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Manifold Stabilization and Path–Following Control for Flat Systems
with Application to a Laboratory Tower Crane

Martin Böck1 and Andreas Kugi1

Abstract— This paper deals with the stabilization of man-
ifolds for flat systems. Path–following control results as the
special case of stabilizing a manifold with dimension one. The
target manifold is defined in terms of the components of the
flat output. A control strategy is developed which achieves
the following objectives. Firstly, the error dynamics, which
describe the deviation of the output from the target manifold,
are to be asymptotically stabilized. Therefore, if the system
is initialized such that all states of the error dynamics are
zero, the invariance property holds. This means that in the
nominal, undisturbed case the output of the system does not
leave the target manifold for all future times. A further objective
is that the movement of the system on the target manifold
can be appropriately controlled. The degrees of freedom of
this movement are given by the dimension of the manifold.
Some nice features are gained by the restriction to flat systems.
Amongst others, the controller which achieves the objectives
of stabilization, invariance, and movement on the manifold
can always be calculated in a systematic way. To this end,
the equivalence of flat systems to linear controllable ones is
exploited. The presented control methodology is applied to
a laboratory experiment of a tower crane. The experimental
results underline the feasibility of the proposed concept.

I. INTRODUCTION

Besides the fields of set point stabilization and trajectory
tracking control, modern control theory is increasingly deal-
ing with the challenges of manifold stabilization and path–
following control.

Stabilizing manifolds can be seen as an extension of the
well–known task of set point stabilization (as a set point
constitutes a manifold of dimension zero). The manifolds
are typically defined in the output or state space of a dy-
namical system [1]. Roughly speaking, the goal of manifold
stabilization is to make the output or state of the system
(asymptotically) approach the manifold. Two important prop-
erties are frequently considered. Firstly, it is desirable that the
movement on the target manifold (tangential movement) can
be influenced. Secondly, if the system is initialized exactly on
the manifold (or more precisely in a corresponding controlled
invariant subset of the state space) then it should stay on the
manifold for all future times (in the nominal, undisturbed
case) independent of the tangential movement [2]. This prop-
erty is subsequently referred to as the invariance property.

In [1], [3] the authors investigate the stabilization of con-
trolled invariant submanifolds of the state space of control–
affine dynamical systems. Conditions are given for the exis-
tence of output functions allowing to perform input–output
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feedback linearization yielding a so–called transverse normal
form (TNF). Roughly speaking, these output functions rep-
resent the off–the–manifold movement of the system. For
the TNF it is required that the zero dynamics manifold
has the same dimension as the manifold to be stabilized
and the input–output dynamics (the transverse dynamics)
are in Brunovský normal form. As a result, the movement
on the target manifold is described by the zero dynamics
(the tangential dynamics) and the manifold is stabilized by
rendering the origin of the transverse dynamics stable. This
can be accomplished in the coordinates of the TNF in a
straightforward way.

Path–following control is often seen as a generalization of
trajectory tracking control [4]. This can be reasoned based on
the fact that both frameworks deal with predefined geometric
reference curves (subsequently also referred to as path) but
only for trajectory tracking control the time–parameterization
of the curve is fixed beforehand. On the contrary, for path–
following control it is not defined a priori when the system
is expected to pass a specific point of the reference curve.
Ideally, the invariance property is fulfilled, i.e. when starting
on the path (or in a corresponding controlled invariant subset
of the state space) the system stays exactly on the path for
all future times [1]. Note that trajectory tracking control does
not necessarily share this property [2]. The paths are typically
defined in the state space [5], [6] or output space [2], [7] of
the system.

Starting from the early works of, e.g., Banaszuk and
Hauser [8], several extensions and improvements of path–
following control have been proposed in literature. From a
geometric point of view, the reference curve poses a one–
dimensional manifold which has to be stabilized. Therefore,
path–following control can be seen as a special case of
manifold stabilization [1]. Other researchers suggest the use
of model predictive control (MPC) to solve the problem, cf.,
e.g., [6], [7], [9]. This has the advantage of being able to
systematically take into account system constraints.

