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Evaluation of Efficiently Generating
Fast Robot Trajectories Under

Geometric and System Constraints ?

Martin Böck ∗ Manuel Plainer ∗ Andreas Kugi ∗

∗Automation and Control Institute, TU Wien
Gußhausstraße 27–29, 1040 Vienna, Austria

(e-mail: {boeck,kugi}@acin.tuwien.ac.at, manuel.plainer@gmx.at).

Abstract: This paper investigates and compares some approaches to trajectory generation
for an articulated robot with six degrees of freedom. The trajectory to be planned consists of
geometrically predetermined segments and phases where the geometry is free. The overall goal
is to minimize the time needed for traversing the whole trajectory from a specified start to a
terminal configuration. Constraints for the joint angles, velocities, accelerations, and jerks as
well as for the joint torques of the robot are taken into account. The optimal solution of this
task is calculated as reference. However, this requires considerable computing time. In view of
this fact, different parameterizations are investigated. The resulting trajectories require slightly
more time for traversing than the optimal one, but they can be calculated more efficiently. Based
on four different exemplary trajectories, the proposed approaches are tested and compared on
an industrial robot.

Keywords: Constraints, inverse kinematic problem, minimum-time control, robot dynamics,
robot kinematics, robotic manipulators, trajectory planning.

1. INTRODUCTION

Trajectory generation is an important task for robot op-
eration. It is understood here to comprise two subtasks.
Firstly, a geometric curve for a specific point of the robot
has to be found according to the overall motion spec-
ification. Subsequently, such a geometric curve without
temporal information is referred to as path. Secondly, a
time parameterization has to be determined turning the
path into a trajectory. Trajectory generation has often
been treated in literature and plenty of solutions are avail-
able. Many different types of robots have been considered
and various tasks with offline as well as online trajectory
generation have been investigated. For surveys on trajec-
tory generation for robots, see, e.g., Siciliano and Khatib
(2008); Laumond (1998); LaValle (2006); Latombe (1991);
Biagiotti and Melchiorri (2008).

In this paper, we focus on trajectory generation for an
articulated robot with six degrees of freedom (DOFs).
The time-dependent trajectory to be found describes the
motion of the tool center point (TCP) of the robot. It
is supposed to connect two points of rest with prescribed
position and orientation and take into account constraints.
The considered trajectories consist of so-called point-to-
point (PTP) and continuous path (CP) segments and are
subsequently referred to as PTPCP trajectories. The PTP
segments are geometrically not predetermined, i.e., the
geometry of the curve connecting the boundary points
is left as a DOF. On the contrary, the CP segments are
specified as paths. The geometry of the PTP segments

? The authors are grateful to STIWA Automation GmbH for finan-
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and the time parameterization of the whole trajectory
have to be determined such that the PTPCP trajectory is
traversed in a time-optimal or near time-optimal fashion.
For the PTP segments, the boundary conditions typically
concern position and orientation as well as the correspond-
ing derivatives with respect to time to, e.g., connect to the
CP parts.

Many of the existing approaches for solving such a task
of trajectory generation can be divided into two classes,
see, e.g., Pardo-Castellote and Cannon Jr. (1996). On the
one hand, a so-called decoupled approach can be utilized,
see, e.g., Bobrow et al. (1985). This approach consists of
determining the geometry of the path first. Afterwards,
the time parameterization of the path parameter is found.
On the other hand, the so-called coupled approach can
be used, see, e.g., Shiller and Dubowsky (1991). The
latter is also employed in this paper. The geometry of the
PTP parts and the time parameterization of the whole
trajectory are found at once. While this obviously results
in an increased computational complexity compared to
the decoupled approach, the time-optimal solution can
actually be found.

The aim of this paper is to evaluate and compare different
methods for solving the described task of trajectory gen-
eration with respect to different aspects. To this end, four
exemplary PTPCP trajectories are considered. Amongst
others, the computing time and reliability are investigated
in more detail. In particular, they can be important for
online planning or replanning. For the sake of validation,
the calculated trajectories are also tested at an industrial
robot.
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On the one hand, an optimal control problem (OCP)
is formulated for obtaining the time-optimal trajectory
as reference satisfying all boundary conditions and con-
straints. This OCP is solved with a ready-to-use software
package. On the other hand, certain parameterizations are
used beforehand for transforming the problem of trajec-
tory generation into a static optimization problem. Similar
approaches are pursued, e.g., in Messner et al. (2013);
Verscheure et al. (2009).

Concerning the constraints, not only such for the motor
torques and joint angles are considered but also for the
first, second, and third time-derivatives of the joint angles
(joint velocity, acceleration, and jerk). Existing algorithms
do often not account for all these constraints at once, see,
e.g., Shin and McKay (1985). The incorporation of the
constraints for the torques and the jerk enables to fully
utilize the capabilities of the robot for fast movements and
vibrations are reduced, cf. Messner et al. (2013).

