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ConstrainedModelPredictiveManifold Stabilization

Based onTransverseNormalForms ?

Martin Böck a, Andreas Kugi a

aAutomation and Control Institute, TU Wien, Gußhausstr. 27–29, 1040 Vienna, Austria

Abstract

The optimization-based stabilization of manifolds for nonlinear dynamical systems with constraints is investigated. Manifolds
in the state or output space are considered for which the original system description can be transformed into a so-called
transverse normal form. With this formulation, the motion of the system transverse and tangential to the manifold can be
separately described. The transverse normal form is combined with a tailored model predictive control scheme to achieve
the objectives of stabilizing the manifold, rendering it invariant, and imposing a desired motion on the manifold under due
consideration of constraints. Furthermore, the stabilization of the manifold is prioritized over the movement on the manifold.
Convergence of the model predictive control scheme is proven. The applicability of the proposed concept is demonstrated by
an illustrative simulation example.

Key words: Input constraints; Manifold stabilization; Model predictive control; Transverse normal form.

1 Introduction

The stabilization of manifolds or sets is a popular field
in modern control theory. It can be seen as an exten-
sion of the classical task of set point stabilization as a
set point constitutes a manifold of dimension zero. Typ-
ically, manifolds defined in the output or state space of a
dynamical system are considered, see, e.g., [28]. Roughly
speaking, the goal of manifold stabilization is to ensure
(asymptotic) convergence of the output or state of the
system to the manifold. Moreover, the resulting con-
troller is frequently supposed to achieve two further ob-
jectives. Firstly, the (tangential) movement on the man-
ifold should be of a desired form, and the second objec-
tive is the so-called invariance property. Roughly speak-
ing, it states that if at any given point in time the system
is exactly on the manifold, or more precisely in a corre-
sponding controlled invariant subset of the state space,
then the manifold must never be left again in the nom-
inal, undisturbed case. The invariance property is re-
quired to hold regardless of the tangential movement, cf.
[29]. In the following, unless stated otherwise, the term
manifold stabilization not only refers to the stabilization
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itself but also includes the task of achieving a desired
movement on the manifold.

One possibility is to tackle these tasks from a geometric
point of view. For example, in [28] and [30] the stabi-
lization of controlled invariant submanifolds of the state
space of control-affine dynamical systems is investigated.
To this end, the system description is transformed into a
so-called transverse normal form (TNF). The TNF con-
sists of two sets of coordinates describing the transverse
and tangential motion with respect to the manifold. By
rendering the transverse dynamics asymptotically sta-
ble the manifold is stabilized. The invariance property
is fulfilled and the motion on the manifold can be influ-
enced by controlling the tangential dynamics. However,
the consideration of system constraints is not possible in
a straightforward way.

There are many works dealing with the stabilization of
invariant sets for passive systems. Typically, the sets to
be stabilized are subsets of the zero level set of the stor-
age function, see, e.g., [11] and [33]. In [12] passive sys-
tems in control-affine form are considered and the stabi-
lization of open-loop positively invariant subsets of the
zero level set of the storage function is investigated. The
authors in [34] deal with the stabilization of the zero
level set of a nonnegative objective function under non-
linear system dynamics. It is shown that there exist con-
trollers providing arbitrarily small input values for sta-
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bilizing the set, i.e., input constraints can in principle be
respected by a suitable control law. In these works, the
movement of the system in the set is not taken care of.

The stabilization of sets in the context of haptic simula-
tors is investigated in [37]. Similar to the works of Nielsen
et al. the main ideas are based on projection techniques
and TNFs. In [4] a method is presented for stabilizing
manifolds in flat output spaces. The movement on the
manifolds can be chosen freely and the invariance prop-
erty is fulfilled. However, system constraints cannot be
systematically respected.

The authors in [22] show that uniform global asymp-
totic controllability to a closed set implies the existence
of a locally Lipschitz control Lyapunov function (CLF).
Based on this CLF a robust feedback law for stabilizing
the set is constructed. In [2] time-varying systems are
considered. Similar to [22] it is shown that the existence
of a continuous CLF with respect to a closed subset of
the state space is equivalent to the global asymptotic
controllability to that set. The authors in [26] provide
sufficient stability criteria for time-varying sets in the
state space of nonlinear time-varying systems using vec-
tor Lyapunov functions. Based on these results a stabi-
lizing feedback is developed for multi-agent dynamical
systems and applied to multi-vehicle formation control.
The asymptotic stabilization of subsets of the state space
of systems with positive inputs is investigated in [19].
The proposed control law can also be applied to positive
systems as a special case.

In [16] sampled-data open-loop feedbacks are considered.
For using this type of feedback, convergence conditions
of the state of a nonlinear system to a compact set are
derived. Constraints on inputs and states are taken into
account. The class of sampled-data open-loop feedbacks
includes model predictive control (MPC). MPC relies
on solving an optimal control problem (OCP) at each
sampling instant to determine the control input for the
system, see, e.g., [3], [31]. The convergence conditions
obtained in [16] are applied to MPC as well. In contrast
to this work, the movement of the system in the set is
not taken care of and the target set is defined as compact
subset of the state space. In this paper, manifolds in the
state and output space are considered and other cases are
in principle also possible. Furthermore, here the MPC is
based on transformed system coordinates.

In recent years, the stabilization of one-dimensional
manifolds or curves has gained more and more inter-
est. In this context, the curves are usually called paths
and therefore the corresponding control scheme is of-
ten named path following control. Trajectory track-
ing control also deals with the stabilization of curves.
However, there the curves are equipped with a time-
parameterization which turns them into trajectories.
In contrast, for path following control no a priori time-
parameterization of the curves is given. It has to be

inherently determined by the path following controller.
The paths are typically defined in the output ([14], [29])
or state space ([15], [36], [38]) of a dynamical system.
Path following control is closely related to manifold
stabilization as a path can be seen as a one-dimensional
manifold, see, e.g., [36] where this fact is used for
controller design. Therefore, path following control is
included in the framework presented in this paper as
a special case. Nevertheless, there are many works in
literature focusing on path following control based on
different control approaches and tailored to different
applications.

If the paths are given in the output space of the system,
the corresponding zero path error manifold in the state
space can be calculated and stabilized. This is done, e.g.,
in [11] for a unicycle and special types of paths. An inter-
esting point in this work is the existence of a control law
such that saturation constraints for the inputs can be
considered. The same approach of determining and sta-
bilizing the zero path error manifold is employed, e.g., in
[1], [27], [29]. There, the invariance property is fulfilled
but system constraints are not taken into account.

Other approaches to path following control are given by
hybrid control strategies as well as Lyapunov and back-
stepping techniques, see, e.g., [8], [13], [35]. The utiliza-
tion of MPC for path following control is investigated,
e.g., in [14], [24], [38]. Real-time capable MPC schemes
for path following are presented, e.g., in [5], [24]. MPC
offers the possibility to systematically account for sys-
tem constraints. However, often the invariance property
is not fulfilled.