The aim of this work is to perform manifold stabilization
and path–following control for flat systems [10] which is a
property of many physical and technical systems encoun-
tered in practice, see, e.g., [10], [11]. The restriction to
the special case of flat systems exhibits some nice and
practically useful features. Utilizing the flatness property,
the system can be transformed to a specific TNF by means
of a generalized state transformation without the need for
dynamic extension. The term generalized refers to the fact
that the state transformation also depends on the new input
and its time derivatives. As a result, not only the transverse
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part of the TNF is linear but the whole dynamics, which
greatly simplifies the tangential control design. Moreover,
we confine ourselves to the stabilization of manifolds in the
flat output space, which renders the problem much simpler
compared to the general case. In [1], [2], the stabilization
of a one–dimensional manifold (curve) in the output space
is considered where the motion along the curve shall meet
certain application–specific requirements. In order to meet
these requirements, the diffeomorphism mapping to TNF
has to be completed by suitable functions determining the
tangential dynamics. The latter step is circumvented in this
work for the stabilization in the flat output space by choosing
functions solely depending on the flat output which specify
the motion on the target manifold. In [12], a similar approach
is employed for one–dimensional paths but with dynamic
extension.

The proposed method is applied to a laboratory experiment
of a tower crane. The flat output under consideration is given
by the Cartesian coordinates of the load. We investigate two
test cases. Firstly, path–following control for a geometric
path of elliptic shape is conducted. This result could be used
for transferring the load from one point in the work space of
the crane to another. The movement along the ellipse can be
chosen freely. Secondly, a two–dimensional manifold in the
form of a vertical plane is considered, i.e. the load is expected
to move only in this vertical plane. Again, the movement in
the vertical plane can be chosen freely while maintaining the
invariance property. The feasibility of the proposed method
is demonstrated by means of experimental results from the
laboratory tower crane. A video of the presented test cases
is available1.

The paper is organized as follows. In Section II, the
problem of manifold stabilization is formulated. The solution
of this problem for the considered class of flat systems is
presented in Section III. Section IV contains the application
of the proposed control concept to the tower crane system.

The notation is as follows. The total derivatives of a
quantity y with respect to time t are denoted by ẏ, ÿ, y(3),
and so forth. A sequence of derivatives of unknown finite
maximum order is denoted by y, ẏ, ÿ, . . .. The tuple ix, iy, iz
constitutes the coordinates in a coordinate system i with
corresponding basis vectors (ix, iy, iz). The Lie derivative
is written as (Lfh) (x) =

(
∂h
∂x

)
f with h possibly vector–

valued, i.e. h (x) ∈ Rp with p ≥ 1. The index i refers to the
ith component of a vector–valued quantity.

II. PROBLEM STATEMENT
We consider flat systems in the form

ẋ = f (x, u) (1a)
y = h (x) (1b)

with x ∈ Rn, u ∈ Rm, rank
(
∂f
∂u

)
= m, and y ∈ Rm

constituting a flat output. For brevity and clearness of ex-
position, we consider system equations and output functions
(1) which do not depend on derivatives of u. However, all

1http://www.acin.tuwien.ac.at/fileadmin/cds/videos/craneManStab.wmv

subsequent results can be extended to ẋ = f (x, u, u̇, ü, . . .)
and y = h (x, u, u̇, ü, . . .). The flat parameterizations of the
state and input read as

x = ψx (y, ẏ, ÿ, . . .) (2a)
u = ψu (y, ẏ, ÿ, . . .) . (2b)

The manifold to be stabilized (subsequently referred to as
the target manifold) is defined in terms of the flat output

M = {y ∈ Rm|σ̂ (y) = 0} (3)

with a continuous function σ̂ : Rm → Rm−p, 0 ≤ p ≤
m − 1, i.e. the manifold M has dimension p. The natural
requirement for σ̂ is that

rank

(
∂σ̂

∂y

)
(ỹ) = m− p ∀ỹ ∈M. (4)