For the static optimization problem, the analytical gra-
dients and Jacobian matrices are calculated. The strict
incorporation of model knowledge, e.g., the forward and
inverse kinematics and the dynamics of the considered
six DOFs robot, into the optimization has the positive
effect that no approximation, e.g., via finite differences, is
necessary.

Further details about the considered robot and the specific
task of trajectory generation are given in Section 2. The
different methods for the generation of fast PTPCP tra-
jectories are presented in Section 3. These methods form
the basis for the evaluation carried out in Section 4.

2. CONSIDERED ROBOT AND TASK

The investigations presented in this paper are based on the
robot Stäubli TX60L shown in Fig. 1. This robot has six
DOFs given by the joint angles qi, i = 1, . . . , 6 which are
collected in the vector q ∈ R6. The robot can be equipped

TCP

q1

q2

q3

q4

q5
q6

xI
yI

zI

Fig. 1. Six axes articulated robot Stäubli TX60L.

with an end effector with the reference point given by the
TCP.

The forward kinematics, i.e., the calculation of the position
and orientation of the TCP in the inertial Cartesian co-
ordinate system with basis vectors (xI ,yI , zI) depending
on the values of the joint angles q, can be calculated in
a straightforward way. Therefore, it is omitted here for
brevity. The resulting position of the TCP is denoted as

IrTCP and RTCP constitutes the rotation matrix describ-
ing the orientation of the end effector with respect to the
inertial frame.

The corresponding inverse kinematics are presented in
Section 2.1. The mathematical model of the robot used
in the remainder of this paper is shortly outlined in
Section 2.2 and Section 2.3 provides a detailed description
of the considered task of trajectory generation.

2.1 Inverse Kinematics

For the considered robot, a closed-form solution of the
inverse kinematics is available since the axes of the consec-
utive revolute joints with angles q4, q5, and q6 intersect at
a single point, see Siciliano et al. (2009). Despite this nice
property, ambiguities (e.g., the elbow joint might point
upward or downward for the same position of the TCP)
and singular configurations (e.g., the axes of the joints with
angles q4 and q6 are collinear) still have to be appropriately
treated. Without going into further details, the result for
the inverse kinematics can be stated as

q = Φ (IrTCP,RTCP) . (1)

In view of the ambiguities, one particular configuration of
the robot is chosen in the following for obtaining (1).

Besides (1), it is further necessary for the upcoming inves-
tigations to determine the joint velocities, accelerations,
and jerks from those belonging to the end effector. To this
end, the vector

ż =
[
IvTCP

T
IωTCP

T
]T

(2)

containing the velocity and angular velocity of the end
effector in the inertial Cartesian coordinate system is
introduced, see, e.g., Siciliano et al. (2009); Corke (2013).
As ż is linear in q̇ and under a slight abuse of notation it
can be written as

ż =
∂ż

∂q̇︸︷︷︸
J(q)

q̇ (3)

with the manipulator Jacobian J . Hence, at nonsingular
configurations it holds that

q̇ = J
−1

(q)︸ ︷︷ ︸
J(q)

ż. (4a)

Similarly, the quantities q̈ and q(3) can be calculated as

q̈ = J (q)
(
z̈ − J̇ (q, q̇) q̇

)
(4b)

q(3) = J (q)
(
z(3) − J̈ (q, q̇, q̈) q̇ − 2J̇ (q, q̇) q̈

)
. (4c)

2.2 Mathematical Model of the Robot

For the Stäubli TX60L, the equations of motion are
derived by means of the projection equation (see Bremer
(2008)) yielding
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Θ (q, q̇, q̈) = D (q) q̈+C (q, q̇) q̇+B (q̇)+g (q) = τ . (5)

The vector τ ∈ R6 contains the joint torques, D consti-
tutes the inertia matrix, C (q, q̇) q̇ is the vector of cen-
tripetal and Coriolis terms, and B and g comprise the
friction and gravitational terms, resp. Naturally, the joint
angles, their derivatives, and the torques of the Stäubli
TX60L are subject to physical constraints

qmin ≤ q ≤ qmax q̇min ≤ q̇ ≤ q̇max (6a)

q̈min ≤ q̈ ≤ q̈max τmin ≤ τ ≤ τmax (6b)

q
(3)
min ≤ q(3) ≤ q(3)

max. (6c)

For the sake of brevity, the equations of motion and the
constraints are not explicitly stated. The limits for q
directly result from the construction of the robot, whereas
the constraints for q̇, q̈, and q(3) may come from different
other reasons, e.g., safety considerations or the avoidance
of vibrations. The limits for the torques arise from the
construction and the electrical properties of the motors.
Their explicit incorporation is necessary for fully utilizing
the dynamics of the robot which is in particular important
in view of the considered task described in Section 2.3.