In summary, a controller for manifold stabilization or
path following is expected to not only stabilize the re-
spective manifold or path but it ideally also ensures
the invariance property and a desired tangential move-
ment. Moreover, usually system constraints have to be
respected. Particularly in view of these constraints, a
prioritization of the movement to the manifold over the
tangential movement is of interest as well. To the best of
the authors’ knowledge, no other existing control scheme
in literature for manifold stabilization and path follow-
ing is able to simultaneously and systematically account
for all these issues. The research presented in this paper
aims at closing this gap. To this end, a novel tailored
MPC scheme is proposed which relies on existing con-
cepts of manifold stabilization transforming the original
system description into coordinates of a TNF. There-
fore, this work is also an extension of [4]. Depending on
the underlying concept, manifolds in the state and out-
put space can inter alia be considered. The existing ap-
proaches for the transformation to TNF do not consider
system constraints. The extension with MPC presented
in this paper allows to systematically incorporate such
constraints. Furthermore, in contrast to other MPC ap-
proaches to manifold stabilization and path following
in literature, the proposed MPC structure achieves the
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above mentioned prioritization of the movement to the
manifold over the tangential movement. Reaching the
manifold is the primary target and no compromise be-
tween convergence to the manifold and movement on
the manifold has to be taken. For practical applications,
the prioritization is regarded important because impos-
ing a desired tangential movement generally does not
make sense if the manifold or path is not reached. On
the other hand, it is essential for ensuring the invariance
property under due consideration of the system con-
straints which is often not guaranteed by existing clas-
sical MPC schemes in literature. For these schemes, if
the constraints are used to full capacity, usually a com-
promise situation occurs. In general, it provokes that
the manifold or path is left and, hence, the invariance
property is not fulfilled. Besides remedying this issue,
the presented scheme allows to independently tune the
convergence to the manifold and the movement on the
manifold, which constitutes another difference to exist-
ing MPC approaches in literature.

This work is organized as follows. In Section 2 the TNFs
are introduced which serve as the basis for the proposed
MPC framework. The considered problem is stated in
Section 3. Section 4 introduces the MPC scheme and
in Section 5 its convergence properties are investigated.
The theoretical results are applied to an illustrative ex-
ample in Section 6 and some conclusions are drawn in
Section 7.

Notation

The class K contains all continuous, strictly increasing
functions σ : R≥0 → R≥0 with σ (0) = 0 (cf. [31]). In
the context of an OCP, the optimal quantities are indi-
cated with the superscript ∗. All quantities in an OCP
belonging to an MPC scheme are marked with a bar to
clearly distinguish them from the actual quantities in the
closed-loop system. The total derivatives of a function
x (t) with respect to time are denoted by ẋ, ẍ, x(3), and

so forth. Given a vector y ∈ Rn,

y


Q

represents the

quadratic form yTQy with the positive (semi-)definite
matrix Q ∈ Rn×n. The index i refers to the ith com-
ponent of the respective quantity. A diagonal matrix D
with Di,i = yi is denoted as diag (y).

2 Transverse normal forms

The systems under consideration are given by

ẋ = f (x, u) (1a)

y = h (x) (1b)

including the control-affine form

ẋ = f (x) + g (x)u (2a)

y = h (x) (2b)

with state x ∈ Rn, input u ∈ Rm, and output y ∈ Rm.

The MPC scheme for manifold stabilization presented
in this paper relies on existing approaches which trans-
form the original system description into a TNF with
respect to the target manifold (the manifold to be stabi-
lized). These target manifolds can be defined in different
ways. Two possibilities are manifolds in the state space
or output space of the system. The method of choice for
transforming the original system description into a TNF
depends amongst others on the properties of the sys-
tem. A thorough treatment of all possible cases would
go beyond the scope of this paper. Therefore, the subse-
quent investigations consider two common cases which
are introduced in the following. Nevertheless, the con-
trol framework presented in Section 4 can in principle
be extended to other cases as well.

2.1 Controlled invariant manifolds in the state space

In this section, results for the stabilization of con-
trolled invariant submanifolds Ms of the state space
of control-affine dynamical systems (2a) are shortly
repeated. Nielsen et al. give necessary and sufficient
conditions in [30] for the existence of output functions
with a well-defined relative degree allowing to perform
input-output feedback linearization yielding the TNF,
see also [20]. These output functions are representative
for the off-the-manifold movement. Furthermore, the
associated zero dynamics has to have the same dimen-
sion as Ms. We consider systems and manifolds for
which these conditions are satisfied. Following [30] the
input transformation

u = α (x) + β (x)

[
vt

v‖

]
(3a)

and the invertible state transformation

[
ξT ηT

]T
= Φ (x) (3b)

transform the original system (2a) to TNF

ξ̇ = Atξ +Btvt (4a)

η̇ = f0 (η, ξ) + gt (η, ξ) vt + g‖ (η, ξ) v‖ (4b)

with the property

Φ (Ms) = {(ξ, η) |ξ = 0} (5)

and (4a) being controllable. Due to (5) the system (4a)
represents the transversal dynamics with corresponding
state ξ, input vt, and constant matrices At and Bt.
Accordingly, the tangential dynamics characterizing the
movement on Ms are given by (4b) with state η and
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input v‖. In the following, the target manifold M =
Φ (Ms) is expressed in the transformed coordinates in
the form (5).

By inserting x = Φ−1 (ξ, η), which exists at least locally,
into (3a) the input transformation in terms of the new
coordinates of the TNF can be obtained. For a given ini-
tial condition x (t0) = x0 of system (2a), the initial con-
ditions for the transformed coordinates directly follow
from (3b) [

ξ0

η0

]
= Φ (x0) . (6)

2.2 Manifolds in a flat output space

As opposed to Section 2.1, here the derivation of a TNF
for manifoldsMf in flat output spaces is described. To
this end, the results given in [4] are shortly revisited. For
a system (1) with y being a flat output, the manifold
Mf to be stabilized is defined as

Mf =
{
y ∈ Rm|σt (y) = 0

}
(7)

with a continuous function σt : Rm → Rm−p, 0 ≤
p ≤ m − 1, i.e., the manifold Mf has dimension p. As
outlined in [4] it is convenient to take another function
of the flat outputs

σ‖ (y) : Rm → Rp (8)

into account. Under certain sufficient conditions given
in [4] this allows to define a new flat output

z =

[
yt

y‖

]
=

[
σt (h (x))

σ‖ (h (x))

]
=: Υ (x) . (9)

Based on (9) quasi-static exact linearization [9] can be
carried out yielding the corresponding Brunovský nor-
mal form

y
t(ρ̂i)
i = ṽti , i = 1, . . . ,m− p (10a)

y
‖(ρ̄j)
j = ṽ

‖
j , j = 1, . . . , p. (10b)

The Brunovský state belonging to (10) is given by

ζ̃T =
[
ξ̃T η̃T

]
(11)

with

ξ̃T =
[
yt1 . . . y

t(ρ̂1−1)
1 . . . ytm−p . . . ŷ

t(ρ̂m−p−1)
m−p

]

(12a)

η̃T =
[
y
‖
1 . . . y

‖(ρ̄1−1)
1 . . . y

‖
p . . . y

‖(ρ̄p−1)
p

]
. (12b)

The quasi-static state feedback [9] yielding (10) follows
as

u = κ̃
(
ζ̃, ṽt, ˙̃vt, ¨̃vt, . . . , ṽ‖, ˙̃v‖, ¨̃v‖, . . .

)
(13)

and the generalized state transformation linking x with
ζ̃ in general form reads as

x = Λ
(
ζ̃, ṽt, ˙̃vt, ¨̃vt, . . . , ṽ‖, ˙̃v‖, ¨̃v‖, . . .