Note that for p = 1, one obtains as a special case a
one–dimensional geometric curve [1], [2], either open or
closed, see also [12], [13]. Subsequently, we refer to such
a geometric curve as path [1]. Alternatively, the path could
also be defined in explicit form as a regular parameterized
curve

P = {p̄ ∈ Rm|p̄ = P (θ) , θ ∈ R} (5)

with the path parameter θ and the map P (θ) either defining
a closed or open curve P [12]. In this case, we assume
that the curve (5) admits an implicit representation in the
form (3). Thus, we do not distinguish between stabilization
of a manifold or a one–dimensional curve (path–following
control). The latter is included in the former as a special case.
Therefore, we subsequently focus on manifold stabilization
for which the control objectives are defined as follows.
O1) Asymptotic convergence toM: The output y of system

(1) in the closed–loop satisfies ‖y‖M → 0 for t→∞,
where ‖y‖M denotes the shortest distance of y to the
manifold M, i.e. ‖y‖M = min

ȳ∈M
‖ȳ − y‖, cf., e.g., [2].

O2) Invariance property: If the system state x (t0) at initial
time t0 is contained in an appropriate subset of

Γ = {x̄ ∈ Rn|σ̂ (h (x̄)) = 0} (6)

then the invariance property shall hold, i.e.
‖y (t) ‖M = 0, ∀t ≥ t0.

O3) Tangential movement: Achieve an application–specific
motion of y on M according to its dimension p.

III. MANIFOLD STABILIZATION FOR FLAT
SYSTEMS

The goal of this section is to show that for flat systems
the control objectives O1–O3 of manifold stabilization can
always be achieved in a systematic way. To this end, results
from literature concerning the exact linearization of flat
systems are shortly repeated in Section III-A. These results
are combined with existing ideas and approaches mainly
from [1] in Section III-B to solve the problem at hand.
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A. Exact Linearization of Flat Systems

It is a well–known fact that a flat system (1) is equivalent
to a linear controllable one in Brunovský normal form [10]

y
(ρi)
i = vi, i = 1, . . . ,m (7)

with new inputs v ∈ Rm, the Brunovský state

ζT =
[
y1 . . . y

(ρ1−1)
1 . . . ym . . . y

(ρm−1)
m

]
, (8)

and positive integers ρi. This equivalence can be realized
by various types of feedback. One possibility is to utilize a
so–called quasi–static state feedback [14] in the form

u = κ (ζ, v, v̇, v̈, . . .) (9)

which follows from (2b) by using (7) and (8). The general-
ized state transformation linking the system state x with the
Brunovský state ζ can be deduced in an analogous fashion
and reads as

x = Λ (ζ, v, v̇, v̈, . . .) . (10)

The characteristics of the quasi–static approach is that the
dimension of the state space of the closed–loop system is
equal to the one of the original system, i.e. it holds that∑m
i=1 ρi = n. Due to the fact that in general derivatives of

the new input v appear in (9) the feedback is not static but
quasi–static. The Brunovský state ζ needed in (9) can be
calculated, e.g., from the inversion of (10), see, e.g., [15].
Alternatively to a quasi–static feedback one might use an
endogenous dynamic feedback [10] for which the dimension
of the state space of the closed–loop system is

∑m
i=1 ρi > n.

In the following, we utilize the quasi–static state feedback
(9) as it does not require a dynamics in the controller.
Nevertheless, the presented results are transferable to the case
of endogenous dynamic feedback.

B. Controller Design Methodology for Stabilizing Manifolds
in Flat Output Spaces

From a geometric point of view, any movement of the
output of the system can be composed of a tangential and
a transverse part with respect to the target manifold M [1].
The transverse part describes the motion off the manifold.
If this part is identically zero the output y of the system
exactly lies on M. To ensure that the invariance property
holds in this case, the motion of the output is locally
restricted to the tangent space of the target manifold. In
other words, the motion of the output is restricted to a p–
dimensional subspace described by the tangential part. Our
goal is to obtain a special kind of TNF [1] for system (1)
and the given target manifold (3) in order to achieve the
objectives O1–O3 formulated in Section II. In the coordinates
of the TNF, the transverse and tangential movement of y
can be independently controlled by transverse and tangential
control inputs [1], [2] and controllers can be designed in a
straightforward way.