2.3 Task Specification

start
segment 1

segment 2 segment 3
IP1

IP2

xI

yI

zI
end

Fig. 2. Considered PTPCP trajectory.

The overall task considered for the robot Stäubli TX60L
is given by determining a PTPCP trajectory which is
to be traversed in minimum time. This trajectory is
planned in the three-dimensional workspace of the robot.
Exemplarily, we consider a PTPCP trajectory consisting
of three segments, see Fig. 2. The first and third segment
are straight CP parts whereas the second segment is given
as a PTP trajectory. The points where these segments
are connected are referred to as intermediate points with
abbreviations IP1 and IP2, cf. Fig. 2. The overall PTPCP
trajectory starts and ends at points of rest with predefined
positions rS, rE and orientations of the end effector. The
orientations are given by the rotation matricesRTCP,S and
RTCP,E, resp. The corresponding values of the joint angles
following from (1) are denoted by qS and qE. Similarly, at
IP1 and IP2 the positions rIP1, rIP2 of the end effector
are also predefined. In addition, it is assumed that the
orientations of the end effector at IP1 and IP2 are fixed
as well and again given by RTCP,S and RTCP,E. The
main reason for this measure is that the corresponding
joint angles denoted by qIP1 and qIP2 according to (1)
are fully determined which can be beneficial, e.g., with
regard to replanning or collision avoidance. In the first
and third segment, the position of the end effector has to
follow a straight line. These lines can be defined in the
parameterized form

IrTCP =

{
η1 (σ1) = rS + σ1∆r1 segment 1

η3 (σ3) = rIP2 + σ3∆r3 segment 3
(7)

with the path parameters σ1 and σ3 depending on the
time t. Furthermore, the path parameters are supposed

to be contained in the interval [0, 1] which is fulfilled for
∆r1 = rIP1 − rS and ∆r3 = rE − rIP2. By inserting
the forward kinematics into (7) and eliminating the path
parameters, one obtains an implicit formulation of the
path segment i ∈ {1, 3} in terms of the joint angles

R2 3 ξi (q) = 0. (8)

The specific form of the PTPCP trajectory can be mo-
tivated, e.g., by pick and place tasks. Segments 1 and 3
describe the parts of the trajectory where the workpiece is
picked up by the robot and laid down at its target position,
both with predefined orientation. Nevertheless, the meth-
ods presented in the following can be straightforwardly
extended to other PTPCP trajectories consisting, e.g., of
more than three segments. The overall time needed for
the PTPCP trajectory, subsequently also referred to as
the trajectory time, is denoted by T = T1 +T2 +T3 where
T1, T2, and T3 are the periods of time needed for each
segment. Summarizing, the considered task of trajectory
generation consists of determining

1. a geometry of the PTP part in segment 2 (describing
the position of the TCP) as well as the orientation of
the end effector,

2. the orientation of the end effector during the CP parts
in segments 1 and 3, and

3. a time parameterization of the whole geometric path

such that the trajectory time T is as small as possible
under the given constraints (6) and the geometry of the
CP parts. The solution of this task is presented in the
following section.

3. GENERATION OF FAST PTPCP TRAJECTORIES

This section presents different possibilities for finding
fast PTPCP trajectories solving the task specified in
Section 2.3. On the one hand, the time-optimal solution
(up to numerical accuracy) is determined in Section 3.1.
Naturally, the computing time for calculating this solution
is rather large, however, it is important for comparison
and benchmark purposes. On the other hand, a more
efficient calculation of the trajectories in the sense of
less computing time is presented in Section 3.2. To this
end, certain parameterizations are utilized which slightly
restrict the shape of the curve in segment 2 and the time
parameterization of the PTPCP trajectory.

3.1 Optimal Solution

For calculating the optimal solution (up to numerical ac-
curacy), the task described in Section 2.3 is formulated
as an OCP. This OCP is solved with the software pack-
age PSOPT , see Becerra (2010). The main reason for
employing this solver is that it explicitly supports OCPs
with a finite number of phases, each with a different
cost functional, system equations basically in the form
ẋ = f (x,u) with state x and input u, and constraints.
Thus, the three segments of the PTPCP trajectory with
different constraints can be directly incorporated. The
problem is automatically discretized and solved with a
solver for static optimization. It can be chosen between
SNOPT, see Gill et al. (2002), or IPOPT, cf. Wächter and
Biegler (2006). In the following, exclusively IPOPT is used.
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The gradients and Jacobian matrices corresponding to the
obtained static optimization problem are determined inter-
nally by means of automatic differentiation with the pack-
age ADOL-C or by finite differences. Experience shows
that the complex mathematical model of the robot and the
constraints lead to difficulties when using ADOL-C. Hence,
solely the determination of the gradients and Jacobian
matrices by means of finite differences is used.

