leveller described in [8]. Such tailored autogen-
erated models are usually not available for machines that were built some decades
ago. However, these old machines may still be in use if they are regularly maintained
and revamped.

In addition to a lack of appropriate deflection models of levellers, the deflection of
a real leveller is difficult to measure. Ideally, the applied roll loads and the resulting
deflections should be measured directly. In [9], a measurement procedure for presses
is standardized. Here, special hydraulic cylinders are used to load the frame that
carries the die. Thus, the loaded area is relatively small, test loads can be easily
applied, and the corresponding deflection can be easily measured close to the loads.
In contrast to the loads in a press, the levelling load is distributed over a considerable
width of several rolls. Creating a load distribution similar to a real levelling load
in a controlled manner, for instance with an array of hydraulic cylinders, would
be laborious. Additionally to the large number of necessary cylinders, a difficulty
would be to design the contact between cylinders and work rolls, whose surfaces
should not carry concentrated forces. Moreover, the upper and the lower work rolls
do not directly oppose each other. The latter fact also prevents the application of
known methods from, e. g., rolling mills, where the upper and the lower work rolls
are brought into contact by means of the adjustment cylinders. In this way, the
mill stretch can be identified in the form of a force-displacement curve. Clearly, this
method does not directly include the identification of a deflection model for roll gap
profiles, cf. [10]. An experimental approach to measure the curvature of the plate by
means of strain gauges right during the levelling process is presented in [11]. They
use their measurement results to validate a levelling model. Clearly, uncertainties of
the deflection model of the leveller are thus erroneously incorporated into the model
of the plate and vice versa.

In this work, a detailed deflection model of a reversing 9-roll hot leveller with bend-
ing mechanism (cf. Figure 1) and the experimental model validation are presented.
The model allows for an arbitrary adjustment of the support rolls and can thus be
easily transferred to levellers with more degrees of freedom. A new experimental
design was developed for validation purposes. The deflection model is suited to
analyse the effect of deflection on the roll intermesh and the flatness of the plate.
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Figure 1. The considered 9-roll hot leveller with bending mechanism.

Moreover, it can be used to assess the loads of critical parts, e. g., the support rolls.
The model grounds on basic geometrical and mechanical properties of the involved
parts; finite element methods were occasionally used to parametrise and verify parts
of the model. Some possibilities to use the model for active deflection compensation
are given in [12] and [13]. However, these publications lack a comprehensive deriva-
tion and a solid validation of the model. These issues are the main contribution of
the current paper.

The paper is organized as follows: In Section 2, the deflection model of the leveller
is derived. Additionally, a basic model of a test plate is presented that is used
for the validation experiments. In Section 3, the design and the procedure of these
experiments are explained. Finally, the validation results are presented. In Section 4,
conclusions are drawn and an outlook on further work is given. In the appendix, the
relations of the kinematics of the leveller are summarized.

2. Deflection model

2.1 Adjustment variables

The considered hot leveller features the following main adjustment variables: The
adjustment screws define the vertical reference position dsdu of the upper subframe;
all following displacements of the upper subframe are relative to this position. The
upper subframe can be vertically positioned and also tilted with respect to the
lateral axis by means of adjustment cylinders (dadc,en, dadc,ex). To control the bending
line of the upper work rolls, the upper subframe is split into two halves. These
halves can be tilted with respect to each other by the angle ϕbend by means of
a hydraulically actuated bending mechanism, cf. Figure 1. The compliance of the
bending mechanism itself is not covered in this work because in [14] it is shown how
this compliance can be automatically compensated by means of feedback control.
Furthermore, the entry and exit rolls can be individually adjusted by dadr,en and
dadr,ex, respectively.
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2.2 Coordinate systems

The origin dsdu = 0 of the screw displacement is defined by the point where the upper
vertices of the lower rolls and the lower vertices of the upper rolls lie on the same
horizontal plane. Usually, the adjustment screws set the reference position of the
upper frame in accordance with the height of the plate, i. e., dsdu = hpl, cf. Figure 2.
In this position, the work rolls would just touch the plate without causing any forces

hpl

rWR

x0

y0

z

xup

yup

z

xlo

ylo

z

up

lo

plateplate

bpl/2

j−1 j j+1

k−1

k

k+1

−xk
WR

drive side view front view

Figure 2. Configuration of rolls and coordinate systems.

or deformations. The origin of the reference coordinate system Ox0y0z is set to the
intersection point of the symmetry planes of the plate, cf. the drive side view in
Figure 2. This coordinate system is suited to describe the deflection of the levelled
plate. To describe the deflection of the upper (up) and lower (lo) work rolls, two
additional coordinate systems Oxupyupz and Oxloyloz are introduced. Their origins
are set to the horizontal centre planes of the work rolls, thus yup = y0−(hpl/2+rWR)
and ylo = −y0 −(hpl/2+rWR), with the work roll radius rWR. The superscripts “up”
and “lo” are omitted, if the context does not require a differentiation between the
upper and the lower frame.

The 9 work rolls are indexed by k, beginning at the entry side with k = 1. The
support rolls are indexed by j, beginning at z = 0. The number of support rolls
associated with each work roll is 3. Furthermore, the edges of the support rolls
are numbered by i = 1, . . . , 6 in ascending order with increasing z coordinate, cf.
Figure 3.

2.3 Assumptions

For the considered leveller, the configuration of the rolls and frames is symmetric
with respect to the planes x0-y0 and y0-z shown in Figure 2. Usually, the leveller is
symmetrically adjusted on the operator side (ops) and the drive side (drs). Assuming
that the plate is symmetric as well, only the drive side of the leveller is considered
for the deflection model.

For all machine components, linear elastic deformation with a constant Young’s
modulus E is assumed. Generally, small deflections and linear geometric relations
are supposed. The deflection of the leveller and the admissible operating range of the
adjustment variables do not exceed a few millimetres, which is small compared to the
dimensions of the leveller. The tilt and the bending adjustment only involve small
rotational displacements of the upper subframe. Furthermore, these small rotational
angles induce only negligible horizontal displacements of the roll centres. As a first
approximation, it is assumed that the adjustment variables can be controlled exactly.
In reality, the actual control accuracy of the adjustment actuators is about 50 µm.
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Figure 3. Top: configuration of work and support rolls. Bottom: line loads and approximated concentrated
forces acting on the work roll with simplified geometry.
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Figure 4. Reference position and position under load of a work roll in contact with a support roll.