To this end, we define the function

σ̄ (y) : Rm → Rp (11)

which can be combined with σ̂ (y) (defining the target
manifold and whose components are (locally) independent)
to σ (y) =

[
σ̂T σ̄T

]T
(y) which is presumed to fulfill

rank

(
∂σ

∂y

)
(ỹ) = m ∀ỹ ∈M. (12)

The components of σ̄ can be chosen freely as long as (12)
holds, however, the choice strongly depends on the consid-
ered application. The function σ̄ characterizes the movement
of the output y of the system on the target manifoldM. This
is due to (4) and (12). Furthermore, as long as σ̂ (y) = 0 is
fulfilled, the function σ̄ (y) can take arbitrary values and the
output of the system is in any case on the target manifold.
From a practical point of view it is highly convenient to
define the function σ̄ in terms of the system output y.

In order to proceed with the controller design, we consider
the new output functions

ŷ = σ̂ (h (x)) =: ĥ (x) (13a)
ȳ = σ̄ (h (x)) =: h̄ (x) (13b)

which allow to define the new system output

z = σ (h (x)) =

[
ĥ (x)
h̄ (x)

]
=: Υ (x) ∈ Rm. (14)

Now (14) is also a flat output of (1a) if additionally to (12)
all partial derivatives of σ and σ−1 up to a certain order are
continuous [16]. This enables to perform exact linearization
of system (1a) with the new output (14) as explained in
Section III-A. The corresponding Brunovský normal form
reads as

ŷ
(ρ̂i)
i = vti , i = 1, . . . ,m− p (15a)

ȳ
(ρ̄j)
j = v

‖
j , j = 1, . . . , p (15b)

which constitutes the TNF and it holds that
∑m−p
i=1 ρ̂i +∑p

j=1 ρ̄j = n with positive integers ρ̂i, ρ̄j . The Brunovský
state belonging to (15) is given by

ζT =
[
ξT ηT

]
(16)

with

ξT =
[
ŷ1 . . . ŷ

(ρ̂1−1)
1 . . . ŷm−p . . . ŷ

(ρ̂m−p−1)
m−p

]

(17a)

ηT =
[
ȳ1 . . . ȳ

(ρ̄1−1)
1 . . . ȳp . . . ȳ

(ρ̄p−1)
p

]
. (17b)

The states ξ correspond to the transverse dynamics (15a) and
η contains the states of the tangential dynamics (15b). The
number of integrator chains in the tangential dynamics is
equal to the dimension p of the target manifold M. Similar
to (9) and (10), the quasi–static state feedback follows as

u = κ
(
ζ, vt, v̇t, v̈t, . . . , v‖, v̇‖, v̈‖, . . .

)
(18)

and the generalized state transformation linking x with ζ in
general form reads as

x = Λ
(
ζ, vt, v̇t, v̈t, . . . , v‖, v̇‖, v̈‖, . . .

)
(19)
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with vt =
[
vt1 . . . vtm−p

]T
and v‖ =

[
v
‖
1 . . . v

‖
p

]T
.

In many cases, the inverse mappings

ξ = Λ̄1

(
x, vt, v̇t, v̈t, . . . , v‖, v̇‖, v̈‖, . . .

)
(20a)

η = Λ̄2

(
x, vt, v̇t, v̈t, . . . , v‖, v̇‖, v̈‖, . . .

)
(20b)

are explicitly available too, cf. Section IV.
Remark 1: Note that if the output (14) has some vector

relative degree [17] {r1, . . . , rm} with
∑m
i=1 ri = n then

the results analogously hold as (1a) with output (14) is full
state linearizable by means of static state feedback [18]. This
implicates that (14) is a flat output and therefore this case is
included in the presented framework. However, in this case
(19) does not depend on vt, v‖ and derivatives of vt and
v‖ do neither appear in (18) nor in (19).