In principle, several different formulations of the OCP are
possible, in particular motivated by the jerk constraints
(6c). They entail that the torques τ , being the “input”
to the robot, cannot be directly considered as inputs u to
the dynamical system within the OCP. This is due to the
fact that q(3) is dependent on τ̇ . Hence, u̇ would occur
which is not supported by PSOPT . The first possibility
for avoiding this problem is given by setting τ̇ = u
and extending the robot dynamics with further states to
obtain ẋ = f (x,u) for PSOPT . The second possibility is
based on a mathematical model ẋ = f (x,u) of the form
q(3) = u with corresponding state x given by q, q̇, and q̈.
In the following, the second possibility is pursued.

By using the implicit description (8) of the CP parts, the
OCP to be solved with PSOPT reads as

min
u(·)

J (u (·)) (9a)

s.t. ẋ =
[
q̇T q̈T uT

]T
= f (x,u) (9b)

segments 1–3





qmin ≤ q (t) ≤ qmax
q̇min ≤ q̇ (t) ≤ q̇max
q̈min ≤ q̈ (t) ≤ q̈max ∀t ∈ [0, T ]

q
(3)
min ≤ u (t) ≤ q(3)

max

τmin ≤ Θ (q (t) , q̇ (t) , q̈ (t)) ≤ τmax

(9c)

segment 1

{
q (0) = qS q (T1) = qIP1
q̇ (0) = q̈ (0) = 0
ξ1 (q (t)) = 0 ∀t ∈ [0, T1]

(9d)

segment 2

{
q (T1 + T2) = qIP2 (9e)

segment 3

{
q (T ) = qE q̇ (T ) = q̈ (T ) = 0
ξ3 (q (t)) = 0 ∀t ∈ [T1 + T2, T ]

(9f)

with the cost functional

J (u (·)) = T1 + T2 + T3 = T. (10)

3.2 Efficient Calculation of Fast PTPCP Trajectories

This section aims at developing a more efficient (in terms
of less computing time) way of calculating the desired
PTPCP trajectories. To this end, the following restriction
is made. The optimal solution with PSOPT according to
Section 3.1 of the task described in Section 2.3 shows that
the change of orientation of the end effector in the first
and third segment is negligible, cf. Fig. 4 in Section 4.
Therefore, in view of a reduction of computing time, these
DOFs are removed and the orientations in the first and
third segment are assumed to be fixed with the rotation
matrices RTCP,S and RTCP,E, resp.

The remaining DOFs for the optimization are given by
the choice of σ1 (t) and σ3 (t) in segments 1 and 3 as
well as the joint angles q (t) in segment 2. These time-
dependent quantities are represented by polynomials of

fifth order (P5s) or cubic spline functions (CSFs). Natu-
rally, this restricts the shape of the respective quantities.
Therefore, the obtained solutions are merely optimal in
the sense of the chosen parameterization. Nevertheless,
these parameterizations reduce the number of DOFs which
enables to reach the overall goal of formulating a static
optimization problem which can be efficiently solved. Note
that henceforth a generic quantity χ (t) being represented
with either a P5 or a CSF is written in the form χ̂ (p, t).
For the ease of notation, the corresponding coefficients of
all subsequently stated P5s or CSFs are denoted as p.

The coefficients of a time-dependent P5 are uniquely deter-
mined with three boundary conditions for the derivatives
of order 0–2 at each end of a given interval of time. For the
path parameter σ1 in the first segment, being represented
as σ̂1 (p, t), these boundary conditions are given by

σ1 (0) = 0 σ1 (T1) = 1 (11a)

σ̇1 (0) = 0 σ̇1 (T1) =
vIP1

‖∆r1‖
(11b)

σ̈1 (0) = 0 σ̈1 (T1) =
aIP1

‖∆r1‖
(11c)

with ‖·‖ denoting the Euclidean norm. The conditions for
σ̇1 (T1) and σ̈1 (T1) follow from the first and second time-
derivative of (7) in the form

η̇1 (σ̇1) = σ̇1∆r1 η̈1 (σ̈1) = σ̈1∆r1 (12)

and noting that the constant directions of the velocity and
acceleration vectors are determined by ∆r1. Therefore,
only the magnitudes at the end of segment 1 (at IP1) given
by vIP1 and aIP1 remain as DOFs. In an analogous manner,
the boundary conditions for σ3 follow as

σ3 (T1 + T2) = 0 σ3 (T ) = 1 (13a)

σ̇3 (T1 + T2) =
vIP2

‖∆r3‖
σ̇3 (T ) = 0 (13b)

σ̈3 (T1 + T2) =
aIP2

‖∆r3‖
σ̈3 (T ) = 0. (13c)

In segment 2, the joint angles q are represented by P5s
q̂ (p, t) as well. The translational and rotational velocities
and accelerations at t = T1 (IP1) and t = T1 + T2 (IP2)
are given by

ż (T1) =

[
vIP1

∆r1
‖∆r1‖
0

]
ż (T1 + T2) =

[
vIP2

∆r3
‖∆r3‖
0

]
(14a)

z̈ (T1) =

[
aIP1

∆r1
‖∆r1‖
0

]
z̈ (T1 + T2) =

[
aIP2

∆r3
‖∆r3‖
0

]
.