)
(14)

with ṽt =
[
ṽt1 . . . ṽtm−p

]T
and ṽ‖ =

[
ṽ
‖
1 . . . ṽ

‖
p

]T
. In

many cases, the inverse mappings

ξ̃ = Λ̄1

(
x, ṽt, ˙̃vt, ¨̃vt, . . . , ṽ‖, ˙̃v‖, ¨̃v‖, . . .

)
(15a)

η̃ = Λ̄2

(
x, ṽt, ˙̃vt, ¨̃vt, . . . , ṽ‖, ˙̃v‖, ¨̃v‖, . . .

)
(15b)

are explicitly available too. In the following, dynamic ex-
tension in the form of simple integrators is performed for
each component of the new inputs ṽt and ṽ‖ by equat-
ing the highest derivative of ṽti , i = 1, . . . ,m − p, and

ṽ
‖
j , j = 1, . . . , p, in (13) with new inputs vti and v

‖
j , re-

spectively. The integrator states ζI are combined with ξ̃
and η̃ to the overall states of the TNF ξ and η. Thus,
(13) can be written as

u = κ
(
ξ, η, vt, v‖

)
(16)

with vt =
[
vt1 . . . vtm−p

]T
and v‖ =

[
v
‖
1 . . . v

‖
p

]T
. The

dynamics in TNF are linear, time invariant, and control-
lable and can be stated as

ξ̇ = Atξ +Btvt (17a)

η̇ = A‖η +B‖v‖ (17b)

with the transverse and tangential dynamics (17a) and
(17b). At time t0, one has the degree of freedom of choos-
ing the initial conditions for the integrator states ζI (t0).

Therefore, together with x0, ξ̃ (t0) and η̃ (t0) can be cal-
culated from (15). These quantities can be combined
with ζI (t0) yielding the overall mapping

(x0, ζI (t0))→
[
ξ0

η0

]
. (18)

Remark 1 Here it is assumed that the highest deriva-

tives of ṽti , i = 1, . . . ,m − p, and ṽ
‖
j , j = 1, . . . , p do

not appear in (15). Therefore, only the integrator states
ζI (t0) are needed (besides x0) to calculate (18).

In view of the dynamics (17) it is convenient to con-
sider stabilization of the controlled invariant [20] mani-
fold M = {(ξ, η) |ξ = 0} in the (extended) state space.
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Stabilizing M is equivalent to the stabilization of Mf .
Therefore, M is also referred to as the target manifold
in this case.

2.3 Summary

By comparing the results presented in Sections 2.1
and 2.2 it can be concluded that both presented
manifold stabilization tasks can be covered by a
TNF of the form (4) and a feedback law of the
form (16). This setup is used as a basis for the sub-
sequent investigations. Let Φηt

(
ηk, ξk, v

‖ (·) , vt (·)
)

denote the solution of (4b) and Φξt
(
ξk, v

t (·)
)

=

eA
t(t−tk)ξk+

∫ t
tk
eA

t(t−tk−τ)Btvt (τ) dτ the solution of

(4a) for t ≥ tk and initial values ξ (tk) = ξk, η (tk) = ηk.

In both cases, the goal of any controller is to asymp-
totically stabilize the origin of the transverse dynamics
and thus stabilize the target manifoldM. The norm ‖ξ‖
yields a measure of how far the system is away from the
target manifoldM. By choosing vt ≡ 0 one can ensure
that for ξ = 0 the system stays on the target manifold
for all future times.

Due to the nonlinear nature of the system dynamics and
the manifolds, the transformations and feedback laws to-
gether with the resulting TNFs might only exist locally.
Therefore, it is assumed in the following that all those
quantities exist in the whole region of interest or that this
region can be covered by combining several local charts.

3 Problem statement

This section is devoted to defining the considered prob-
lem of manifold stabilization with input constraints by
stating the control objectives. For this, it is assumed
that the input u of (1) or (2) is subject to the input con-
straints u (t) ∈ U . Furthermore, let us suppose that a
TNF according to Section 2 can be derived for the man-
ifold to be stabilized. Therefore, the control objectives
can be directly formulated in terms of the transverse and
tangential coordinates ξ and η:

O1) Asymptotic convergence to the target manifold:
This objective can be mathematically formulated
as lim

t→∞
ξ (t) = 0. It implies that, for example, the

state or output of the system approach the respec-
tive manifold to be stabilized.

O2) Invariance property: If ξ = 0 holds at initial time t0,
then ξ (t) = 0 has to be fulfilled for all t ≥ t0. This
means that, e.g., the state or output of the system
never leave the respective manifold again and it is
rendered invariant.

O3) Achieve a desired tangential movement on the man-
ifold: In the coordinates of the TNF, this boils down
to influencing the tangential dynamics with coordi-
nates η in a desired way.

Remark 2 The target manifoldM is controlled invari-
ant per construction based on the TNF. If O1) is achieved
in such a way that the origin ξ = 0 of the transverse
dynamics is rendered asymptotically stable, then the in-
variance property O2) is automatically fulfilled. As O1)
is just formulated with convergence here, O2) is stated
separately.

Remark 3 It is assumed that O1)–O3) can in principle
be fulfilled in consideration of the input constraints.

Remark 4 In principle, constraints concerning the
state x of (1) or (2), for example in the form x (t) ∈ X ,
can also be considered with the presented scheme. More-
over, even mixed state and input constraints can be taken
into account. However, the focus of this paper lies on the
control scheme itself. Due to this fact and to enhance
the clarity and readability, just input constraints are
considered in this work. Nevertheless, the corresponding
extensions for state constraints are straightforward.

4 Model predictive control scheme

The concepts introduced in Section 2 allow to calculate
a TNF for a given manifold. However, a suitable control
strategy is necessary in order to achieve the objectives
stated in Section 3. In particular, the concepts of Section
2 do not allow the straightforward consideration of con-
straints. To this end, a tailored MPC scheme is proposed
in the following. As usual, the proposed MPC scheme
is based on a sampled-data strategy, see, e.g., [17]. This
means that the system state is obtained at discrete sam-
pling instants tk = kTs with sampling time Ts. However,
it is assumed that the optimal input can be applied in
continuous-time fashion over the interval [tk, tk + Ts).

Usually, MPC schemes rely on solving a single OCP
per sampling instant. In contrast to that, the proposed
scheme for manifold stabilization consists of solving
two OCPs sequentially at each sampling instant, sub-
sequently referred to as OCP1 and OCP2. The reasons
for choosing this special structure are manifold and will
be explained in more detail after defining the OCPs.
The length of the optimization horizon is the same for
both OCPs and will be denoted by T . The current
optimization horizon at sampling instant tk is termed
Hk = [tk, tk + T ]. The initial conditions in both OCPs
are given by ξ̄ (tk) = ξk and η̄ (tk) = ηk with ξk and
ηk following from (6) or (18) for the system state xk at
sampling instant tk. At every sampling instant tk OCP1
is solved first with the TNF (4) and the feedback law
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(16), see Section 2.3. It reads as

min
v̄t(·),v̄‖(·)

Jt (tk, v̄t (·)
)

(19a)

s.t. ˙̄ξ = Atξ̄ +Btv̄t (19b)

˙̄η = f0
(
η̄, ξ̄
)

+ gt
(
η̄, ξ̄
)
v̄t + g‖

(
η̄, ξ̄
)
v̄‖

(19c)

ξ̄ (tk + T ) ∈ T1 (19d)

η̄ (tk + T ) ∈ T2 (19e)

κ
(
ξ̄ (t) , η̄ (t) , v̄t (t) , v̄‖ (t)