Concerning the control objectives from Section II, it is
obvious that O1 can be achieved by designing a controller
rendering the transverse dynamics (15a) asymptotically sta-
ble. Objective O3 can be accomplished by a suitable choice
of σ̄ (y) and designing an appropriate controller for (15b).
The controller design for both objectives can be carried out
in a straightforward way as (15) is linear and controllable.
Objective O2 addresses the invariance property. Apparently,
if x (t0) is contained in Γ according to (6) then y (t0) ∈M
is fulfilled. However, note that in general Γ is not controlled
invariant [1], [17] thus inducing that M might be left and
approached again. In view of (15a) the following condition
can be deduced. If x (t0) is such that ξ (t0) = 0 then the
invariance property (objective O2) is obviously fulfilled by
choosing vt ≡ 0. This is not contrary to objectives O1 and
O3 as a controller rendering (15a) asymptotically stable has
to fulfill vt ≡ 0 for ξ (t0) = 0 and regulating (15b) by
a proper choice of v‖ does not influence (15a). However,
the choice of controllers for achieving O1 and O3 in general
affects the set of initial conditions for which ξ (t0) = 0 holds
as vt and v‖ together with its derivatives appear in (20a).
Therefore, for a specific application, the control laws have
to be inserted into (20a) to check if ξ (t0) = 0 holds for
the given initial condition x (t0) (and thus if the invariance
property is fulfilled).

IV. APPLICATION TO A LABORATORY TOWER
CRANE

In this section, a laboratory experiment of a tower crane
serves as test case for the presented framework of manifold
stabilization and path–following control. The description of
the system and the corresponding mathematical model are
shortly presented. For details regarding the derivation of the
mathematical model and the overall control structure, see [9].

A. Tower Crane System

The considered laboratory tower crane is shown in Fig. 1.
It is an underactuated mechanical system with five degrees
of freedom (DOF) which are given by the position s1 of
the trolley along the jib, the length s2 of the cable from the
trolley to the load, the angular displacement φ1 of the jib,
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Fig. 1. Tower crane system.

and the angular displacements φ2 and φ3 of the cable with
respect to the trolley. Three DOF are actuated (s1, s2, and
φ1) by means of DC motors while φ2 and φ3 are unactuated.
The DC motors are equipped with fast underlying current
controllers. In order to have the whole state of the system
available for feedback control, all five DOF are directly
measured by means of incremental encoders. Approximate
differentiation and an observer are employed to obtain the
corresponding velocities ṡ1, ṡ2, φ̇1, φ̇2, and φ̇3. To allow the
cable to sway in any direction, it is guided on the trolley by
means of a sleeve mounted on a gimbal which has a vertical
distance of h = 0.92 m to the ground of the workspace. The
angular displacements φ2 and φ3 of the cable are measured
by the angular displacements of the sleeve. However, to
reduce friction, the guidance of the cable in the sleeve is not
completely tight. This loose guidance inherently introduces
measurement errors, which will become apparent in Section
IV-E.

B. Mathematical Model and Flat Output

The laboratory experiment suffers from considerable fric-
tion effects. To compensate for the friction in the actuated
DOF and to be independent of the actual value of the load
mass, it is advantageous to use velocity controllers for each
of the actuated DOF. Under the reasonable assumption [9]
that the dynamics of the subordinate velocity control loops
are negligible, application of Lagrange’s formalism yields
the mathematical model of the crane in control–affine form

ẋ = f (x) + g (x)u (21)

with the control input u ∈ R3 given by the accelera-
tions s̈1, s̈2, φ̈1 of the three actuated DOF and the state
x =