(14b)

With these quantities, the boundary conditions for the P5s
in the second segment read as

q (T1) = qIP1 q (T12) = qIP2 (15a)

q̇ (T1) = J (qIP1) ż (T1) q̇ (T12) = J (qIP2) ż (T12)
(15b)

q̈ (T1) = J (qIP1)
(
z̈ (T1)− J̇ (qIP1, q̇ (T1)) q̇ (T1)

)

(15c)

q̈ (T12) = J (qIP2)
(
z̈ (T12)− J̇ (qIP2, q̇ (T12)) q̇ (T12)

)

(15d)

with the shortcut T12 = T1 + T2. The DOFs vIP1, aIP1,
vIP2, and aIP2 need to be fixed in order to uniquely define
all P5s from the boundary conditions (11), (13), and (15).
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Hence, the PTPCP trajectory is fully determined and the
optimization variables are given by

X = [T1 T2 T3 vIP1 aIP1 vIP2 aIP2]
T
. (16)

The relation between X and the coefficients of the polyno-
mials are denoted by κi (X) for the ith segment. By using
these relations, the final P5s follow as

σ̂1 (κ1 (X) , t) , σ̂3 (κ3 (X) , t) , and q̂ (κ2 (X) , t) . (17)

The second possibility considered for representing the path
parameters σ1 (t) and σ3 (t) as well as the joint angles q (t)
is given by CSFs. The basic idea is to add additional DOFs
such that the shape of the curve is more flexible compared
to the P5s. These additional DOFs are given by points
through which the CSF is supposed to pass. In the first and
third segment, NS1 and NS3 evenly distributed additional
points collected in the vectors e1 and e3 are introduced
for describing σ1 (t) and σ3 (t). In the second segment, for
each joint angle NS2 evenly distributed additional points
are considered. All 6NS2 points for q (t) are collected in
a vector e2. Similar to the P5s, the boundary conditions
(11), (13), and (15) as well as the values given by e1, e2,
and e3 allow to uniquely determine all occurring CSFs
representing σ1 (t), σ3 (t), and q (t). Hence, the DOFs
being the optimization variables are given by

X =
[
T1 T2 T3 vIP1 aIP1 vIP2 aIP2 e

T
1 eT

2 eT
3

]T
. (18)

In an abstract form, the relation between X and the
coefficients of the CSFs can again be written as κi (X) for
the ith segment. For the sake of brevity, the same symbols
are used as for P5s. Furthermore, the basic structure of
the calculations is the same for P5s and CSFs. Hence, the
final representations of σ1 (t), σ3 (t), and q (t) with CSFs
can also be written in the form (17).

For implementation as a static optimization problem, it is
further necessary to transform the variable time durations
of segments 1–3 into time intervals of constant lengths. To
this end, the transformations

segment i : t = Λi (X, νi) =
∑i−1
j=1 Tj + Tiνi (19)

are utilized with the new independent variables νi for the
ith segment being contained in the fixed intervals [0, 1].

For the consideration of the constraints (6), q (t) as well as
its derivatives have to be explicitly known. In segment 2,
this does not require any special calculations. On the
contrary, in the first and third segment, the joint angles
and its derivatives have to be determined from the inverse
kinematics (1) and the equations (4). In combination with
the derived parameterizations either given by P5s or CSFs,
this results in

ρi (X, t) = Φ
(
ηi (σ̂i (κi (X) , t)) ,RTCP,S/E

)
(20a)

for the joint angles q and the expressions

ρ̇i (X, t) = J (ρi (X, t))

[
˙̂σi (κi (X) , t) ∆ri

0

]
(20b)

ρ̈i (X, t) = J (ρi (X, t))

([
¨̂σi (κi (X) , t) ∆ri

0

]

−J̇ (ρi (X, t) , ρ̇i (X, t)) ρ̇i (X, t)
)

(20c)

ρ
(3)
i (X, t) = J (ρi (X, t))

([
σ̂

(3)
i (κi (X) , t) ∆ri

0

]

−J̈ (ρi (X, t) , ρ̇i (X, t) , ρ̈i (X, t)) ρ̇i (X, t)

−2J̇ (ρi (X, t) , ρ̇i (X, t)) ρ̈i (X, t)
)

(20d)

for the corresponding derivatives q̇, q̈, and q(3) with
i ∈ {1, 3} according to segments 1 and 3, resp. In the
first segment, RTCP,S has to be used whereas in the third
segment RTCP,E has to be inserted into (20a). Demanding
the fulfillment of the constraints (6) for every point in
time contradicts computational efficiency. Therefore, the
constraints (6) are only verified for a finite number of
points. In terms of the new independent variables νi, these
points are evenly distributed in the interval [0, 1] and given
by νij , j = 1, . . . , Ndi for the ith segment.