2.4 Work roll deflection

In this section, differential equations for the bending line of a single work roll are
developed. Figure 3 shows a work roll (WR) and the corresponding support rolls
(SR). Along the direction x, the work rolls are supported by means of roller bearings
at their journals. These bearings can freely move along the direction y and are thus
neglected. The weight of the upper work rolls is balanced by disk springs and thus
is negligible in this analysis.

Work rolls of hot levellers are usually cooled with water from the inside. They are
therefore hollow with a bore radius of rWR,in. For the deflection model, the simplified
geometry of the work roll shown in the bottom view of Figure 3 is used. Moreover, the
compression of the work roll and the support rolls due to ovalisation and flattening
is assumed to be small, in fact negligible compared to the deflection of the remaining
structure, see also Section 2.6. Consequently, the radii of the work and support rolls,
rWR and rSR, are constant. The areal moment of inertia of a cross section of the
work roll is given by IWR = π(r4

WR −r4
WR,in)/4. Moreover, with the constant Young’s

modulus E, the constant bending stiffness reads as Kb,WR = EIWR.
Figure 4 shows the simplified geometry of a support roll in contact with a work roll,

both in the unloaded reference position and the position with non-zero adjustment
under load. Here, vSR(z) is the vertical displacement of the support roll and adSR(z)
is the nominal adjustment of the support roll relative to the reference position. The
displacement vSR(z) is the sum of the local deformation of the support roll itself and
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the deflection of the structures that support the support rolls, i. e., their bearings,
the subframes etc. The nominal adjustment adSR(z) is controlled by the adjustment
variables of the leveller in terms of rigid body displacements, cf. Equations (A5) and
(A6) in Appendix A. That is, vSR(z) is associated with the elastic deformation due
to the loads and adSR(z) with the actuators. According to Figure 3 and Figure 4,
on the interval z ∈ [zSR,i, zSR,i+1], i = 1, 3, 5, the support roll deflection is related to
the bending line vWR(z) of the work roll and the nominal adjustment adSR(z) by

vSR(z) = vWR(z) − adSR(z). (1)

The shape of the plate is thus directly defined by vWR(z).
Along the plate width bpl, the work roll is loaded by the distributed levelling force

qpl(z), where qpl(z) = 0 for z > bpl/2, see Figure 3. Furthermore, the work rolls
are loaded by the distributed contact forces qSR,j(z) of their contact line with the
support rolls, cf. the bottom view of Figure 3. The work roll is assumed to be in
mechanical equilibrium, i. e., the contact forces balance the levelling force.

The profile of the distributed contact forces qSR,j(z) depends also on the local de-
formation of the support roll. However, modelling these local effects is a challenging
task. For instance, consideration of the bending deflection profile of the support roll
would require to solve differential equations for each roll coupled with the equa-
tions for the work rolls. This would highly increase the complexity of the problem
without significant improvement of the control performance because the available
adjustment variables do not allow for a precise control of local effects anyway. To
simplify the problem, the distributed contact force qSR,j(z) is thus approximated by
two concentrated forces FSR,i and FSR,i+1 acting on the edges of the support roll, cf.
the left support roll in Figure 3. This can be motivated by the following facts: First,
the edges mainly bear the load of the work roll section between two support rolls.
Second, as the edges of the support rolls are close to the bearings, they have a lower
compliance than the surface points between them, see also Section 2.5.2. This may
cause the support roll to partially lose contact with the bent work roll, particularly
for non-zero bending adjustments. High edge loads are the consequence of this effect.
For this analysis, it is thus accurate enough to couple the displacements of the work
and support rolls at the edges of the support rolls.

The contact forces strictly have to be compressive forces. Consequently, the con-
dition

FSR,i ≥ 0 (2)

must hold for each contact force (i = 1, . . . , 6). The forces vanish, if the contact
between the work and the support roll is lost.

The assumption of small deflections qualifies the slender work rolls to be modelled
as Euler-Bernoulli beams, cf. [15]. Thus, a 4th-order ordinary differential equation
for the deflection of the work rolls can be derived as

Kb,WR
d4

dz4 vWR(z) = qpl(z), 0 ≤ z ≤ zWR. (3)

This boundary value problem (BVP) is supplemented by the following boundary
conditions. At z = zWR, boundary conditions for a free end are imposed (I) and
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symmetry conditions are formulated at z = 0 (II), i. e.,

I: d2vWR
dz2 (zWR) = 0,

d3vWR
dz3 (zWR) = 0. (4a)

II: dvWR
dz

(0) = 0,
d3vWR

dz3 (0) = 0. (4b)

As the concentrated edge forces cause discontinuities of the shear forces in the work
rolls, transition conditions for the positions zSR,i can be derived in the form

dnvWR
dzn

(z−
SR,i) = dnvWR

dzn
(z+

SR,i), n = 0, 1, 2, (5a)

d3vWR
dz3 (z−

SR,i) = d3vWR
dz3 (z+

SR,i) − FSR,i

Kb,WR
(5b)

with i = 1, . . . , 6. Here, z+
SR,i and z−

SR,i indicate the right- and the left-hand side limit
at the respective position.

In order to calculate the deflection profiles vk
WR(z), k = 1, . . . , 9, of all work rolls

of the leveller, a BVP has to be solved which consists of nine differential equations in
the form of Equation (3) with corresponding boundary and transition conditions (4)
and (5). The differential equations of the work rolls are coupled by the plate because
the right-hand side of Equation (3), i. e., the distributed plate force qk

pl(z), depends
on the shape defined by the bending lines vk

WR(z) of all work rolls, k = 1, . . . , 9.
Furthermore, the work rolls are coupled by the elastic frames because the force FSR,i,
which appears in the transition condition (5b), generally depends on the deflection
of all support roll edges of all work rolls. The force-deflection relations of the frames
and the model of the plate are discussed in the following four sections.

2.5 Force-deflection relations of the frames

In this section, the force-deflection relations between the forces FSR,i and the effective
elastic deflections vSR(zSR,i) at the edges of the support rolls are derived. These
effective deflections are briefly referred to as the deflection of the frame, however,
they also include the deflection of the bearings, the subframes, the screws and the
posts.