[
s1 s2 φ1 φ2 φ3 ṡ1 ṡ2 φ̇1 φ̇2 φ̇3

]T
. The

explicit equations behind (21) are omitted for brevity but
can be found in [9]. The actual desired velocities for the
subordinate velocity controllers are generated by discrete–
time integrators. The flat output y of interest is given by the
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load position in the inertial coordinate system (Ix, Iy, Iz)

y =



y1

y2

y3


 =



Ix
Iy
Iz


 = h (x) =



s1 cos(φ1)
s1 sin(φ1)

0


 (22)

+



−s2 (sin(φ1) sin(φ3) + cos(φ1) sin(φ2) cos(φ3))
s2 (cos(φ1) sin(φ3)− sin(φ1) sin(φ2) cos(φ3))

h− s2 cos(φ2) cos(φ3)


 .

C. Path–Following Control for a Path of Elliptic Shape

The considered task of path–following control at the tower
crane is to make the load position approach and follow
a curve of elliptic shape. The ellipse is defined with an
arbitrary position and rotation in the inertial coordinate
system (Ix, Iy, Iz). To this end, consider the coordinate
system (3x, 3y, 3z) whose 3y– and 3z–axes are parallel to the
major axes I and II of the ellipse, resp. Thus, the implicit
definition of the ellipse reads as
(

3y − l0
)2

a2
+

(
3z − l1

)2

b2
− 1 = 0 and 3x− l2 = 0 (23)

with a, b > 0 denoting the lengths of the major axes. The
ellipse lies in a plane parallel to the 3y–3z–plane with a
distance l2 6= 0 away. The displacement of the center of
the ellipse in 3y– and 3z–direction is given by l0, l1 ∈ R.

The (3x, 3y, 3z) coordinate system can have an arbitrary
rotation with respect to the inertial frame (Ix, Iy, Iz) de-
scribed by the Tait–Bryan angles α, β, γ and the correspond-
ing rotation matrix AI3 with the coordinate transformation

y = AI3
[
3x 3y 3z

]T ⇒
[
3x 3y 3z

]T
= AT

I3y. (24)

Inserting the relation (24) into (23) yields the function σ̂ :
R3 → R2 defining the path according to (3)

σ̂ (y) =

[
σ̂1 (y)

y1 cosα cosβ + y2 sinα cosβ − y3 sinβ − l2

]
.

(25)
For the sake of brevity σ̂1 (y) is not stated explicitly. As
outlined in Section III-B, one more scalar function σ̄ (y)
describing the motion on the path can be chosen. For the
considered case, it is interesting to be able to directly influ-
ence the position of the load along the ellipse. This position
can be conveniently described by the angle µ between the ray
from the center of the ellipse to any point on the ellipse and
the major axis I. This angle is given by µ = arctan

(
3z−l1
3y−l0

)

and by inserting (24) one obtains

µ|[3x 3y 3z
]T

=AT
I3y

= σ̄ (y) : R3 → R. (26)

It can be verified that (12) is fulfilled with m = 3 and that

z = Υ (x) =

[
ŷ
ȳ

]
=

[
σ̂ (h (x))
σ̄ (h (x))

]
(27)

according to (14) is again a flat output as required in
Section III-B. Based on (27), we are able to define objective
O3 for the considered application. It is required that ȳ (t)
(asymptotically) tracks a desired reference profile ȳd (t).

Subsequently, one possible way is shown how to calculate
the quasi–static state feedback

u = κ
(
x, vt, v̇t, v̈t, . . . , v‖, v̇‖, v̈‖, . . .

)
(28)

and the corresponding transformations (20) to TNF (15).
Note that, contrary to (18), we seek for the quasi–static
feedback (28) directly in terms of the original system state
x instead of ζ.

