
This document contains a post-print version of the paper

A Queue-Based Dynamic Power Control Approach for Wireless
Communication Networks

authored by Martin Böck, Andreas Kugi, and Christoph Mecklenbräuker

and published in Proc. 6th International Symposium on Communications, Control, and Signal Processing.

The content of this post-print version is identical to the published paper but without the publisher’s final layout or
copy editing. Please, scroll down for the article.

Cite this article as:
M. Böck, A. Kugi, and C. Mecklenbräuker, “A queue-based dynamic power control approach for wireless communication
networks”, in Proc. 6th International Symposium on Communications, Control, and Signal Processing, Athens, Greece,
May 2014, pp. 404–407. doi: 10.1109/ISCCSP.2014.6877899

BibTex entry:
@InProceedings{acinpaper,
Title = {A Queue-Based Dynamic Power Control Approach for Wireless Communication Networks},
Author = {Martin B{\"o}ck and Andreas Kugi and Christoph Mecklenbr{\"a}uker},
Booktitle = {Proc. 6th International Symposium on Communications, Control, and Signal Processing},
Year = {2014},
Address = {Athens, Greece},
Month = may,
Pages = {404--407},
Doi = {10.1109/ISCCSP.2014.6877899}

}

Link to original paper:
http://dx.doi.org/10.1109/ISCCSP.2014.6877899

Read more ACIN papers or get this document:
http://www.acin.tuwien.ac.at/literature

Contact:
Automation and Control Institute (ACIN) Internet: www.acin.tuwien.ac.at
Vienna University of Technology E-mail: office@acin.tuwien.ac.at
Gusshausstrasse 27-29/E376 Phone: +43 1 58801 37601
1040 Vienna, Austria Fax: +43 1 58801 37699

Copyright notice:
c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

http://dx.doi.org/10.1109/ISCCSP.2014.6877899
http://dx.doi.org/10.1109/ISCCSP.2014.6877899
http://www.acin.tuwien.ac.at/literature
www.acin.tuwien.ac.at
mailto:office@acin.tuwien.ac.at


A QUEUE-BASED DYNAMIC POWER CONTROL APPROACH FOR
WIRELESS COMMUNICATION NETWORKS
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Vienna University of Technology
Institute of Telecommunications

Gusshausstrasse 25, A-1040 Vienna
christoph.mecklenbraeuker@tuwien.ac.at

ABSTRACT

A wireless communication network is considered where the
data queues of each link are explicitly taken into account.
Based on the queue dynamics the optimal transmission pow-
ers for minimizing a predefined cost functional are calculated
using the theory of optimal control. Thereby certain con-
straints concerning the transmission powers are explicitly
taken into account. The minimization of the cost functional
may be related, e.g., to the system-wide maximization of
Quality of Service (QoS) in the communication network. It
turns out that the necessary conditions for the optimal control
strategy are well interpretable and the minimization of the
Hamiltonian can be reformulated as a convex optimization
problem. The applicability of the method is shown by means
of simulation studies.

Index Terms— Optimal control, convex optimization,
Pontryagin’s maximum principle, power control.

1. INTRODUCTION

The topic of power control has been extensively studied in
the literature. Power control can be utilized for many tasks in
multi-user communication such as interference management,
energy management, and connectivity management [1]. One
possibility is to determine the transmission powers as the so-
lution of a properly chosen optimization problem which is of-
ten motivated by achieving an adequate level of QoS for each
user in multi-user communication networks [2, 3]. The cost
functions need to be accordingly defined, e.g., to maximize
the total network throughput, the lowest data rate among all
links or the data rate of one specific user [3].

On the one hand, a frequent approach is to consider static
optimization problems [2, 3]. Thereby, the optimal transmis-
sion powers are typically determined at a specific instant of
time taking into account the current status of the network.

On the other hand, dynamic optimization problems or op-
timal control problems, either in continuous- or discrete-time,
can be considered [4]. This approach is particularly interest-

ing for wireless communication networks as it enables to de-
termine the optimal transmission powers over a time horizon
of finite length, taking into account the fading characteristics
of the channel.