First, vectors are introduced which allow for a compact notation of the considered
deflections and forces. An evaluation of Equation (1) at the locations zSR,i of the
edges i = 1, . . . , 6 of the support rolls of the work roll k defines the deflection vector
vk

SR of the support roll, the displacement vector vk
WR of the work roll, and the vector

of the nominal support roll adjustment adk
SR,




vk
SR,1
...

vk
SR,6




︸ ︷︷ ︸
vk

SR

=




vk
WR(zSR,1)

...
vk

WR(zSR,6)




︸ ︷︷ ︸
vk

WR

−




adk
SR(zSR,1)

...
adk

SR(zSR,6)




︸ ︷︷ ︸
adk

SR

.
(6)

By analogy, the vector zk
SR of the locations of the edges and the vector F k

SR of the
edge forces are introduced. Note that all these vectors are elements of R6.

The vectors corresponding to either the upper or the lower frame can be combined
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Figure 5. Nonconforming contact under load and typical force-deflection characteristic of the real machine,
cf. [16].

to a column vector as well. The edge forces, for instances, are assembled in the form

F up
SR =

[
F k

SR

]
∈ R24, k ∈ {2, 4, 6, 8}, (7a)

F lo
SR =

[
F k

SR

]
∈ R30, k ∈ {1, 3, 5, 7, 9}. (7b)

By analogy to Equation (7), the vectors vup
SR, vlo

SR, vup
WR, vlo

WR, adup
SR, and adlo

SR can
be defined.

The edge forces FSR,i in Equation (5b) are the solution of the generally nonlinear
vector-valued force-deflection relation

vν
SR = sν

lev (F ν
SR) , ν ∈ {up, lo}, (8)

subject to the contact condition (2),

F ν
SR = (sν

lev)−1 (vν
WR − adν

SR) , ν ∈ {up, lo}, (9)

cf. Equations (6) and (7). Inserting Equation (9) into Equation (5b) shows the
influence of the nominal adjustment on the work roll deflection.

2.5.1 Contact nonlinearities
Backlash, surface roughness or geometric deviations in the contact alignment or

the surface shape may cause nonconforming contacts between the parts of the lev-
eller. These nonconformities lead to nonlinear force-deflection curves of the real
machine as shown in Figure 5, [16]. It is supposed that for forces greater than a
calibration force Fcal, the contact surfaces conform and the force-deflection relations
are approximately linear because they are dominated by the linear elastic material
behaviour.

Applying this concept to the leveller, the force-deflection relation (8) may be
written in the form

vSR = slev

(
FSR,cal

)

︸ ︷︷ ︸
vSR,cal

+ ∂slev
∂FSR

∣∣∣∣∣
FSR,cal︸ ︷︷ ︸

Slev

(
FSR − FSR,cal

)
(10)

for F k
SR,i > F k

SR,cal,i, ∀k, i. An approximate model valid for all forces F k
SR,i ≥ 0 is

obtained by using the linear part SlevFSR also for the interval 0 ≤ F k
SR,i ≤ F k

SR,cal,i,
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cf. the dashed line in Figure 5. Hence, the relation (10) reads as a linear form

∆ṽSR = vSR − (vSR,cal − SlevFSR,cal︸ ︷︷ ︸
ṽSR,cal

) = SlevFSR, (11)

where ∆ṽSR describes the deflection relative to the backlash ṽSR,cal.
By means of Equation (6), the calibration state vSR,cal is associated to a work

roll deflection vWR,cal and a corresponding support roll adjustment adSR,cal. Nor-
mally, the leveller is calibrated by means of a calibration plate, which is thick and
thus only elastically deformed. However, the deformation vWR,cal of the calibration
plate is difficult to measure. Here, vWR,cal is approximately calculated by solving
the deformation problem of the calibration plate at the calibration point by means
of the plate model presented in Section 2.8. Usually, the displacement sensors of the
adjustment cylinders are set to zero at the calibration point. Therefore, the adjust-
ments ∆dα, α ∈ {adc, ex; adc, en; bend; adr, en; adr, ex}, see Appendix A, relative to
that point define the relative nominal adjustment

∆adSR = adSR − adSR,cal (12)

of the support rolls. Note that ∆dα are the adjustment quantities that are actually
controlled by the actuators when operating the calibrated leveller. Furthermore, the
relations

vSR = vWR − ∆adSR − adSR,cal (13a)
vSR,cal = vWR,cal − adSR,cal (13b)

are obtained by combining Equation (12) with Equation (6) and additionally eval-
uating Equation (6) at the calibration point. Hence, Equation (13) allows for the
elimination of vSR,cal in Equation (11), which yields

∆ṽSR = vWR − ∆adSR − vWR,cal + SlevFSR,cal

= SlevFSR. (14)

Equation (14) can now be solved for FSR if the work roll displacement vWR, the
actual adjustment ∆adSR and the known quantities of the calibration state are
given.

In order to ensure nonnegative contact forces when solving Equation (14) for FSR,
the stiffness matrix Clev = S−1

lev has to be recondensed according to the current
contact conditions (cf. condensing of stiffness matrices in finite element methods,
e. g., [17]): For each location zSR,i where contact is lost, the corresponding force
F k

SR,i = 0 and the displacement ∆ṽk
SR,i change their roles of known and unknown

variable in (14).
The compliance matrices Sup

lev ∈ R24×24 and Slo
lev ∈ R30×30 will be systematically

derived in the following. Emphasis is put on the compliance of the subframes, the
posts and the screws.

2.5.2 Compliance of support rolls
Each support roll is held in place by two spherical roller bearings, which generally

cannot carry bending. Therefore, the support roll is modelled as a simply supported
Timoshenko beam. In order to better approximate the actual contact between the
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work roll and the support roll, the beam is loaded by a linearly distributed load
qSR(z) that causes the same sum of forces and moments as the concentrated contact
forces FSR,i and FSR,i+1 acting on the edges of the support roll j, cf. Section 2.4. The
analytical solution of this problem is again fitted to a linear ansatz, which yields the
deflections v̆SR,j = [v̆SR,i v̆SR,i+1]T at the roll edges.

In this way, a linear deflection model of a single support roll in the form v̆SR,j =
S̆SR,jF̆SR,j , F̆SR,j = [FSR,i FSR,i+1]T, can be derived. For both the upper and the
lower frame, the compliance matrices of all individual support rolls are combined in
a common matrix

S̆SR = diag(S̆SR,j) (15)

with respect to the vector FSR, cf. Equation (7).
2.5.3 Compliance of roller bearings

Roller bearings (Br) are characterized by nonconforming contacts (cf. Sec-
tion 2.5.1) between the rollers and the inner and the outer ring. Hence, for radial
loads, the force-deflection characteristic of bearings is similar to the curve given in
Figure 5. A nominal curve can be requested from the bearing manufacturer.