)
∈ U ∀t ∈ Hk

(19f)

with the cost functional

Jt (tk, vt (·)
)

=

∫ tk+T

tk

lt
(
ξ (t) , vt (t)

)
dt

+ V t (ξ (tk + T )) . (20)

After solving OCP1, OCP2 is solved based on the opti-

mal solution ξ̄1∗, η̄1∗, v̄t1∗, and v̄‖1
∗

from OCP1. Since
the optimal solutions for ξ̄ and v̄t are fixed by OCP1,
they will henceforth be referred to as ξ̄∗ = ξ̄1∗ and
v̄t
∗

= v̄t1∗. OCP2 is defined as

min
v̄‖(·)

J‖
(
tk, v̄

‖ (·)
)

(21a)

s.t. ˙̄η = f0
(
η̄, ξ̄∗

)
+ gt

(
η̄, ξ̄∗

)
v̄t
∗

+ g‖
(
η̄, ξ̄∗

)
v̄‖

(21b)

η̄ (tk + T ) ∈ T2 (21c)

κ
(
ξ̄∗ (t) , η̄ (t) , v̄t

∗
(t) , v̄‖ (t)

)
∈ U ∀t ∈ Hk

(21d)

with the cost functional

J‖
(
tk, v

‖ (·)
)

=

∫ tk+T

tk

l‖
(
η (t) , v‖ (t)

)
dt

+ V ‖ (η (tk + T )) . (22)

It is assumed that a solution to both OCPs exists for
appropriate initial conditions. Terminal constraints are
included in both OCPs with the sets T1 and T2. Further
details regarding these sets and the required properties
of the cost functionals are given in Section 5.

OCP1 is dedicated to the movement transverse to the
target manifold whereas OCP2 is responsible for the tan-
gential movement. The desired properties of the trans-
verse movement can be shaped with Jt and those of the
tangential movement with J‖. A reasonable choice for
the integral cost function and the terminal cost in Jt is

given by

lt
(
ξ, vt

)
=

1

2

(
ξ


Qξ

+

vt



Rt

)
(23a)

V t (ξ) =
1

2


ξ


Sξ
, (23b)

with the positive (semi-)definite weighting matrices Qξ,
Rt, and Sξ. Due to the fact that the desired tangential
movement heavily depends on the application at hand,
the integral cost function l‖ and the terminal cost V ‖

are not specified at this point. As already mentioned be-
fore, OCP1 yields ξ̄∗ and v̄t

∗
. Moreover, it is necessary

to solve for η̄ and v̄‖ as well because the feedback law
for u is in general depending on these quantities. How-

ever, the final result η̄∗ and v̄‖
∗

is determined in OCP2.
The transverse and tangential inputs in the closed-loop
system are given by

vt
∗

(t) = v̄t
∗

(t) , t ∈ [tk, tk + Ts) (24a)

v‖
∗

(t) = v̄‖
∗

(t) , t ∈ [tk, tk + Ts) . (24b)

The corresponding state trajectories in the closed-loop
system are denoted by ξ∗ and η∗ and the actual input
applied to the system is given by

u (t) = κ
(
ξ∗ (t) , η∗ (t) , vt

∗
(t) , v‖

∗
(t)
)
, t ≥ t0. (25)

The verification that the objectives defined in Section 3
are fulfilled is postponed to the proof of Theorem 16.

The most important motivation for choosing the struc-
ture with two OCPs is given by the invariance property
O2). Many existing model predictive control concepts
from literature with just one OCP (e.g., [15], [24]) suffer
from a compromise between terms in the cost functional
weighting the transverse and the tangential movement.
To be more specific, it may happen that an increase in
the value of the cost functional due to leaving the target
manifold can be counterbalanced with a better perfor-
mance in tangential direction. This case cannot occur
with the proposed strategy as the transverse movement
is determined in OCP1 solely based on the transverse
cost functional Jt.

Another reason for choosing two OCPs is that the move-
ment to the manifold O1) is prioritized over the tangen-
tial movement O3). The prioritization arises from the

fact that the quantities ξ̄∗ and v̄t
∗

are determined first
in OCP1 and influence the tangential dynamics in (21b).
Furthermore, it is related to the input constraints. OCP1
has the possibility to utilize the system inputs u up to
their limits for minimizing Jt. Roughly speaking, any
remaining margin in the control input u can be used by
OCP2 for the tangential movement. If there is no mar-
gin left, OCP2 cannot influence the desired tangential

6

Post-print version of the article: M. Böck and A. Kugi, “Constrained model predictive manifold stabilization based on transverse normal
forms”, Automatica, vol. 74, pp. 315–326, 2016. doi: 10.1016/j.automatica.2016.07.046
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.automatica.2016.07.046


movement which will also be illustrated with the exam-
ple in Section 6. The prioritization is a useful feature
as imposing a desired tangential movement is useless if
the system does not move toward the target manifold.
Furthermore, the coordinates η might not be meaningful
unless the system is in a vicinity of the target manifold.

A further benefit of utilizing two OCPs is that the de-
sired properties of the movement to the target manifold
and the tangential movement can be chosen indepen-
dently of each other. This is possible by the decoupled
cost functionals in OCP1 and OCP2. For existing ap-
proaches in the literature relying on a single OCP, again
a compromise has to be made in this respect.

Remark 5 In general it is possible that the tangential
dynamics cannot be influenced, i.e., there are no control
inputs v‖. This may happen, e.g., for the framework pre-
sented in Section 2.1. In this case, it does not make any
sense to define a desired movement on the manifold and
OCP2 is superfluous. The consideration of OCP1 is suf-
ficient in order to calculate the original inputs u for the
system.

Remark 6 Other manifolds or systems can in principle
be considered as well provided that a TNF similar to the
ones shown in Section 2 can be derived. In these cases,
the structures of OCP1 and OCP2 remain the same. The
things that possibly change are the structure of the sys-
tem equations (19b), (19c), and (21b) as well as the
feedback laws (19f) and (21d) for incorporating the in-
put constraints. However, the setup with two sequentially
solved OCPs in this form heavily relies on the fact that the
transverse dynamics are decoupled from the tangential
dynamics. Therefore, the presented framework is limited
to TNFs possessing this property.

5 Investigation of convergence

In this section, one particular method is chosen for prov-
ing convergence of the proposed MPC scheme. Several
assumptions concerning the optimal solutions and the
weighting functions of (19) and (21) as well as the sys-
tem equations are necessary for a rigorous mathemati-
cal proof of convergence. In addition, it is convenient to
slightly restrict the structure of l‖.

Assumption 7 The optimal solutions of (19) and (21)
are such that ‖ξ̄∗ (t) ‖ ≤ εξ and ‖η̄∗ (t) ‖ ≤ εη ∀t ∈
Hk with k = 0, 1, 2, . . . and finite εξ, εη ∈ R>0, i.e.,
ξ̄∗ (t) and η̄∗ (t) are contained in the compact sets Yk =
{ξ | ‖ξ‖ ≤ εξ} and Zk = {η | ‖η‖ ≤ εη} for all t ∈ Hk.

Furthermore, the optimal inputs v̄t
∗

and v̄‖
∗

are sup-
posed to be bounded.

Remark 8 Assumption 7 as well as the following ones
are mainly of technical nature and might be modified or

even dropped if a different approach for the proof of con-
vergence is employed, see, e.g., [16], [21], [32]. The as-
sumption of a bounded tangential state is not restrictive
at all as it can usually be achieved by a suitable choice
of η.