To this end, we successively differentiate (27)

ż = (LfΥ) (x) + (LgΥ) (x)︸ ︷︷ ︸
0

u (29a)

z̈ =
(
L2
fΥ
)

(x) + (Lg (LfΥ)) (x)u (29b)

where in the second derivative z̈ the input u appears. How-
ever, the rank of the decoupling matrix (Lg (LfΥ)) (x) is
only 1 for generic values of x. Thus, u2 is chosen such that
z̈1 = vt1 holds, which results in

u2 =
1

(Lg2 (LfΥ1)) (x)

(
vt1 −

(
L2
fΥ1

)
(x) (30)

− ∑i∈{1,3} (Lgi (LfΥ1)) (x)ui

)
=: κ̄

(
x, u1, u3, v

t
1

)
.

Inserting (30) into the two remaining components of z̈ yields

Z =

[
z̈2

z̈3

]∣∣∣∣
u2=κ̄

= χ
(
x, vt1

)
:=



(
L2
fΥ2

)
(x)(

L2
fΥ3

)
(x)


 (31)

+

[
(Lg2 (LfΥ2))(x)

(Lg2 (LfΥ1))(x)

(Lg2 (LfΥ3))(x)

(Lg2 (LfΥ1))(x)

]T

︸ ︷︷ ︸
δ(x)

(
vt1 −

(
L2
fΥ1

)
(x)
)

with the property (Lgδ) (x) = 0 and all terms with u1,
u3 vanishing due to rank (Lg (LfΥ)) (x) = 1. Again, by
differentiating (31) and inserting (30) one obtains

Ż = (Lfχ)
(
x, vt1

)
+

(Lg2χ) (x)

(Lg2 (LfΥ1)) (x)

(
vt1 −

(
L2
fΥ1

)
(x)
)

+ δ (x) v̇t1 =: χ̄
(
x, vt1 , v̇

t
1

)
, (32)

where again all terms with u1 and u3 cancel each other out.
The next derivative results in

Z̈ = ¯̄χ
(
x, vt1 , v̇

t
1 , v̈

t
1

)
+D

(
x, vt1

) [
u1 u3

]T
(33)

with rankD
(
x, vt1

)
= 2 at generic points. By imposing

Z̈1 = z
(4)
2 = vt2 and Z̈2 = z

(4)
3 = v‖ one obtains

[
u1

u3

]
= D−1

(
x, vt1

){[vt2
v‖

]
− ¯̄χ

(
x, vt1 , v̇

t
1 , v̈

t
1

)}
. (34)

The quasi–static state feedback (30) and (34) transforms the
system (21), (27) to TNF

ŷ
(2)
1 = vt1 ŷ

(4)
2 = vt2 (35a)

ȳ(4) = v‖. (35b)
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The generalized state transformation is directly given by (27),
(29a), (31), and (32)

ξ =




ξ11

ξ12

ξ21

ξ22

ξ23

ξ24




=




Υ1 (x)
(LfΥ1) (x)

Υ2 (x)
(LfΥ2) (x)
χ1

(
x, vt1

)

χ̄1

(
x, vt1 , v̇

t
1

)



, η =




Υ3 (x)
(LfΥ3) (x)
χ2

(
x, vt1

)

χ̄2

(
x, vt1 , v̇

t
1

)


 .

(36)
Objectives O1 and O2 are achieved by rendering the

transverse dynamics (35a) asymptotically stable. This is
accomplished by means of the feedback laws

vt1 = −k10

∫ t

t0

ξ11dt− k11ξ11 − k12ξ12 (37a)

vt2 = −k20

∫ t

t0

ξ21dt−
4∑

i=1

k2iξ2i (37b)

with the required derivatives

v̇t1 = −k10ξ11 − k11ξ12 − k12v
t
1 (38a)

v̈t1 = −k10ξ12 − k11v
t
1 − k12v̇

t
1 . (38b)

For objective O3 to hold, the following control law is utilized

v‖= ȳ(4)
d (t)−k30

∫ t

t0

(η1 − ȳd (t)) dt−
4∑

i=1

k3i

(
ηi−ȳ(i−1)

d (t)
)
.

(39)
Integral action is added in all feedback laws (37) and (39)
in order to better cope with the non–ideal behavior of the
laboratory experiment. The required quantities ξij and ηi in
(37), (38), and (39) follow from (36). By inserting (37), (38),
and (39) into (30) and (34) the final state feedback for path–
following control achieving objectives O1–O3 is obtained.