From the manufacturer’s curve, the scalar radial compliance s̆Br can be identified
as the slope of the linear part. By analogy to the compliance matrices of the support
rolls, all scalar compliances of the bearings can be combined in a compliance matrix
for the upper and the lower frame,

S̆Br = diag(s̆Br). (16)

2.5.4 Compliance of subframes
The cartridges and subframes of the leveller are complex mechanical structures

which are either casting parts or welded structures. Here, the respective compliance
or stiffness model

F̆F = S̆−1
F v̆F = C̆Fv̆F (17)

is derived by means of static condensation of a finite element model for the up-
per and lower substructure1. This method is described, e. g., in [18], where C̆F is
called boundary flexibility because only loads and displacements on the boundary
are considered and the matrix does not contain any rigid body modes.

For the upper structure of one half of the bending frame, the three-dimensional
model with simplified geometry of the considered components is shown in Figure 6.
In addition to the frame and the cartridge, the main axis and the stubs of the 24
bearing housings are taken into account. Here, a stub is the part of the housing that
is between the bearing and the cartridge. In order to obtain a linear compliance
model, all parts are merged into one elastic body. Of course, this approach renders
the condensed model slightly stiffer.

The vector v̆F describes the displacements of the boundary areas ΓF,m (see Fig-
ure 6 for one example) defined by the projection of the roll shoulder on the bearing
stub. The forces F̆F are the corresponding reactions. In the following, particular
boundary conditions chosen for the identification of the stiffness of the upper frame
are explained.

1Henceforth, all quantities related to the subframes are indicated by the subscript F.
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Figure 6. Components of the upper subframe and cartridge used for the finite element model.

Boundary conditions in the bearing bores for the bending mechanism are formu-
lated that prevent horizontal displacement of the hole surface Γ0,2. This is justified
because the feedback-control of the bending angle approximately compensates for
the horizontal deflection of the link and the pins of the mechanism.

Along the vertical direction, the subframe is held in place by the adjustment
screws. Their interface with the subframe is referred to as ΓSc,en and ΓSc,ex, see
Figure 6. The vertical displacement of these surfaces is constrained to zero. Along
the direction x, the subframe is supported by sliding bearings in the posts. This is
reflected by setting the x-displacements of all nodes on ΓSc,en and ΓSc,ex to zero, which
prevents rigid body displacements. Due to symmetry conditions, zero displacement
along the direction z is defined for the cross section surface Γ0,3 of the main bending
axis.

By analogy to the upper structure, the compliance matrix of the lower subframe
was derived. Additionally, the screws for the adjustment of the entry and exit roll
were modelled as compression members. Their compliance was superposed with the
compliance of the subframe to obtain the compliance matrix S̆lo

F of the complete
lower substructure.
2.5.5 Compliance of posts and screws

Figure 7 shows the symmetric configuration of a pair of posts (P) and adjustment
screws (Sc), which are linked by a cross head. The adjustment screws are held in
place by hydraulic adjustment cylinders, the pistons of which serve as nuts for the
screws. A post consists of an outer shell and an inner core, which together have
the cross-sectional area AP. The post is prestressed by means of two nuts and the
inner core in order to reduce the influence of the nonlinear contact deformation,
cf. Section 2.5.1. Similarly, the adjustment screws are prestressed by the balancing
cylinders (cf. Figure 1), which carry the weight of the upper frame and a prestress-
ing force. Generally, prestressing forces are not considered in this analysis because
they do not change the locally linear compliance of the posts and screws, cf. [19].
The bending deflection of the cross head is expected to be small compared to the
compression of the screws and the stretch of the posts. Hence, it is neglected.

The vertical load F̆P of a post stretches the post by v̆P = s̆PF̆P. The post is
modelled as compression member, thus its compliance is s̆P = lP/(EAP) with the
effective post length lP. For the post deflections v̆P = [v̆P,en v̆P,ex]T and the respective
forces F̆P = [F̆P,en F̆P,ex]T on the entry and exit side, the vectorized force-deflection
relation can be given in the form

v̆P = diag(s̆P)︸ ︷︷ ︸
S̆P∈R2×2

F̆P. (18)
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Figure 7. Configuration of posts and adjustment screws.

An adjustment screw is compressed by its vertical load F̆Sc by v̆Sc = s̆ScF̆Sc. Mod-
elling the compliance of the threaded part of the screw and the nut is a challenging
task. Semi-empirical models for standardized metric bolts and nuts of typical dimen-
sions are reported in [20]. However, the given screw and nut deviate from standard
both in shape of the thread teeth as well as in the dimension of bolt and nut. There-
fore, the compliance s̆Sc of the screw will be identified by means of measurements,
cf. Section 2.7 and Section 3. Here, the influence of the screw down adjustment dsdu
on the compliance is neglected. By analogy to Equation (18) the local compliance
model of both screws is obtained as

v̆Sc = diag(s̆Sc)︸ ︷︷ ︸
S̆Sc∈R2×2

F̆Sc, (19)

with F̆Sc = [F̆Sc,en F̆Sc,ex]T.

2.6 Complete deflection model

The compliance matrices of the parts that were derived in the previous sections are
now superposed to obtain the compliance matrices for both the entire upper and
entire lower frame. In order to exemplify this procedure, the superposition of the
screw and post compliances is carried out first. Generally, all considered parts of the
frames are supported in a statically determinate way by their higher-level structure.
For instance, the post forces F̆P support the vertical load and the moments which
are caused by the two screw loads F̆Sc at the cross head. Evaluating the balance of
forces and moments, the mapping MSc,P ∈ R2×2 between the screw and the post
forces can be uniquely given in terms of the nominal geometry of the part as

F̆P = 1
2

[
1 + xSc,ex

xP,ex
1 − xSc,ex

xP,ex

1 − xSc,ex
xP,ex

1 + xSc,ex
xP,ex

]

︸ ︷︷ ︸
MSc,P

F̆Sc, (20)
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cf. Figure 7. Furthermore, the stretch of the posts causes a displacement v̆Sc
P of the

cross head at the mount points of the screws. Based on the principle of virtual work,
this offset displacement can be expressed as

v̆Sc
P = MT

Sc,Pv̆P. (21)