Assumption 9 The functions f0 (η, ξ), gt (η, ξ), and
g‖ (η, ξ) are continuous for all (η, ξ) ∈ Zk × Yk, k ∈
{0, 1, 2, . . .}.

Assumption 10 The integral cost function lt is
bounded from below with a class K function λtl in the
form

λtl (‖ξ‖) ≤ lt
(
ξ, vt

)
(26)

and lt (0, 0) = 0 holds.

Assumption 11 The integral cost function l‖ can be

written in the form l‖
(
η, v‖

)
= l
‖
η (η) + l

‖
v

(
v‖
)
≥ l
‖
η (η)

with a continuous function l
‖
η (η) ≥ 0 ∀η and a function

l
‖
v

(
v‖
)
≥ 0 ∀v‖. Moreover, l

‖
η is such that for l

‖
η = 0, the

desired tangential movement is achieved.

Assumption 12 The terminal costs V t and V ‖ are
continuously differentiable and V t is positive definite.

Remark 13 The Assumptions 10 and 12 (concerning
V t) are fulfilled with (23) and choosing Qξ, R

t, and Sξ
positive definite.

The main idea for enforcing convergence is to use the
terminal set T1 in a way that it represents a neighbor-
hood of the target manifoldM which is defined as

ΩεM =
{
ξ | V t (ξ) ≤ ε

}
= T1 (27)

with ε ∈ R>0. Let N be the set of all η which are re-
quired in order to achieve the desired tangential move-
ment (containing, e.g., a desired target point onM). Ad-
ditionally, N ′ = {(ξ, η) |ξ = 0, η ∈ N} ⊂M is defined.

Assumption 14 There exist input functions vtT (t) and

v
‖
T (t) for t ∈ [0, Ts] such that for every point (ξn, ηn) ∈

ΩεM ×N it holds ∀t ∈ [0, Ts] that

κ
(
ξT (t) , ηT (t) , vtT (t) , v

‖
T (t)

)
∈ U (28)

and

d

dt

(
V t (ξT (t))

)
+ lt

(
ξT (t) , vtT (t)

)
≤ 0 (29a)

d

dt

(
V ‖ (ηT (t))

)
+ l‖

(
ηT (t) , v

‖
T (t)

)
≤ 0 (29b)
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with (see Section 2.3)

ξT (t) := Φξt
(
ξn, v

t
T (·)

)
(30a)

ηT (t) := Φηt

(
ηn, ξn, v

‖
T (·) , vtT (·)

)
∈ N . (30b)

The requirements (28) and (29) arise in a natural way
for the considered task described in Section 3. The con-
dition (28) demands that in a vicinity of the manifold
expressed by ΩεM input functions do exist in principle for
driving the system under due consideration of the con-
straints. The condition (29a) mainly expresses the desire
that the input functions vtT have to move the system to-

ward the target manifold. The input functions v
‖
T have

to ensure that the application-specific requirements for
movement on the manifold are fulfilled which is indi-
rectly stated in (29b). While meeting these requirements
it is necessary that η does not leave the (feasible) set
N which is expressed by (30b). All these requirements
arise naturally from the considered task. If they are not
accomplishable, the considered task is not feasible.

What might be restricting is the expression of the re-
quirements in terms of the terminal costs and integral
cost terms in (29). However, this is just one possibility
to prove convergence, other approaches do exist in lit-
erature, for example by utilizing a sufficiently long op-
timization horizon [21] or by relying on a controllabil-
ity assumption [32]. However, the chosen way to prove
convergence of the proposed MPC scheme is a common
approach, see, e.g., [15], [17], [21].

Remark 15 From the point of view of stabilizing the
target manifold, it is clear that the input functions vtT
have to exist in a vicinity ΩεM of the target manifold
with ε > 0. Regarding the movement on the manifold

(application-specific goals) the existence of v
‖
T for ε = 0

would in principle be sufficient.

The following theorem states the main result with the
terminal sets chosen as T1 = ΩεM and T2 = N .

Theorem 16 Consider the MPC scheme based on the
sequential solution of the OCPs (19) and (21) with a
sampling time Ts, an optimization horizon with length
T ≥ Ts, T1 = ΩεM, and T2 = N . Let the Assumptions
7, 9, 10, 11, 12, and 14 hold for a particular choice of
ε. If the OCPs (19) and (21) have a feasible solution at
time t0 with ξ0 and η0 following from (6) or (18) and a
particular choice of ζI (t0) then

(1) the OCPs (19) and (21) have feasible solutions for
all sampling instants tk, k > 0,

(2) the system state converges to the target manifoldM,
i.e., O1) is achieved,

(3) the invariance property O2) is accomplished,

(4) O3) is fulfilled, i.e., the application-specific desired
movement on the manifold is achieved for t→∞.

The region of attraction of the proposed MPC scheme is
the set of all initial conditions x0 for which a feasible
solution of the OCPs (19) and (21) exists.

Proof. The proof relies on ideas presented, e.g., in [7],
[17], [18], and [25]. While usually MPC schemes with one
OCP per sampling instant are considered, here the op-
timal solutions of two OCPs per sampling instant have
to be determined. For the ease of notation, let v̄t

∗
and

v̄‖
∗

denote the optimal solution of (19) and (21), respec-
tively, at a generic sampling instant tk. The value func-
tion of both OCPs (19) and (21) together is defined as

W (tk) = Jt
(
tk, v̄

t∗ (·)
)

+ J‖
(
tk, v̄

‖∗ (·)
)

. Since nei-

ther disturbances nor model uncertainties are considered
for the presented MPC scheme, the system state at any
initial time tk + s with s ∈ [0, Ts] follows as

ξs := Φξtk+s

(
ξk, v̄

t∗ (·)
)

(31a)

ηs := Φηtk+s

(
ηk, ξk, v̄

‖∗ (·) , v̄t∗ (·)
)
. (31b)

Thus, v̄t
∗

and v̄‖
∗

are feasible inputs on the time interval
[tk + s, tk + T ]. Furthermore, according to OCP1 and
OCP2 ξ̄∗ and η̄∗ reach T1 = ΩεM and T2 = N at tk + T .
By combining these facts, feasible inputs for (19) and
(21) at any time tk + s are given by

v̂t (t) =

{
v̄t
∗

(t) t ∈ [tk + s, tk + T ]

vtT (t− tk − T ) t ∈ (tk + T, tk + s+ T ]

(32a)

v̂‖ (t) =

{
v̄‖
∗

(t) t ∈ [tk + s, tk + T ]

v
‖
T (t− tk − T ) t ∈ (tk + T, tk + s+ T ] .

(32b)

The inputs vtT and v
‖
T follow according to Assumption

14 for ηn = Φηtk+T

(
ηk, ξk, v̄

‖∗ (·) , v̄t∗ (·)
)

and ξn =

Φξtk+T

(
ξk, v̄

t∗ (·)
)

. In particular, feasible inputs for (19)

and (21) exist at the next sampling instant tk+1 = tk +
Ts. Thus, recursive feasibility (i.e., a feasible solution
of (19) and (21) can be found at all sampling instants
tk, k > 0) is ensured due to the fact that per assumption
(19) and (21) are solvable at time t0.