Based on these preparatory steps, the static optimization
problem with the parameterizations given by P5s or CSFs
and the cost function F (X) = T1 + T2 + T3 follows as

min
X

F (X) (21a)

s.t.

segment i
i ∈ {1, 3}





qmin ≤ ρi (X,Λi (X, νij)) ≤ qmax
q̇min ≤ ρ̇i (X,Λi (X, νij)) ≤ q̇max
q̈min ≤ ρ̈i (X,Λi (X, νij)) ≤ q̈max

q
(3)
min ≤ ρ

(3)
i (X,Λi (X, νij)) ≤ q(3)

max

τmin ≤ Θ (ρi (X, t) , ρ̇i (X, t) ,
ρ̈i (X, t))|t=Λi(X,νij) ≤ τmax

∀j = 1, . . . , Ndi
(21b)

segment 2





qmin ≤ q̂ (κ2 (X) ,Λ2 (X, ν2j)) ≤ qmax

q̇min ≤ ˙̂q (κ2 (X) ,Λ2 (X, ν2j)) ≤ q̇max

q̈min ≤ ¨̂q (κ2 (X) ,Λ2 (X, ν2j)) ≤ q̈max

q
(3)
min ≤ q̂(3) (κ2 (X) ,Λ2 (X, ν2j)) ≤ q(3)

max

τmin ≤ Θ
(
q̂ (κ2 (X) , t) , ˙̂q (κ2 (X) , t) ,

¨̂q (κ2 (X) , t)
)∣∣∣
t=Λ2(X,ν2j)

≤ τmax

∀j = 1, . . . , Nd2.
(21c)

For solving the static optimization problem (21), the solver
fmincon from Matlab is utilized. As it will be shown in
Section 4, significant improvements with respect to com-
puting time and reliability can be achieved if the analytical
gradients and Jacobian matrices, subsequently collectively
referred to as gradients, of the cost function and con-
straints with respect to the optimization variables are pro-
vided to fmincon. Most of the necessary calculations for
obtaining the gradients are straightforward and basically
consist of applying the chain rule of differentiation. For
brevity, just some exemplary results for segments 1 and 3
are shortly sketched. One required derivative is given by
(function arguments are frequently omitted for brevity)

dρi
dX

=
dΦ

(
ηi (σ̂i (κi (X) ,Λi (X, νij))) ,RTCP,S/E

)

dX

=
∂Φ

∂IrTCP

∂ηi
∂σi

(
∂σ̂i
∂p

∂κi
∂X

+
∂σ̂i
∂t

∂Λi
∂X

)
. (22)

The term ∂Φ
∂IrTCP

is the most interesting one. Mainly due

to ambiguities and the extensive expressions in (1) and
(4), a direct differentiation of the inverse kinematics is not
practicable. Instead, by differentiating (1) with respect to
time for RTCP = const. (in segments 1 and 3) one obtains
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q̇ =
∂Φ

∂IrTCP
IvTCP. (23)

A comparison of this equation with (4a) reveals that
∂Φ

∂IrTCP
is given by the first three columns of J (q) with

ρi (X,Λi (X, νij)) being inserted for q. In principle, the
calculation of

dρ̇i (X,Λi (X, νij))

dX
(24)

requires the differentiation of J = J
−1

, see (20b). How-
ever, in contrast to J , its inverse is not available in analytic
form which prohibits straightforward differentiation. Nev-
ertheless, the required expressions can be obtained from

żk =
6∑

j=1

Jkj (ρi) ρ̇i,j , k ∈ {1, 2, . . . , 6} (25)

with Jkj being the components of J in the kth row and
jth column and ρ̇i,j being the jth component of ρ̇i, cf. (3).
For the case at hand, it holds that

ż =

[
˙̂σi (κi (X) , t) ∆ri

0

]
. (26)

Hence, by differentiating (25) with respect to X the
required gradients are obtained in the form

dρ̇i
dX

= J (ρi)



∂ż

∂X
−




∑6
j=1

∂J1j

∂q
∂ρi

∂X ρ̇i,j
...∑6

j=1
∂J6j

∂q
∂ρi

∂X ρ̇i,j





 (27)

where ∂ρi

∂X is already known from (22). The gradients dρ̈i

dX

and
dρ

(3)
i

dX are calculated in a very similar way.