The local deflection v̆Sc of the screws and the offset displacement v̆Sc
P are now super-

posed to yield the total deflection of the screws with respect to the fixed boundaries
ΓP,en and ΓP,ex marked in Figure 7, i. e.,

v̆SP = v̆Sc + v̆Sc
P = v̆Sc + MT

Sc,Pv̆P. (22)

This superposition also holds for general, nonlinear force-deflection relations of the
involved parts. In order to obtain linear force-deflection relations, the respective
compliance matrices are inserted into Equation (22)

v̆SP = S̆ScF̆Sc + MT
Sc,PS̆PF̆P

=
(
S̆Sc + MT

Sc,PS̆PMSc,P
)

︸ ︷︷ ︸
SSP∈R2×2

F̆Sc, (23)

where S̆SP denotes the compliance matrix of the structure of posts and screws.
By analogy to Equation (20), the mapping matrices of the remaining parts can

be derived: the matrix MF,Sc between the upper subframe and the screws as well as
the matrices Mν

SR,Br between the support roll loads and their bearings and Mν
Br,F

between the bearings and the subframes, ν ∈ {up, lo}. Let the vector v̆ρ contain the
local deflections of the respective part ρ ∈ {SR, Br, F, SP} in one frame. Like the
screw and post deflections in Equation (22), these local deformations are superposed
to yield the total deflection vSR of the support rolls with respect to the boundaries
ΓP,en and ΓP,ex,

vup
SR = v̆up

SR + (Mup
SR,Br)T

(
v̆up

Br + (Mup
Br,F)T(v̆up

F + MT
F,Scv̆SP)

)
(24a)

vlo
SR = v̆lo

SR + (Mlo
SR,Br)T

(
v̆lo

Br + (Mlo
Br,F)Tv̆lo

F

)
. (24b)

Furthermore, by inserting the linear force-deflection relations of the various parts
into Equation (24), the linear force-deflection relations Slev of the pair FSR and
∆ṽSR of the linear model (14) are finally obtained as, cf. Equation (23),

Sup
lev = S̆up

SR + (Mup
SR,Br)T

(
S̆up

Br + S̆up
F + MT

F,ScS̆SPMF,Sc
)

Mup
SR,Br (25a)

Slo
lev = S̆lo

SR + (Mlo
SR,Br)T

(
S̆lo

Br + S̆lo
F

)
Mlo

SR,Br. (25b)

By means of Equations (14), (24) and (25), it can be calculated for a given load
FSR, how the local deflections v̆ρ, ρ ∈ {SR, Br, F, SP}, contribute to the total de-
flection ∆ṽSR. For instance, v̆SR,up

Br = (Mup
SR,Br)Tv̆up

Br , cf. Equations (21) and (22).
In Figure 8, these contributions are shown for the work rolls 4 and 5 for unit loads
F up

SR = F lo
SR = [1, . . . , 1]T. All contributions are normalized by the total deflection

∆ṽk
SR,1 of the respective work roll k. Apparently, the posts, the screws, and the sub-

frames dominate by contributing more than 90% of the deflections. The contribution
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Figure 8. Normalized deflection contributions of the parts of the leveller frames to the deflection of the
support roll edges.

of the posts and screws does not depend on z because the screw mount points and
their associated deflections vSP are located in a plane with z = const. The lateral
deflection profile is thus mainly given by the deflection of the subframes. The small
contributions of the support rolls and the bearings depend of course on the actual
load distribution. They are homogeneous in the chosen example. Given the dominant
influence of the posts, the screws, and the subframes on the compliance, it seems
justified to neglect minor effects like flattening and compression of the work and
support rolls. This is especially true in view of the limited number and accuracy of
actuators for adjusting the leveller (cf. Section 2.3).

2.7 Parameter identification

As far as possible, the deflection model is parametrised with nominal dimensions and
material parameters. However, some parameters have to be identified. For instance,
in Section 2.5.5 the screw compliance s̆Sc was introduced as an unknown parameter.
Furthermore, with the definition of the boundary conditions for the FE models in
Section 2.5.4, the displacements of nodes were constrained on rather large areas.
These constraints reduce the degrees of freedom of the problem and generally lead
to stiffer models.

In order to resolve these uncertainties and to improve the model accuracy, a para-
meter identification was performed. That is, by minimizing the error between the
measured and calculated work roll deflection, the screw compliance s̆Sc was iden-
tified and the subframe compliances S̆up

F and S̆up
F were adapted. The experiment

for acquiring these measurements is described in detail in Section 3. Note that an
identification of the screw compliance might also account for uncertainties of the
subframe compliances and the deflection of the cross head that was neglected in
Section 2.5.5.

The compliance matrices of the subframes are tuned in order to adapt the lateral
bending profile. This is achieved by scaling the entries of the compliance matrices
that are associated with the boundary areas ΓF,m that are the closest to the machine
centre (z = 0). The indices m of the considered boundary areas or stub elements,
which define their position in the vectors v̆up

F and v̆lo
F , can be combined in the sets

K̂up
F = {1, 7, 13, 19} and K̂ lo

F = {1, 7, 13, 19, 25}. Now, the diagonal scaling matrices
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Figure 9. Definition of the roll intermesh.

Ξν = diag(ξν
ll) with the elements

ξν
ll =

{
ξν

F if l ∈ K̂ν
F

1 else
, ν ∈ {up, lo}, (26)

are defined, where ξup
F and ξlo

F are the actual scaling factors. The modified subframe
compliance matrices Ŝup

F and Ŝlo
F with scaled elements then read

Ŝν
F = (Ξν)TS̆ν

FΞν , ν ∈ {up, lo}. (27)

The results of the model shown in Figure 15 and 16 were obtained with the scaling
parameters ξup

F = 1.15 and ξlo
F = 1.1.

2.8 Plate model

In general, any levelling model that relates the plate deformation imposed by the roll
displacement vWR(z) to a corresponding plate force qpl(z) can be used as plate model.
For instance, stripe models presented in [3] could be used. During the experiments
for the validation of the deflection model of the leveller, described in Section 3,
the test plates are only elastically deformed. This is in contrast to the plates that
undergo a real levelling process, where plastic deformation is imposed. Therefore, a
plate model tailored to the validation case is presented. It is generally assumed that
the weight of the plate has no influence on its deformation in the leveller.