Let Φξt
(
ξs, v̂

t (·)
)

and Φηt
(
ηs, ξs, v̂

‖ (·) , v̂t (·)
)

denote
the solution of (4) with initial values ξs and ηs for tk + s
and inputs vt = v̂t, v‖ = v̂‖. For convenience, the short-

cuts Φξst and Φηst will be used in the following for these

solutions. It holds that Φξstk+T ∈ ΩεM and Φηstk+T ∈ N .
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At tk + s the value function fulfills

W (tk + s) ≤ Jt (tk + s, v̂t (·)
)

+ J‖
(
tk + s, v̂‖ (·)

)
.

(33)

Having in mind that η̄∗ (t) = Φηt

(
ηk, ξk, v̄

‖∗ (·) , v̄t∗ (·)
)

and ξ̄∗ (t) = Φξt

(
ξk, v̄

t∗ (·)
)

and by proceeding along

the lines of, e.g., [17], (33) can be expanded using (29) to

W (tk + s) ≤ Jt
(
tk, v̄

t∗ (·)
)

+ J‖
(
tk, v̄

‖∗ (·)
)

−
tk+s∫

tk

lt
(
ξ̄∗ (t) , v̄t

∗
(t)
)

dt−
tk+s∫

tk

l‖
(
η̄∗ (t) , v̄‖

∗
(t)
)

dt,

(34)

see Appendix A for some intermediate steps leading to
(34). From (34) and by utilizing Assumptions 10 and 11
in the form

∫ tk+s

tk

lt
(
ξ̄∗ (t) , v̄t

∗
(t)
)

+ l‖
(
η̄∗ (t) , v̄‖

∗
(t)
)

dt ≥
∫ tk+s

tk

λtl
(
‖ξ̄∗ (t) ‖

)
+ l‖η (η̄∗ (t)) dt (35)

it follows that

W (tk + s) ≤W (tk)−
∫ tk+s

tk

λtl
(
‖ξ̄∗ (t) ‖

)
+ l‖η (η̄∗ (t)) dt.

(36)
By induction it can be inferred that (it is assumed
w.l.o.g. that t0 = 0)

W (∞)−W (0) ≤ −
∫ ∞

0

λtl (‖ξ∗ (t) ‖) + l‖η (η∗ (t)) dt.

(37)
Due to the fact that neither disturbances nor model un-
certainties are considered and in view of Assumption 7
it follows that there exist compact sets Y and Z with
the property ξ∗ (t) ∈ Y and η∗ (t) ∈ Z for all t ≥ 0. This
particularly entails that ξ∗ (t) and η∗ (t) are bounded
which together with Assumptions 7 and 9 and the facts
that (4a) is linear in ξ and vt and (4b) is affine in vt

and v‖ induces that ξ̇∗ and η̇∗ are bounded. Thus, ξ∗ (t)
and η∗ (t) are uniformly continuous in t, see [10]. As ev-
ery continuous function on a compact set is uniformly
continuous it follows from Assumptions 10 and 11 that

λtl (·) and l
‖
η (·) are uniformly continuous on Y and Z,

respectively. Hence, from the fact that the composition
of two uniformly continuous functions is again uniformly
continuous and that every vector norm is continuous,

the uniform continuity of λtl (‖ξ∗ (t) ‖) and l
‖
η (η∗ (t)) re-

sults.

Per assumption the OCPs (19) and (21) have a solu-
tion at t0 which induces that W (0) is bounded. Further-

more, W (∞) ≥ 0 which entails that
∫∞

0
λtl (‖ξ∗ (t) ‖) +

l
‖
η (η∗ (t)) dt exists and is bounded. The upcoming final

conclusions require the following lemma.

Lemma 17 (Barbalat’s lemma, see [23]) Let Φ :
R → R be a uniformly continuous function on [0,∞).

Suppose that lim
t→∞

∫ t

0

Φ (τ) dτ exists and is finite. Then,

Φ (t)→ 0 as t→∞.

By utilizing Lemma 17 together with the fact that

λtl (‖ξ∗ (t) ‖) and l
‖
η (η∗ (t)) are uniformly continuous

the conclusion

λtl (‖ξ∗ (t) ‖) + l‖η (η∗ (t))→ 0 for t→∞ (38)

can be drawn which implies ξ∗ (t) → 0 and l
‖
η → 0.

Hence, convergence to the target manifoldM is proven
and, according to Assumption 11, the application-
specific desired movement on the manifold is achieved
for t → ∞. This means that Objectives O1) and O3)
are accomplished.

As pointed out, recursive feasibility is ensured for all
sampling instants tk, k > 0, provided that a feasible
solution can be found at t0. Together with the proven
convergence of the proposed scheme it follows that the
region of attraction is the set of all initial conditions x0

for which a feasible solution of the OCPs (19) and (21)
exists.

The invariance property O2) is fulfilled in the application-
relevant set N ′ as for ξ = 0 and according to Assump-
tion 14 the optimal solution v̄t

∗ ≡ 0 of OCP1 is feasible
and therefore ξ will remain zero. �

One possible way for determining ε and all other degrees
of freedom for a given application is pointed out in Sec-
tion 6.

Remark 18 For the choice ε = 0 the terminal set re-
duces to the target manifold itself. This is a similar con-
dition as in [14] where the usage of predictive control for
path following is investigated.

6 Simulation example

A two-dimensional manifold is stabilized for a point-like
mass moving in three-dimensional space. The states x1,
x3, and x5 are the coordinates in ex, ey, and ez direction
with ei being the basis vectors of a Cartesian coordinate
system and

x2 = ẋ1, x4 = ẋ3, x6 = ẋ5 (39a)
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are the corresponding velocities. Without loss of gener-
ality, the mass of the particle is supposed to be 1 and
thus the remaining system equations read as

ẋ2 = u1, ẋ4 = u2, ẋ6 = u3 (39b)

y = h (x) =
[
x1 x3 x5

]T
. (39c)

The inputs u are given by the forces acting on
the particle. They are subject to constraints U =
{
u ∈ R3|umin ≤ u ≤ umax

}
with umax =

[
0.1 0.2 0.9

]T

and umin = −umax.

Remark 19 Symmetric box constraints are considered
here as they frequently occur for mechanical systems.
However it is worth noting that asymmetric box con-
straints can be taken into account in a similar way.

Obviously, y is a flat output of (39). Therefore, the
method of Section 2.2 is applied here. The manifoldMf

to be stabilized with dimension p = 2 is defined in the
flat output space by the function

σt (y) = ay2 + d sin (cy2)− y3 (40)

with a = −1, c = 4, and d = 0.2, see Fig. 1. As outlined
in Section 2.2, another function σ‖ is chosen as

σ‖ (y) =
[
y1 y2

]T
. (41)

It describes the position of the particle on Mf . It can

be easily verified that Υ (x) =
[
Υ1 (x) Υ2 (x) Υ3 (x)

]T

according to (9) is a new flat output allowing for an exact
state linearization by static state feedback

u = κ̄
(
x, vt, v‖

)
= α (x) + β (x)

[
vt v

‖
1 v
‖
2

]T
. (42)

The TNF follows with ξ ∈ R2 and η ∈ R4 as

ζ̇ =
[
ξ̇T η̇T

]T
=
[
ξ2 v

t η2 v
‖
1 η4 v

‖
2

]T
(43)

and the corresponding state transformation is given by

ζ = Φ (x) =
[
Υ1 (x) Υ̇1 (x) x1 x2 x3 x4

]T
(44)

allowing to calculate

κ
(
ξ, η, vt, v‖

)
= κ̄

(
x, vt, v‖

)∣∣∣
x=Φ−1(ζ)