D. Stabilization of a Manifold in the Form of a Plane

As a second task, we consider the stabilization of a
manifold in the form of a vertical plane in the workspace
of the crane. Thus, p = 2 and the function σ̂ : R3 → R

reads as
σ̂ (y) = L1y1 + L2y2 + L3 (40)

with L3 6= 0 and L1 and L2 not simultaneously equal to
zero. Defining the function

σ̄ (y) =
[
arctan

(
y2
y1

)
y3

]T
(41)

allows to intuitively influence the position of the load in the
plane by means of the angle to the Ix–axis and the vertical
position Iz. Again, it can be verified that (12) is fulfilled.
Objective O3 is specialized to the (asymptotic) tracking of
a set point σ̄d = const. The calculations for obtaining a
feedback in the form (28) are very similar to Section IV-C
and are omitted for brevity. One ends up with a TNF

ŷ(4) = vt ȳ
(4)
1 = v

‖
1 ȳ

(2)
2 = v

‖
2 (42)

and vt, v‖1 , and v‖2 are chosen analogously to (37) and (39).
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Fig. 2. Workspace of the tower crane with the ellipse to be stabilized and
the trajectory of the load (all quantities in m).
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ŷ
in

1
,m

ŷ1
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E. Experimental Results

The controllers derived in Section IV-C and IV-D for
path–following along an ellipse (PFE) and stabilization of a
vertical plane (SVP) are applied to the laboratory tower crane
depicted in Fig. 1. The whole setup is the same as described
in [9]. The controllers are executed with a sampling time of
1 ms. The parameters are chosen as a = 0.4 m, b = 0.3 m,
α = −45◦, β = −20◦, γ = 10◦, l0 = −0.1 m, l1 = 0.3 m,
l2 = 0.5 m, L1 = 0.6 m, L2 = 1 m, L3 = −0.5 m, and the
feedback gains kij are obtained from an LQR design.

Figure 2 shows the ellipse to be stabilized for PFE. Addi-
tionally, the corresponding trajectory of the load is depicted
which (due to a lack of appropriate sensors) is obtained by
inserting the measurements for the state x into (22). The
load starts at a position off the target manifold marked with
a square. The initial deviation is quickly compensated for by
driving the load to the ellipse. This can also be inferred from
Fig. 3 showing the virtual system output ŷ which is quickly
converging to zero. The desired four times continuously
differentiable trajectory ȳd (t) for the angle µ along the
ellipse is depicted together with ȳ in Fig. 4. Initially, the
desired angle along the ellipse has a value of 90◦ which
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ȳi
σ̄d,i

0 10 20
0.2

0.4

0.6

t in s

ȳ
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is quickly reached by ȳ. At t ≈ 5.6 s the desired angle is
increased to a value of 160◦. Afterwards, it is reduced to
20◦ and finally reaches 80◦. The desired trajectory ȳd (t)
is tracked quite well and the resulting motion in the upper
half of the ellipse is visible in Fig. 2. Figure 5 shows the
control input u for the described scenario. While traversing
the ellipse, ŷ shows small deviations from zero (cf. Fig. 3)
which result from the loose guidance of the cable in the
sleeve attached to the gimbal (cf. Section IV-A) and from
sticktion effects.

Concerning SVP, a sequence of set points σ̄d according
to Fig. 6 is specified starting with σ̄d =

[
45◦ 0.5 m

]T
. The

trajectory of the load can be seen in Fig. 7. Again, the load
starts at a position off the target manifold marked with a
square. Firstly, the initial deviation is compensated which
can be seen in Figs. 6 and 7. Subsequently, the further set
points σ̄d are tracked while keeping the load in the vertical
plane. The resulting direction of moving is indicated with
arrows in Fig. 7. Small deviations from the plane are visible
which are mainly due to the inaccurate measurement of φ2

and φ3.
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