In this paper, the data queues in the network are incor-
porated for the formulation of an optimal control problem
(OCP). This is inspired by other works, see, e.g., [4, 5], which
show how the data queues in the network are included in the
considerations concerning QoS. By utilizing the queue sizes
as a measure for QoS it is possible to indirectly account for
delays and transmission errors [6]. In the following, the OCP
is analyzed revealing several links to previous results in the
literature [3]. The basic feasibility of the presented concept is
shown by means of simulation studies.

The paper is organized as follows: Section 2 introduces
the model of the system which describes the queue dynamics
in terms of the transmission powers. The considered OCP is
set up in Section 3. Section 4 deals with the solution of the
OCP. Sections 5 and 6 contain simulation studies and some
conclusions, respectively.

2. SYSTEM MODEL

An abstract network with K links is considered where each
link describes a transmitter-receiver pair, see Fig. 1. Such a
model can be used to describe cellular and ad-hoc networks,
see, e.g., [7]. The ith link is modelled by means of a queue
with size xi describing the number of bits waiting for trans-
mission. The vector x =

[
x1 x2 . . . xK

]T
describes

the state of the overall system. Moreover, ri and ui, i =
1, . . . ,K, denote the time varying bit arrival rates and the
transmission powers of link i, respectively. The signal-to-
interference-plus-noise ratio (SINR) for the ith link is given
by

SINRi (t,u) =
|hii|2ui

K∑
j=1
j 6=i

|hij |2uj + σ2

, (1)
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Fig. 1. A model for a K link interference channel.

with u =
[
u1 u2 . . . uK

]T
, where σ2 denotes the addi-

tive white Gaussian noise (AWGN) power which is assumed
to be constant and equal for all receivers. The link gain ma-
trix H = [hij ]i,j=1,...,K results from the channel matrix of a
multi-user MIMO broadcast wireless network under consid-
eration of the pre- and decoding matrices. Its elements hij
give the time-varying gains from the jth transmitter to the ith
receiver and contain all losses and modulation factors. The
time-varying nature of the link gains hij is indicated by the
argument t of SINR. According to Shannon’s capacity for-
mula [8] the achievable data rate of link i is calculated as

Ci (t,u) = ld (1 + SINRi (t,u)) (2)

where the bandwidth of each link is assumed to be constant
and normalized to 1. The queue size for link i is then mod-
elled as an integrator in the form

d

dt
xi = ẋi = ri (t)− Ci (t,u) , i = 1, . . . ,K . (3)

In the following it is assumed that each link is operating in the
high SINR regime, i.e. SINRi (t,u) � 1 ∀i = 1, . . . ,K
which results in the system differential equations

ẋ = f (t,u) =




r1(t)− ld (SINR1 (t,u))
r2(t)− ld (SINR2 (t,u))

...
rK(t)− ld (SINRK (t,u))


 . (4)

According to physical limitations the transmission power u is
subject to constraints. In this paper, two types of constraints
u ∈ Ui are considered by means of the convex sets

U1=
{
u ∈ RK

∣∣ 0 ≤ ui ≤ ui,max, i = 1, . . . ,K
}
,

U2=

{
u ∈ RK

∣∣∣∣∣
K∑

i=1

ui ≤ umax, 0 ≤ ui, i = 1, . . . ,K

}
.

(5)

Here U1 corresponds to an individual power constraint where
ui,max denotes the maximum transmission power of link i,
and U2 describes a sum power constraint with maximum total
power umax. All subsequent results hold for both, U1 and U2.
Therefore, a general constraint set U is introduced which can
be equally replaced by U1 or U2. The transmit powers will be

allowed to vary over time t. Before we formulate the multi-
user transmit power control problem, we first need to define
the set of admissible time-variant transmit power allocations
UPC = {u (t) ∈ PC| u (t) ∈ U ∀t ∈ [0, T ]} where T > 0
specifies a time horizon of finite length and PC is the vector
space of piecewise continuous functions.