. (45)

Thus, the controlled invariant target manifold expressed
in the original coordinates x reads as

M =
{
x ∈ R6|Υ1 (x) = Υ̇1 (x) = 0

}
. (46)

For the considered application, Objective O3) is speci-
fied such that the particle approaches a desired point on
the manifold which, for the sake of simplicity, is chosen
as ηd = 0. Hence, the integral cost function and terminal
cost for OCP2 are chosen as

l‖
(
η, v‖

)
=

1

2


η


Qη︸ ︷︷ ︸

l
‖
η(η)

+
1

2


v‖



R‖︸ ︷︷ ︸

l
‖
v(v‖)

(47a)

V ‖ (η) =
1

2


η


Sη

(47b)

with positive definite matrices Qη, R‖, and Sη. The cor-
responding terms for OCP1 are taken from (23) with pos-
itive definite weighting matrices Qξ, R

t, and Sξ. These
choices entail that Assumptions 10, 11, and 12 are ful-
filled. The set N is expressed in terms of the terminal
cost V ‖ in the form

N =
{
η ∈ R4|V ‖ (η) ≤ N

}
(48)

with N ∈ R>0. The crucial part is given by finding feed-
back laws and suitable parameter values such that As-
sumption 14 is fulfilled. To this end, a strategy similar
to the one proposed in, e.g., [6] is employed. The input

functions vtT and v
‖
T are chosen as linear state feedback

laws which asymptotically stabilize the transverse and
tangential dynamics. In the following, the derivation is
explicitly stated for the transverse dynamics. With

vtT = Ktξ (49)

inserted for vt the transverse dynamics follow as

ξ̇ =

([
0 1

0 0

]
+

[
0

1

]
Kt
)

︸ ︷︷ ︸
At
c

ξ. (50)

Thus, when using (49) for vt the total derivative of V t

with respect to time and the integral cost function read
as

V̇ t
T =

1

2


ξ


At
c

TSξ+SξAt
c

(51a)

ltT =
1

2


ξ


Qξ+KtTRtKt

. (51b)

The determination of Sξ as the solution of the Lyapunov
equation

At
c

T
Sξ + SξA

t
c +

(
Qξ +KtT

RtKt
)

= 0 (52)

implies V̇ t
T + ltT = 0 and hence (29a) holds. The strat-

egy for the tangential dynamics is identical. Therefore,
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(29b) is satisfied as well. Note that the condition (30b)
is automatically fulfilled due to the expression of N in

terms of V ‖ and V̇
‖
T ≤ 0.

Finally, ε and N are determined such that (28) is ful-
filled. This is done by numerically searching for the max-
imum and minimum of each component of

κ
(
ξ, η, vt, v‖

)∣∣∣
vt=Ktξ,v‖=K‖η

(53)

in the set ΩεM ×N . For ε = 1 and N = 10 the maxima
and minima lie within the feasible region for the inputs.
The other parameter values behind these results are

Qξ = diag
([

1 1
])

Qη = diag
([

1 1 8 8
])

(54a)

Rt = 1 R‖ = diag
([

1 1
])

(54b)

Kt = −
[
0.0016 0.08

]
K‖ = −

[
0.01 0.2 0 0

0 0 0.04 0.4

]
.

(54c)

Hence, according to Theorem 16, the Objectives O1)–
O3) are achieved for all x0 for which feasible solutions of
OCP1 and OCP2 exist. For the MPC scheme, a sampling
time Ts = 50ms together with an optimization horizon
of length T = 8s is chosen.

Unless otherwise stated, the simulation results shown
in the following are based on the initial condition

x0 =
[
0.1 0.45 2 0 0 −2

]T
at t0 = 0. Figure 1 shows

the closed-loop trajectory of the particle in the three-
dimensional space from two different viewpoints (solid

line) with y0 =
[
x0,1 x0,3 x0,5

]T
. The corresponding

inputs (i.e., the forces acting on the particle) are de-
picted in Fig. 2. Obviously, the input constraints are
frequently reached. The dashed trajectories in Fig. 1
belong to a few other initial conditions. From all start-
ing points, the position of the particle asymptotically
converges to the manifold Mf . Furthermore, it also
reaches the target position yd = 0 (the origin of the
Cartesian coordinate system). This illustrates that Ob-
jectives O1) and O3) are met. The dash-dot line in Fig. 1
traces the trajectory of the particle originating from

x0 =
[
0.5 0 2 0 2a+ d sin (2c) 0

]T
which corresponds

to a position of rest exactly onMf . Again, the particle
is driven to the desired target position yd = 0 but never
leaves Mf again. This demonstrates the invariance
property O2) achieved by the controller.

The transverse state ξ∗ and the transverse control input
vt
∗

are visible in the left part of Fig. 3. As both trans-
verse states converge to zero, the particle approaches the
manifold. The value function of both OCPs over time

0
1

2

0
1

2

−2

0

yd

y0

Mf

x1
x3

x
5

−1 0 1 2

−2

0
yd y0

Mf

x3

x
5

Fig. 1. Trajectories of the particle and Mf .

0 5 10 15
-0.9

-0.1

0.2

0.9

t in s

u

u1
u2
u3

Fig. 2. System inputs u.

0 5 10 15

−1

0

1

2

t in s

ξ∗
,v

⋔
∗

ξ∗1 ξ∗2 v⋔
∗

0 5 10 15
0

50

100

t in s

W

Fig. 3. Transverse state ξ∗, transverse control input vt
∗
, and

combined value function W of both OCPs.

is shown in the right part of Fig. 3. As expected, W
strictly decreases monotonically which practically veri-
fies the convergence results of Section 5. In Fig. 4, the
tangential state η∗ and the corresponding control input

v‖
∗

are depicted. The convergence of all components of
η∗ to zero again verifies the fulfillment of Objective O3).
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Fig. 4. Tangential state η∗ and tangential control input v‖
∗
.
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Fig. 5. Illustration of the prioritization property through u1∗,
v‖1
∗
, and v‖

∗
.

The fact that the stabilization of the manifold is prior-
itized over the movement on the manifold is illustrated
in Fig. 5. In the upper part of this figure, the compo-
nents of u1∗ are shown which is calculated according to
(25) but using all quantities from OCP1, i.e.,

u1∗ (t) = κ
(
ξ∗ (t) , η1∗ (t) , vt

∗
(t) , v‖1

∗
(t)
)
. (55)

In the lower part of Fig. 5, the optimal solutions v‖1
∗

from OCP1 and v‖
∗

from OCP2 are depicted.

During the time interval [0, 0.75] s the optimal solution of
OCP1 is such that all input constraints are active which
results in the fact that there is no remaining margin
for OCP2 to achieve the desired tangential movement.
This is clearly visible as the corresponding components

of v‖1
∗
, which is not based on any optimality criterion

regarding the tangential movement, and v‖
∗

are identi-
cal over the time interval [0, 0.75] s. Moreover, as a result
η∗3 is even getting larger. As soon as one or more input

constraints become inactive, the solutions v‖1
∗

and v‖
∗

differ in one or more components, which is also visible
in Fig. 5. The tangential movement can then be influ-
enced in a specific way and, in particular, η∗3 approaches
zero. Note that due to Assumption 14, this has to hap-
pen sooner or later. The convergence to the manifold

implies that ξ∗ reaches the region ΩεM around the man-
ifold where, according to Assumption 14, inputs exist
which simultaneously drive the system to the manifold
and achieve a desired movement on the manifold, both
under due consideration of the input constraints.