Concerning the implementation, the gradients in analytic
form are computed for the parameterization with P5s.
Besides the reduction in computing time, which will be
shown in Section 4, the main reason for this calculation
is that fmincon often does not find a solution unless the
analytic gradients are provided. For the parameterization
with CSFs, this issue occurs more seldom and the imple-
mentation of the gradients is considerably more tedious
which is why it is not further pursued for the CSFs.

4. RESULTS

This section presents some results from the methods of
Section 3. To this end, four different PTPCP trajectories
are considered in Sections 4.1 and 4.2 which are also
experimentally tested at the Stäubli TX60L. In particular,
the methods are evaluated with respect to the found
trajectory time T and the required computing time TCPU.
Some conclusions are drawn in Section 4.3.

In all subsequent figures, horizontal dash-dot-dot lines rep-
resent the constraints for certain quantities. The number
of points for which the constraints are verified is chosen
as Nd1 = Nd2 = Nd3 = 30. For the CSFs, NS1 = NS2 =
NS3 = 8 additional points are used.

All trajectories are calculated on a 64 bit Windows 7
computer equipped with an Intel i7-620M CPU with two
cores/four threads at a processor frequency of 2.67 GHz.
For fmincon, Matlab R2013b is used. The built-in par-
allel computing capabilities of fmincon are utilized. How-

ever, the required start-up time of the parallel pool is not
included in TCPU.

4.1 PTPCP Trajectory 1

The start and end points of the first considered PTPCP
trajectory and the corresponding positions of the inter-
mediate points can be seen in Fig. 3. The start and end
orientations are given by

RTCP,S =

[−1 0 0
0 0 1
0 1 0

]
RTCP,E =

[−1 0 0
0 1 0
0 0 −1

]
. (28)

As presented in Section 3, four different possibilities are
considered for calculating the PTPCP trajectory. Firstly,
the optimal solution is calculated with PSOPT . The
second and third possibility are given by utilizing a pa-
rameterization with P5s and the solver fmincon for solving
the resulting static optimization problem, either without
or with using the analytical gradients. Fourthly, a param-
eterization with CSFs is used for obtaining the static opti-
mization problem being solved by fmincon. The obtained
trajectory times T with these four possibilities are listed
in Table 1. Furthermore, the required computing time
TCPU is displayed for each method. As expected, PSOPT
delivers the best solution with the smallest trajectory time
T . On the contrary, T for the parameterization with P5s
is considerably larger. For a better analysis of this result,
Table 2 shows T1, T2, and T3 needed for traversing the
three segments determined by each method. It can be seen
that in the first and third segment there is not a large dif-
ference in performance of the four methods. In particular,
PSOPT and the CSFs deliver almost identical results.
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Fig. 3. PTPCP trajectory 1 found by PSOPT (solid line)
and fmincon with P5s (dashed) (all quantities in m).

Table 1. Trajectory and computing times for
PTPCP trajectory 1.

Method T in ms TCPU in s

Optimal solution 741.3 3056.3
Parameterization P5s 837.1 435.8

Par. P5s analytical grad. 837.1 195.8
Parameterization CSFs 775.6 1597.0

Table 2. Traversing times T1, T2, and T3 for
each segment of PTPCP trajectory 1.
Method T1 in ms T2 in ms T3 in ms

Optimal solution 153.0 440.6 147.7
Parameterization P5s 160.1 521.9 155.1

Par. P5s analytical grad. 160.1 521.9 155.1
Parameterization CSFs 152.9 474.5 148.2
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Fig. 4. Some elements of RTCP for PTPCP trajectory 1
in segments 1 (left) and 3 (right) determined by
PSOPT .

The fact that T1 is slightly smaller for CSFs appears
counterintuitive. However, this solution might be better for
PSOPT in view of a smaller time T2. Table 2 reveals that
most of the loss of the parameterization with P5s occurs in
the second segment. This result had to be expected as the
P5s do not allow much freedom for shaping the geometry
of the curve in the PTP segment. This constitutes the
main reason for considering the parameterization with
CSFs as they introduce additional DOFs for influencing
the geometry in a wider range (of course, depending on
the number NSi of additional points). Table 2 justifies
this approach as the time T2 is considerably smaller for
the CSFs compared to the P5s.

As expected, Table 1 shows that the superior trajectory
time of PSOPT comes at the expense of the (by far)
largest computing time. Although T obtained by the
parameterization with CSFs is not much worse than the
one from PSOPT , the computing time is smaller by
almost a factor of two. In this regard, the effect of using the
analytical gradients for the parameterization with P5s is
clearly visible in Table 1 as well. It reduces the computing
time by more than a factor of two.