3. OPTIMAL CONTROL PROBLEM

In the following, an OCP is considered which consists of
minimizing a cost functional over a time horizon of finite
length subject to the system dynamics (4) and the constraints
(5). The manipulable optimization variables are given by the
transmission powers u. The OCP reads as

min
u(·)

J (u (·)) (6a)

s.t. ẋ = f (t,u) , x (0) = x0 (6b)
u (t) ∈ U ∀t ∈ [0, T ] (6c)

with x0 denoting the initial queue sizes at time t = 0, the cost
functional J (u (·)) = V (x (T )) +

∫ T
0
l (x(t),u(t)) dt and

T denoting the optimization horizon. The end- and integral
cost terms are assumed to be of the form l (x (t) ,u (t)) =
1
2x

T (t)Qx (t) + ξ (u (t)) and V (x (T )) = 1
2x

T (T )Sx (T )
with the positive definite diagonal weighting matrices S =
diag

(
S1 . . . SK

)
and Q = diag

(
Q1 . . . QK

)
. For

reasons which will become clear in Section 4 the function
ξ (·) has to be convex and monotonically increasing.

Solving the OCP (6) requires the knowledge of the link
matrix H(t) and the bit arrival rates r(t) over the optimiza-
tion horizon 0 ≤ t ≤ T . We assume perfect channel state
information H(t) and bit arrival rates r(t) to be available for
solving the OCP.

We employ an OCP for transmit power control in order to
achieve a desired QoS-level for all links, as this is one of the
fundamental objectives in multi-user wireless networks. To
this end, QoS may be expressed in terms of the queue sizes x
and/or transmission powers u. The minimization of the queue
size of each link corresponds to maximizing QoS because
small queue sizes are in general equivalent to a high transmis-
sion quality. Incorporating the transmission powers directly
into the objective functional representing QoS gives the pos-
sibility to achieve a trade-off between high performance and
low costs (low transmission powers).

4. SOLUTION OF THE OPTIMAL CONTROL
PROBLEM

For the solution of the OCP (6) the necessary conditions
of the maximum principle of Pontryagin [9] are employed.
Henceforth, all optimal system quantities are referred to
with the superscript ∗. Therefore, u∗ and x∗ denote the
minimizer of the optimization problem (6) with J (u∗ (·)) ≤
J (w (·)) , ∀w (t) ∈ UPC and the corresponding optimal state
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trajectory x∗ (t) with x∗ (0) = x0, respectively. Necessarily,
the optimal solution must satisfy the equations

ẋ∗ =

(
∂H

∂λ

)T

(t,x∗,u∗,λ∗) , x∗ (0) = x0 (7a)

λ̇
∗

=−
(
∂H

∂x

)T

(t,x∗,u∗,λ∗) , λ∗ (T ) =

(
∂V

∂x

)T

(x∗ (T ))

(7b)

H (t,x∗,u∗,λ∗) ≤ H (t,x∗,w,λ∗) ∀w ∈ U , ∀t ∈ [0, T ] ,
(7c)

where H (t,x,u,λ) = l (x,u) + λTf (t,u) denotes the
Hamiltonian with the adjoint states λ (t) ∈ RK . Evaluation
of (7) for the given OCP (6) yields the following two-point
boundary value problem

ẋ∗ = f (t,u∗) , x∗ (0) = x0 (8a)

λ̇
∗

=−Qx∗, λ∗ (T ) = Sx∗ (T ) . (8b)

The optimal input u∗ to the system at time t ∈ [0, T ] follows
from solving the static optimization problem (cf. (7c))

u∗ = arg min
u∈U

Ω (u) (9a)

Ω (u) = ξ (u)−
K∑

i=1

λ∗i ld (SINRi (t,u)) , (9b)

where all terms in H (t,x,u,λ) not explicitly depending on
u are neglected.

Obviously, the minimization of the Hamiltonian (9) is
equivalent to the constrained maximization of the weighted
sum rate in the network augmented by the cost of the trans-
mission powers ξ (u). Therefore, the optimal transmission
powers u∗ (t) maximize the weighted sum rate in the network
at every instant t ∈ [0, T ] under additional consideration of
minimizing the costs in the sense of ξ (u). This establishes
a direct link to existing results on the static optimization of
the total weighted sum rate in a communication network, see,
e.g., [7]. The weights at time t are given by the value of the
adjoint variables λ∗(t). According to (8b), the properties of
Q and S and the fact that x∗ > 0 must hold, the weights
satisfy λ∗ (t) > 0 ∀t ∈ [0, T ].