Since the plate deformation is a function of x and z and is therefore associated
with non-vanishing stresses σx and σz, the problem can in general not be considered
as an uniaxial state of stress. A common approach in levelling theory is to simplify
the problem by neglecting the stress σz and to virtually divide the plate along
its width (direction z) into thin independent stripes, cf., e. g., [3, 4]. Each virtual
stripe of width δbpl is then modelled as a beam with constant deflection and stress
distribution along z. This approach is justified because the curvatures along the
direction x are usually significantly higher than the curvatures along the direction
z.

The roll gap or roll intermesh vk
im is important to describe the plate deflection. It

represents the vertical position of a work roll k relative to its neighbours. According
to Figure 9, the roll intermesh vk

im can be calculated in terms of the vertical positions
yWR,pl of the roll contact points in the reference coordinate system Ox0y0z. For a
homogeneous plate thickness hpl and a constant work roll radius, the roll intermesh
vk

im is a function of the work roll displacement vk
WR and the roll pitches ∆xk

WR only,
i. e.,

vk
im = vk

WR − vk−1
WR − ∆xk−1

WR(vk+1
WR − vk−1

WR )
∆xk

WR + ∆xk−1
WR

, (28)
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where ∆xk
WR = xk+1

WR −xk
WR is the roll pitch of the rolls k and k+1, k = 2, . . . , NWR−

1. All displacements are here expressed in the reference coordinate system Ox0y0z.
A bending of the plate is imposed at the work roll k, if vk

im < 0 for upper rolls and
vk

im > 0 for lower rolls. Otherwise, the roll is not in contact with the plate.
In [21], the following approximate relation between roll intermesh and imposed

plate curvature for sheet levelling

κk = −ζ
vk

im
max(∆xk−1

WR , ∆xk
WR)2 (29)

is suggested, where for plastic bending ζ depends on the steel grade. Here, the
relation (29) is also adopted for the elastic bending of the test plate. It can be
shown that for an Euler-Bernoulli beam which is clamped at xk−1

WR and xk+1
WR and

linear elastically deflected by vk
im at xk

WR, the relation (29) with ζ = 6 is exact:
Let vpl(x) describe the deflection of the considered beam along the direction x. The
solution of the Euler-Bernoulli differential equations for the bending line vpl(x) on
the interval x ∈ [xk−1

WR , xk
WR] reads as

vpl(x) = − vk
im

(∆xk−1
WR)3

(
2(x − xk−1

WR)3 − 3∆xk−1
WR(x − xk−1

WR)2
)

. (30)

The curvature profile is obtained by differentiating the deflection profile twice, i. e.,

κ(x) = d2vpl(x)
dx2 = − 6vk

im
(∆xk−1

WR)2

(
2x − xk−1

WR
∆xk−1

WR
− 1

)
. (31)

The evaluation of the curvature profile (31) at x = xk
WR thus yields

κ(xk
WR) = −6 vk

im
(∆xk−1

WR)2 . (32)

For the case where the beam is simply supported at one end and clamped on the
other end, ζ = 5.33 is found. This case corresponds to the elastic bending of the
plate at the entry and the exit roll.

In this work, the mean tension along the direction x due to the elongation of single
stripes is neglected. If no residual curvatures are considered, the bending moment
for elastic bending of a rectangular cross section can be given in terms of the vertical
stress distribution σk

x(y) or the local imposed curvature κk, respectively,

δMk
z = 2δbpl

hpl/2∫

0

−yσk
x(y)dy = δbpl

Kb,pl
bpl

κk, (33)

where Kb,pl is the elastic bending stiffness of the plate of the total width bpl.
From the equilibrium of forces and moments at the two stripe sections defined by

x ∈ [xk−1
WR , xk

WR] and x ∈ [xk
WR, xk+1

WR ], the roll force δF k
pl is obtained in the form,

δF k
pl = δMk−1

z − δMk
z

∆xk−1
WR

− δMk
z − δMk+1

z

∆xk
WR

(34a)
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for k ∈ {2, . . . , 8}. At the first and last roll (k ∈ {1, 9}), no bending occurs and the
bending moment vanishes. Hence, the roll forces at these rolls take the form

δF 1
pl = δM2

z

∆x1
WR

, δF 9
pl = δM8

z

∆x8
WR

. (34b)

The concentrated force δF k
pl acting on a virtual stripe corresponds to the homogen-

eous load distribution qk
pl = δF k

pl/δbpl across the stripe. The distributed load qk
pl(z)

is then found for infinitesimal small stripe widths, δbpl → 0, i. e.,

qk
pl(z) =

dF k
pl

dz
= lim

δbpl→0

δF k
pl

δbpl
. (35)

Of course, according to Equations (28), (29), (33), and (34), qk
pl(z) is a function of

the distributed work roll displacements v̺
WR(z), ̺ ∈ {k − 2, . . . , k + 2}.

2.9 Model overview and numerical solution

The deflection model of the leveller is summarized as follows: The set of nine linear
differential Equations (3) of the work roll bending are the basis of the model. It
is supplemented with the boundary conditions (4) and the transition conditions
(5). Equation (14) is solved for the contact forces that appear in the transition
conditions Equation (5b). Here, the condition (2) for positive contact forces has to
be taken into account; it renders the problem nonlinear. The compliance matrices
in Equation (11) are given by the relations (25). In Equation (14), the relative
nominal adjustment ∆adSR is required. It is defined by the adjustment variables
given in Equations (A1)–(A6). The right-hand side of the differential Equations (3)
corresponds to the distributed work roll forces according to Equation (35). They
follow from the work roll profiles by means of Equations (28), (29), (33), and (34).

In the form described above, the deflection model constitutes a nonlinear multi-
point boundary value problem with non-separated boundary conditions. A numerical
algorithm that can solve this kind of problem is presented in [22] and is provided by
the Matlab R© function bvp4c.

For the forth order BVP of beam bending, initial guesses for the deflection and
its three derivatives have to be provided. A very simple, yet sufficient, initial guess
is a uniform deflection profile vk

WR(z) = vk
WR,0 = const. Because the work roll

displacements are usually dominated by the support roll adjustment adSR, it is
reasonable to set vk

WR,0 to the nominal adjustment at the plate border, i. e., vk
WR,0 =

adk
SR(bpl/2), k ∈ {2, 4, 6, 8}, and vk

WR,0 = adk
SR, k ∈ {1, 9}.