In the following, the properties of the proposed control
concept are further highlighted. This is done by a com-
parison with a model predictive controller based on the
single OCP

min
v̄t(·),v̄‖(·)

Jt (tk, v̄t (·)
)

+ J‖
(
tk, v̄

‖ (·)
)

(56a)

s.t. (19b)–(19f) (56b)

which is solved at each sampling instant tk. Apart from
the cost functional (56a) it is identical to OCP1. In the
OCP (56) the cost functionals dedicated to the trans-
verse and tangential movement are added up and the
sum is minimized. At first glance, this appears to be
a reasonable strategy for stabilizing the manifold and
achieving a desired tangential movement on it. The in-
put applied to the system is calculated from the optimal
solution of (56) in the form

u (t) = κ
(
ξ̄∗ (t) , η̄∗ (t) , v̄t

∗
(t) , v̄‖

∗
(t)
)
, t ∈ [tk, tk+1) .

(57)
All parameter values of the OCP (56) are the same as
for the proposed controller with two OCPs.

For the model predictive controller based on (56) and

the same initial condition x0 =
[
0.1 0.45 2 0 0 −2

]T
as

before, the resulting trajectory of the closed-loop sys-
tem of the point-like mass can be seen in Fig. 6 from two
different viewpoints. By comparing it with the solid line
in Fig. 1, the prioritization resulting from the structure
with two sequentially solved OCPs becomes immediately
visible. When using the proposed controller, the particle
stays much closer to the manifold (after compensating
for the initial deviation) compared to the case when just
a single OCP is solved at each sampling instant. For the
latter a compromise situation occurs inducing that the
particle is directly moved toward x3 = 0. On the con-
trary, the proposed controller with two OCPs primarily
aims at driving the point-like mass to the manifold which
can be accomplished better with a slight excursion of x3

in positive direction.

Besides the prioritization, the most important reason
for choosing the structure with two OCPs is given by
the invariance property. This reasoning can be further
substantiated by another comparison with the model
predictive controller based on the single OCP (56). To
this end, it is executed for the initial condition x0 =[
0.5 0 2 0 2a+ d sin (2c) 0

]T
which also served previ-

ously for demonstrating the invariance property. Fig-
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Fig. 6. Trajectory of the particle and Mf for the controller
based on a single OCP.
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Fig. 7. Trajectory of the particle and Mf for the controller
based on a single OCP and the initial condition correspond-
ing to a position of rest exactly on Mf .

ure 7 shows the corresponding trajectory of the particle
in closed loop. The inputs to the system for the proposed
control strategy and the controller based on just a sin-
gle OCP are displayed in Figs. 8 and 9, respectively. For
both controllers, the input constraints become active.
However, the model predictive controller based on a sin-
gle OCP violates the invariance property which can be
seen in Fig. 7 as the point-like mass leaves the manifold
Mf . This is not the case for the proposed control con-
cept (cf. the dash-dot line in Fig. 1) which clearly justifies
the structure with two sequentially solved OCPs. Obvi-

0 2 4 6 8 10
-0.9

-0.1

0.2

0.9

t in s

u

u1
u2
u3

Fig. 8. System inputs u for the controller with two OCPs
and the initial condition corresponding to a position of rest
exactly on Mf .
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-0.9

-0.1

0.2

0.9

t in s

u

u1
u2
u3

Fig. 9. System inputs u for the controller based on a single
OCP and the initial condition corresponding to a position
of rest exactly on Mf .

ously, for the controller based on a single OCP a com-
promise situation occurs, i.e., the increase of the value
of the cost functional (56a) due to leaving the manifold
can be counterbalanced with a better performance in
tangential direction. The main difference in the behavior
is also well visible at the control input u2 for both con-
trollers in Figs. 8 and 9. The model predictive controller
based on two OCPs increases u2 slightly earlier than the
one based on a single OCP. This reduces the velocity in
negative x3 direction and enables to hold the particle on
the manifold. Despite this reduction of the velocity, the
overall maneuver is accomplished at virtually the same
time.

Remark 20 The simple example of a point-like mass
has been chosen to emphasize the application of the pro-
posed concept and the corresponding determination of the
controller parameters. Nevertheless, the presented con-
trol scheme can be directly applied to more elaborate sys-
tems without facing any further problems.

7 Conclusion

The stabilization of manifolds under system constraints
was investigated. To this end, the concept of transverse
normal forms is used in combination with a novel model
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predictive control scheme. In contrast to existing con-
cepts in the literature, two optimal control problems are
sequentially solved at each sampling instant. This en-
ables to prioritize the movement to the manifold over the
movement on the manifold. Furthermore, no compro-
mise between the weighting of the transverse and tan-
gential movement in the cost functional has to be taken.
One possibility was pointed out for proving convergence
of the proposed control concept. Its applicability was
shown by an illustrative simulation example.

Current work is dedicated to the mathematical formula-
tion of the prioritization property. In addition, the appli-
cation of the proposed control scheme to more complex
systems is planned.

A Auxiliary calculations for the proof of Theo-
rem 16

For brevity, the argument (t) is omitted in the following.
Furthermore, where necessary, the shortcut Tk is used
for tk +T . By integrating (29) from tk +T to tk + s+T
one obtains

V t
(

Φξstk+s+T

)
− V t

(
Φξstk+T

)
+

tk+s+T∫

tk+T

lt
(

Φξst , v̂
t
)

dt ≤ 0

(A.1a)

V ‖
(
Φηstk+s+T

)
− V ‖

(
Φηstk+T

)
+

tk+s+T∫

tk+T

l‖
(

Φηst , v̂
‖
)

dt ≤ 0.

(A.1b)
The right-hand side of (33) can be written as

Jt (tk + s, v̂t (·)
)

+ J‖
(
tk + s, v̂‖ (·)

)
=

tk+T∫

tk+s

lt
(

Φξst , v̂
t
)

dt+

tk+s∫

tk

lt
(
ξ̄∗, v̄t

∗)
dt+ V t (ξ̄∗ (Tk)

)

︸ ︷︷ ︸
Jt(tk,v̄t∗(·))

+

tk+T∫

tk+s

l‖
(

Φηst , v̂
‖
)

dt+

tk+s∫

tk

l‖
(
η̄∗, v̄‖

∗)
dt+ V ‖ (η̄∗ (Tk))

︸ ︷︷ ︸
J‖(tk,v̄‖∗(·))

+

tk+s+T∫

tk+T

lt
(

Φξst , v̂
t
)

dt+ V t
(

Φξstk+s+T

)
− V t (ξ̄∗ (Tk)

)

︸ ︷︷ ︸
≤0 due to (A.1a)

+

tk+s+T∫

tk+T

l‖
(

Φηst , v̂
‖
)

dt+ V ‖
(
Φηstk+s+T

)
− V ‖ (η̄∗ (Tk))

︸ ︷︷ ︸
≤0 due to (A.1b)

−
tk+s∫

tk

lt
(
ξ̄∗, v̄t

∗)
dt−

tk+s∫

tk

l‖
(
η̄∗, v̄‖

∗)
dt

(A.2)

resulting in (34).
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[7] Hong Chen and Frank Allgöwer. A quasi-infinite horizon
nonlinear model predictive control scheme with guaranteed
stability. Automatica, 34(10):1205–1217, 1998.
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