The crucial part with regard to the numerical solution of
the boundary value problem (8) is given by the minimization
of the Hamiltonian (9). The cost function (9b) is a non-convex
function which means that a solution of (9a) is possibly only
a local minimum. However, based on the ideas presented
in [10] the optimization problem (9) can be replaced by an
equivalent convex optimization problem which results in a
unique minimizer u∗. To this end, note that instead of (9)
the equivalent optimization problem

min
u∈U,s

ξ (u) + sTλ∗ (10a)

s.t.
1

SINRi (t,u)
≤ 2si , i = 1, . . . ,K (10b)

with additional variables s ∈ RK can be solved. By introduc-
ing the transformation ui = gi (v) = 2vi with new variables
v ∈ RK and v = g−1(u) the optimization problem (10) is
reformulated in convex form as

min
v,s

ξ (g (v)) + sTλ∗ (11a)

s.t. ld




K∑

j=1
j 6=i

2ld(cij)+vj−vi−si + 2ld(di)−vi−si


 ≤ 0

i = 1, . . . ,K (11b)
g (v) ∈ U (11c)

with cij =
|hij |2
|hii|2 , di = σ2

|hii|2 . Concerning the convexity, note
that if ξ (·) is convex and monotonically increasing then the
function ξ (g (v)) is convex in v. Therefore, the cost function
as a sum of ξ (g (v)) and a linear function of s is convex. The
first constraint (11b) is known to be a convex function [11].
The constraint (11c) can be explicitly written as

vi − ld (ui,max) ≤ 0, i = 1, . . . ,K (12a)

in the case of U = U1 and

K∑

i=1

2vi ≤ umax (12b)

for U = U2 and is therefore convex in both cases.
Based on the results presented in [12] it can be shown

under weak assumptions that the conditions of the maximum
principle are not only necessary but also sufficient for u∗ to be
the optimal solution of the considered problem. Calculating
the optimal state trajectories x∗(t) with inputs u∗(t) over the
horizon [0, T ] corresponds to solving the two-point boundary
value problem (8) which can be achieved using a classical
collocation method. The optimal transmission powers u∗ =
g (v∗) at each instant t for given λ∗ (t) can be obtained in
an efficient way as the solution of the convex optimization
problem (11) and are therefore uniquely determined.

5. SIMULATION STUDIES

The presented method of obtaining the transmission powers
by solving an OCP is applied to a practical example of a wire-
less network consisting of K = 4 links. The flat Rayleigh
fading channel is generated based on the assumption that
each user is moving with an average speed of vU = 0.83 m/s
(pedestrian). The carrier frequency is chosen according to the
3GPP standard for Long Term Evolution as fc = 2.6 GHz.
For example, the absolute values of the time variant link ma-
trix entries |h1j |, j = 1, . . . , 4 are shown in Fig. 2(a). The bit
arrival rates are chosen according to Fig. 2(b).

As already mentioned in Section 3, it is assumed partic-
ularly with regard to a practical implementation that suitable
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predictions of the bit arrival rates and the link matrix are avail-
able. Therefore, the optimization horizon must be restricted
to Tmax = 1

2fD
with the Doppler shift fD = vUfc

c0
and the

speed of light c0. In the present case the optimization horizon
is set to T = 69 ms. The weighting function for the inputs is
chosen as

ξ (u) =
1

2
uTRu (13)

with R = diag
(
1 103 1 1

)
1 /W2 which fulfills the re-

quirement of convexity and is monotonically increasing for
u > 0. The remaining parameters are (measurement units are
omitted for brevity)

x0 =
[
12 4 10 5

]T
, Q = diag

(
1 5 1 3

)
(14a)

σ2 = 10−4, and S = 10−2diag
(
1 1 1 1

)
. (14b)

The admissible set of inputs is chosen as U = U1 with
umax =

[
0.1 0.2 0.15 0.3

]T
W. The optimal transmis-

sion powers as the solution of the boundary value problem
(8) and the static optimization problem (11) as well as the
optimal state trajectories are depicted in Fig. 3.

6. CONCLUSION

This contribution investigated the use of optimal control the-
ory for determining the optimal transmission powers in a K
link wireless network. The goal was to calculate the transmis-
sion powers in order to minimize a system-wide cost func-
tional. The necessary conditions for the optimal inputs and
state trajectories are well interpretable and have nice rela-
tions to existing methods for the static optimization of the
total weighted sum rate in a communication network. The

minimization of the Hamiltonian was replaced by a convex
optimization problem which allows to calculate the unique
optimal transmission powers in an efficient way.
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