3. Model validation

As discussed at the beginning, two major problems have to be addressed when
measuring the deflection of a leveller: First, a controlled distributed load profile is
difficult to apply. Therefore, a workpiece has to be used where the force-deflection
relation is known. Second, the deflection should be directly measured at the point
where the load is applied.
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Figure 10. Principle of the deflection measurement with forceless supports inserted into a test plate.

plate
support

handling
screws

eddy-current
sensor

cable routing

Figure 11. Support with mounted eddy-current sensor inserted into the test plate.

3.1 Experiment design

The first point is addressed by using a simple test plate at room temperature. As the
cold plate is rather stiff, great forces can be exerted by only imposing small elastic
deformations on the plate. It is assumed that the force-deflection relation of the test
plate can be modelled by means of the linear load model presented in Section 2.8.

A method of dealing with the second point is illustrated in the Figures 10–13. In
order to measure the deflection, the plate has longitudinal cut-outs which cover the
distance of two neighbouring lower work rolls. In the cut-out, a support is placed
that rests just on the lower work rolls. An ample clearance between the plate and
the support ensures the plate does not apply any forces to the support, which is thus
neither deformed nor displaced when the plate is loaded. An eddy-current distance
sensor is mounted on the support. It directly measures the displacement of the upper
roll k relative to the straight connection of the work rolls k − 1 and k + 1. This way,
the work roll deflection in terms of the roll intermesh vk

im, cf. Equation (28), is
directly measured with a precision of 0.01mm. Figure 11 shows a support inserted
into a cut-out of the test plate.

During the experiments, the work rolls are not driven, i. e., the test plate rests
on the rolls. Consequently, dynamic effects on the deflection cannot be investigated
with the proposed experiment. For instance, friction and lubricant conditions may
vary while the plate is moved through the leveller. These effects can lead to changes
in the force-deflection relations of contacts and in the distribution of forces between
the parts of the leveller. However, effects in contacts between parts are expected to
be small: In Section 2.6, it was shown that the posts, the screws and the subframes
dominate the deflection of the machine.

In order to achieve load distributions of different widths, two test plates – a wide
and a narrow one – were manufactured. The configuration of the wide plate is illus-
trated in Figure 12. The number of the sensors and their distribution over the plate
is a trade-off between cost, machining complexity and desired spatial resolution. In
this work, the roll intermesh of the work rolls 2 and 6 were measured equally dis-
tributed over the plate width at the five locations zl

out, zl
mid, zctr, zr

mid, and zr
out. A
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Figure 12. Wide test plate with the sensor placements relative to the work and support roll locations.
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Figure 13. The wide test plate aligned in the considered leveller.

photo of the wide test plate in the fully opened leveller is shown in Figure 13. The
plate rests on the lower work rolls, while the roll 9 is at the most left of the picture.
The rings in the plate corners were used to manually align the plate.

Before the experiments, the leveller was calibrated with Ftot = 1.18MN. Differ-
ent load cases were considered by varying the mean adjustment ∆dadc,mean, the tilt
adjustment ∆dadc,tilt, and the bending ∆dbend. The values for tilting and bending
were pre-set while the upper frame was unloaded. Then, the upper frame was des-
cended stepwise onto the test plate by increasing the mean adjustment. Each new
set point was held constant for a while to wait for the decay of transients. Hence,
only steady-state values are used for all following analyses.

For the symmetrical model, the total load or levelling force Ftot of the leveller can
be obtained from the screw forces F̆Sc by

Ftot = 2(F̆Sc,en + F̆Sc,ex). (36)

The measured total load force Ftot is derived as the sum of the four adjustment
cylinder forces computed from the measured hydraulic pressure values. Corrections
are made for the weight of the upper frame.

3.2 Validation results

Figures 14 a) and b) show the measured roll intermesh vim,meas of four selected
sensors plotted versus the corresponding mean adjustment ∆dadc,mean and the meas-
ured total load force Ftot, respectively, for an experiment where all upper support
rolls are adjusted equally, i. e., ∆dadc,tilt = ∆dbend = 0. Here, an offset correction
was added to all roll intermesh signals so that they are zero when ∆dadc,mean is zero.

The roll intermesh is defined with respect to the undeformed and unloaded plate,
cf. Equation (28). Practically, the origin of the reference coordinate system Ox0y0z
is difficult to identify. Due to unknown manufacturing and assembling errors of the
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Figure 14. Measured roll intermesh for selected rolls over the mean adjustment and the measured total
load force for the large test plate.

plate, the supports, and the sensors, the origin cannot be calculated from nominal di-
mensions. Moreover, neither the origin nor the point of first contact, can be precisely
identified from the shown roll intermesh signals, as can be inferred from Figure 14 a).
However, for ∆dadc,mean > 1.4mm, the relation is approximately linear, indicating
that the work rolls have established full contact with the plate. Moreover, the rolls
seem to touch the plate not at the same instant, which indicates that the test plate
is not exactly flat and thus exhibits a nonlinear force-deflection relation. This is
also proven by the force-deflection diagram in Figure 14 b). Here, additionally, the
computed ideal linear force-deflection relation of the test plate is shown for the spe-
cial case of a uniform roll intermesh of all rolls, assuming nominal parameters. To
allow for better comparison, this ideal curve is aligned at the maximum value of the
deflection of the work roll 6 at z = zctr. Apparently, for high loads the test plate
behaves like the ideal characteristic but it is more compliant for lower forces. This
supports the hypotheses of non-ideal contact conditions due to flatness defects of
the test plate.

The observations made above lead to the following consequences for the subsequent
analysis: For the wide test plate, the leveller was recalibrated at Ftot = 6MN,
defining the origin of a new coordinate system ďadc for the adjustment variables and
v̌im for the roll intermesh. For the narrow test plate, a similar threshold value was
found.

The linear plate model was fitted to the measured behaviour in the load range
6MN < Ftot < 16MN. Here, the plate stiffness Kb,pl was adapted. This parameter
fitting problem can be solved separately from the deflection model, because the plate
deflection was measured directly.

In order to validate the deflection model, roll intermeshes v̌im for different load
cases relative to the adjustment ďadc,mean = ďadc,tilt = ďbend = 0mm were calcu-
lated and compared with the respective measured roll intermeshes v̌im,meas. Only
roll intermesh differences are compared, i. e., the difference of two profiles of two
different load cases. This way, the deflection state corresponding to the calibration
point does not need to be known. Hence, for both the wide and the narrow plate a
case with only a small mean adjustment ďadc,mean was chosen as reference and for
the remainder of this section, roll intermesh results are given as difference ∆v̌im to
these reference cases. Tab. 1 lists the considered load cases. Moreover, a Coulomb
friction part of the total load force of about ±0.12MN was identified by comparing
the steady-state forces before and after displacement in different directions.