For illustration, Fig. 3 shows the trajectories of the end
effector found by PSOPT and fmincon based on P5s with

IrTCP,i denoting the ith component of IrTCP. As expected,
the difference in segment 2 is quite large. Figure 4 shows
some representative elements of the rotation matrix RTCP

in segments 1 and 3 as determined by PSOPT . Obviously,
the orientation of the end effector remains almost constant
in these segments. This justifies the assumption of fixed
orientations in segments 1 and 3 for the parameterizations
with P5s and CSFs. Exemplarily, the joint accelerations
q̈ obtained by PSOPT are displayed in Fig. 5. Clearly,
the respective constraints become active several times but
are never violated. The corresponding joint torques τ are
shown in Fig. 6.

4.2 PTPCP Trajectories 2–4

Similar to the previous section, all four methods are
tested for three further PTPCP trajectories 2–4. These
trajectories as determined by PSOPT and fmincon based
on P5s are displayed in the workspace of the robot in
Fig. 7. The corresponding trajectory and computing times
are listed in Table 3.

For PTPCP trajectory 2, fmincon does not converge for
the parameterization with P5s without using the analyt-
ical gradients. If they are provided, then a solution is
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Fig. 5. Joint accelerations q̈ determined by PSOPT for
PTPCP trajectory 1.
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Fig. 7. PTPCP trajectories 2–4 found by PSOPT (solid)
and fmincon with P5s (dashed) (all quantities in m).

found without further problems. This clearly underlines
the advantage with respect to reliability when using the
analytical gradients. For the parameterization with CSFs,
a solution is found although the analytical gradients are
not provided. The corresponding trajectory time is not
much worse than the one of PSOPT but the benefit in
computing time is outstanding.

By comparing Table 1 with Table 3, it can be seen that the
situation for PTPCP trajectories 1 and 3 is quite similar.
However, the extraordinary decrease in computing time
when using the analytical gradients for the parameteriza-
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Table 3. Trajectory and computing times for
PTPCP trajectories 2–4.

Method T in ms TCPU in s

tr
a

j.
2

Optimal solution 1012.4 11949.1
Parameterization P5s not converged -

Par. P5s analytical grad. 1157.6 265.1
Parameterization CSFs 1058.7 1378.3

tr
a

j.
3

Optimal solution 1021.4 2311.7
Parameterization P5s 1136.5 376.4

Par. P5s analytical grad. 1136.5 47.7
Parameterization CSFs 1046.7 1122.2

tr
a

j.
4

Optimal solution 972.4 3680.0
Parameterization P5s 1112.7 169.2

Par. P5s analytical grad. 1112.7 52.5
Parameterization CSFs 1043.7 3332.5

tion with P5s is remarkable. For PTPCP trajectory 4, the
computing times required by PSOPT and fmincon with
CSFs are almost identical and by far larger than the ones
for fmincon with P5s although the latter do not deliver
much worse trajectory times.

4.3 Conclusions

Four different possibilities were shown for calculating tra-
jectories for a six DOFs articulated robot. These trajec-
tories connect two points of rest with prescribed position
and orientation of the end effector and consist of three
segments. For the first and third segment, the end effector
is supposed to follow straight lines. In the second segment,
the geometry of the curve is left as a DOF. On the one
hand, as a benchmark the optimal solution was calculated
with PSOPT . On the other hand, two different parame-
terizations in the form of fifth-order polynomials (P5s) and
cubic spline functions (CSFs) were presented for obtaining
suboptimal solutions by solving a static optimization prob-
lem with fmincon. For P5s, also the analytical gradients
in due consideration of the kinematics and dynamics of
the robot were provided to fmincon. All methods were
experimentally validated at the industrial robot Stäubli
TX60L.

The parameterizations with P5s and CSFs have the ad-
vantage that the required computing time is much smaller
compared to the optimal solution. If nothing else, this is
remarkable in view of the fact that all the functions for
fmincon are implemented in Matlab code which in gen-
eral is considered to be slower in execution than C/C++
code (on which PSOPT is based). Furthermore, the solver
fmincon is a universal solver for a variety of static op-
timization problems. Hence, by implementing the static
optimization problem based on the parameterizations with
P5s or CSFs in C/C++ and by using a specialized solver,
further significant reductions in computing time can be
expected.

In addition, it was shown that by providing the analytical
gradients, the computing time can be significantly reduced
too. Fast computations are especially important for online
planning or replanning. To this end, it may be reasonable
to refrain from calculating the optimal solution and come
back to a suboptimal one. Furthermore, online calculations
require increased reliability. If a solution exists, it has to be
found by the optimizer. In this regard, it has been shown

that the calculation and usage of the analytical gradients
is highly beneficial.
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