Figure 15 shows the measured and computed roll intermesh differences ∆v̌im for
both test plates and for selected load cases. Obviously, the measured roll intermesh
differences indicate that the problem is not exactly symmetrical. Nevertheless, in
the mean, the model captures very well the expected characteristic of the deflection
of the leveller, as can be inferred from the intermesh profiles in Figure 15. The cases
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Table 1. List of load cases.

∆ďadc,mean ∆ďadc,tilt ∆ďbend ∆Ftot
Name (mm) (mm) (mm) (MN)

wide 1 0.71 −0.01 0.02 3.0
wide 2 1.29 −0.01 0.02 5.6
wide 3 0.45 −0.01 −0.59 2.6
wide 4 0.11 0.03 −1.17 2.5

narrow 1 1.24 −0.01 0.09 4.0
narrow 2 0.34 −1.15 −0.58 2.3
narrow 3 0.02 0.71 −0.61 1.3
narrow 4 0.41 0.02 −0.73 2.8
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Figure 15. Comparison of measured and calculated roll intermesh difference.

“wide 1” and “narrow 1” with zero tilt and bending adjustment, cf. Figure 15 a)
and c), clearly show that the lateral centre of the machine deflects more than the
border, resulting in a lower roll intermesh in the centre. Moreover, an inhomogeneous
deflection in longitudinal direction may be inferred from all cases shown in Figure 15.
The absolute roll intermesh at work roll 6 is lower than at work roll 2. The effect of
bending and tilting becomes apparent in the cases “wide 4” and “narrow 3”, where
the absolute roll intermesh at the lateral machine centre (bending) and in total at
the work roll 2 (tilting) are significantly increased.

Also in terms of the quantitative accuracy, the model shows very good perform-
ance. The residuals ∆v̌im,meas − ∆v̌im between measurement and model are shown
in Figure 16. Here, ∆v̌im,meas is represented as the mean value of both sides for the
off-centre sensor positions. The model only shows residuals up to 0.08mm. This is
quite small compared to the nominal adjustment. As an example, the case “nar-
row 1” in Figure 15 c) is considered. With an almost vanishing tilt adjustment
∆ďadc,tilt = −0.01mm, the mean adjustment ∆ďadc,mean = 1.24mm would lead to a
roll intermesh of −1.24mm at roll 6 for an ideally rigid leveller. For the real, compli-
ant leveller, only a mean resulting roll intermesh of about −0.1mm is both measured
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Figure 16. Residuals of the model for the considered load cases of Tab. 1.

and calculated. Moreover, the calculated total levelling forces are very close to the
measured forces.

4. Conclusion

In this work, a mathematical deflection model of a hot leveller with bending mechan-
ism was systematically developed. The model structure can be easily transferred to
levellers with an arbitrary adjustment of the support rolls. Linear compliance models
of the individual parts are derived by means of compression members, beams, and –
for the complex subframes – condensation of FE models. Contact nonlinearities for
small forces are approximately modelled as backlash.

A new principle for the measurement of the deflection of a leveller was presented
and successfully applied for the validation of the model. The deflection of the work
rolls is measured by means of displacement sensors that are inserted in cut-outs of
test plates. The supports of the sensors stay unloaded and thus undeformed during
the experiments. The test plates are modelled by means of linear elastic stripes.
However, it was observed that the plates used in the validation experiments exhibit
a significant nonlinear elastic force-deflection behaviour. Furthermore, the point of
first contact between work rolls and the plate is highly uncertain. Both points have to
be addressed in future experiments in order to validate the full nonlinear deflection
model including backlash.

Nevertheless, the direct measurement of the plate deformation allowed for the
validation of the linear part of the deflection model. The model shows a very good
accordance with the measured roll intermesh, where the accuracy of the roll inter-
mesh prediction is better than 0.08mm.

The validated deflection model can be used in the first place to analyse the influ-
ence of the deflection on the resulting plate flatness both in lateral and longitudinal
direction of the product. Furthermore, it can be applied to optimally compensate
for the deflection. Because the loads of critical parts like the support rolls are an
inherent part of the solution of the deflection problem, they can be monitored and
constrained in order to prevent premature failure due to overloading.
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Appendix A. Kinematics of the nominal roll adjustment

The adjustment variables dadc,en, dadc,ex, ϕbend, dadr,en, and dadr,ex define the nominal
vertical adjustment adSR(z) of the support roll centers in terms of pure rigid body
displacements. The strokes dadc,en and dadc,ex of the adjustment cylinders can be
equally written as mean value

dadc,mean = 1
2 (dadc,en + dadc,ex) (A1a)

and difference value

dadc,tilt = dadc,en − dadc,ex. (A1b)

The horizontal location of the adjustment cylinders in the coordinate system Ox0y0z
is described by the coordinates ±xSc,ex and zSc, see Fig. 7. The adjustment cylinders
displace the support rolls of the upper work roll, k ∈ {2, 4, 6, 8}, with respect to the
coordinate yup by

adk
adc = −dadc,mean + dadc,tilt

2xSc,ex
xk

WR. (A2)

Here, xk
WR refers to the longitudinal position of work roll k in the coordinate system

Ox0y0z, cf. Fig. 2. At the lateral coordinate z, the bending adjustment leads to the
vertical displacement

adbend(z) = −ϕbend
2 (z − zSc) , (A3)

which is the same for all upper support rolls. Sometimes, the bending adjustment is
given in terms of the nominal adjustment dbend of the center of the upper subframe,
i. e.,

dbend = ϕbend
2 zSc. (A4)

Eqs. (A2) and (A3) are superposed to get the total nominal vertical adjustment of
a point on a support roll of the upper subframe

adk
SR(z) = adk

adc + adbend(z), k ∈ {2, 4, 6, 8}. (A5)

The lower work rolls k ∈ {3, 5, 7} are not adjustable. The laterally uniform adjust-
ment of the entry and exit roll with respect to ylo is defined by, cf. Fig 1,

ad1
SR = −dadr,en and ad9

SR = −dadr,ex. (A6)
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