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Efficient Generation of Fast Trajectories for
Gantry Cranes with Constraints

Martin Böck ∗ Andreas Stöger ∗ Andreas Kugi ∗

∗Automation and Control Institute, TU Wien
Gußhausstraße 27–29, 1040 Vienna, Austria

(e-mail: {boeck,kugi}@acin.tuwien.ac.at, andreas.stoeger1@gmx.at).

Abstract: Time is a crucial factor in the transport business. Besides the duration of the
transport itself, also the loading and unloading of the goods is expected to be done as fast
as possible to save valuable time and money. Amongst others, this holds true for container
ships where the containers are usually loaded and unloaded by means of ship-to-shore gantry
cranes. This scenario exemplarily motivates the investigations in this paper. Different methods
are proposed for generating a trajectory for the load based on a geometric path connecting the
loading and unloading position. As the path is usually just known right before the task has
to begin, special emphasis lies on a fast calculation of the trajectory. The overall goal is to
traverse the geometric path as fast as possible under the consideration of constraints for the
gantry crane system. The optimal solution is calculated and serves as a reference for comparison
reasons as the required computing time is usually rather large. Therefore, tailored methods for
a fast calculation of the trajectory are developed. All the different approaches are evaluated and
compared by means of representative test paths.

Keywords: Constraints, efficient algorithms, gantry crane, minimum-time control, optimal
trajectory, trajectory planning.

1. INTRODUCTION

Time-optimal movements are required in many fields of en-
gineering and for many different tasks. Plenty of solutions
for finding such movements for generic dynamical systems
as well as specific applications such as robots and vehicles
have been developed, see, e.g., Faulwasser et al. (2011);
Keerthi and Gilbert (1987); Kondak and Hommel (2001);
Laumond (1998); LaValle (2006). The different approaches
can be roughly divided into two classes. On the one hand,
besides system constraints, the time-optimal trajectory
only has to fulfill certain initial and terminal conditions,
see, e.g., Knierim and Sawodny (2012); Van den Broeck
et al. (2011). This means that the geometric form of the
trajectory to be optimized is free. On the other hand,
a geometric curve is given along which the time-optimal
movement has to take place, see, e.g., Bobrow et al. (1985);
Constantinescu and Croft (2000); Verscheure et al. (2009).
In the following, such a curve without temporal informa-
tion is also referred to as path. Essentially, the solution
of the problem requires to find a time parameterization
turning the path into a trajectory. In general, the two
approaches can also be mixed in the form of a trajectory
with geometrically predetermined sections and parts where
the geometry is free, see, e.g., Böck et al. (2016).

In this paper, a task belonging to the second class is
considered for a two-dimensional gantry crane. It is re-
quired to find a trajectory for moving the load as fast as
possible from an initial configuration (position, velocity) to
a terminal configuration along a predetermined, obstacle-
free path. A path parameter describes the position along
the path. It has to be determined as a function of time for

solving the task. Apart from the application considered
in this paper, the task is relevant in many other fields,
as, e.g., robotics and UAVs. The design of a controller for
tracking the obtained trajectory in the presence of, e.g.,
disturbances does not lie within the focus of this work.
Nevertheless, a feedforward control for trajectory tracking
in the nominal case can be readily obtained and used,
e.g., within a two-degrees-of-freedom control structure, cf.
Åström and Murray (2008); Egretzberger et al. (2012).

Many different approaches exist in literature for calculat-
ing time-optimal trajectories for gantry cranes. Auernig
and Troger (1987) consider straight paths for which the
analytical solution is obtained based on Pontryagin’s max-
imum principle. In Van Loock et al. (2011), the trajectory
is represented with B-splines and the flatness property of
the system is utilized. For a constant cable length, satisfac-
tion of certain constraints is ensured by using the convex
hull property of B-spline curves. A bisection method is
employed for finding the minimum time. In each iteration
of the bisection method, a linear feasibility problem has to
be solved. Similarly, Chen et al. (2016) also restrict their
investigations to a constant cable length and parameterize
the trajectory of the load with B-spline curves. A move-
ment of the load in three-dimensional space is considered
in Raczy and Jacob (1999). Constraints on various system
variables are taken into account, amongst others for the
length of the cable and its first derivative with respect to
time. For computing the time-optimal trajectory along a
given path, a multi-stage iterative strategy is proposed.
Roughly speaking, only one constrained variable is consid-
ered and an appropriate trajectory is found. Subsequently,
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the remaining constraints are checked and it is determined
where the trajectory has to be corrected. This procedure
is repeated until all constraints are satisfied.

The solution strategies proposed in this paper do not rely
on a constant cable length. Constraints for several different
system variables are taken into account. For the developed
solution methods, the load does not have to necessarily
reside in equilibrium positions at the start and end of
the trajectory. Furthermore, special emphasis is placed on
the real-time feasibility of the proposed algorithms, which
is often neglected in literature. From a practical point of
view, this means that the time required for computing the
trajectory has to be much smaller than the time needed
for actually traversing it. Amongst others, this challenge
is tackled by using a tailored representation of the path
parameter with piecewise polynomials.

Section 2 gives a more detailed presentation of the gantry
crane system and the considered task of trajectory gen-
eration. A method for calculating the optimal solution is
outlined in Section 3. The main results are presented in
Section 4 in the form of efficient (in terms of computing
time) algorithms for obtaining fast trajectories. All the
different methods are evaluated and compared in Section 5.

2. PROBLEM FORMULATION

All subsequent investigations in this paper are tailored to a
gantry crane moving a load in two-dimensional space. This
system, its mathematical model, and the corresponding
constrained variables are presented in Section 2.1. The task
of finding a trajectory for transferring the load as fast as
possible is described in Section 2.2.

2.1 Gantry Crane

A sketch of the gantry crane is depicted in Fig. 1. The
position of the load in the two-dimensional space is given

by pL = [xL yL]
T

. The load is hanging on a cable which
can be spooled on the trolley. It is assumed that the cable
together with the load can be modeled as a mathematical
pendulum. The length of the cable from the trolley to
the load is denoted by sH < 0. By using this convention,
larger values of sH entail larger values of yL for practically
relevant angular displacements θ of the cable. The cable
is pivoted at a fixed height of yT = 48 m and a horizontal
distance xT describing the position of the trolley. All the
dimensions are chosen to resemble those of a container
crane for loading and unloading of cargo ships.

It is assumed that the actuated degrees of freedom xT and
sH are equipped with velocity controllers for vT = dxT

dt =
ẋT and vH = ṡH . Usually, these controllers perform well
which allows to regard them as ideal. Hence, the (usually

trolley

cable

load

yL

xL

θ

yT

xT

sH

Fig. 1. Gantry crane.

changing) mass of the load as well as the friction in the
actuated degrees of freedom are not relevant anymore
for the mathematical model of the overall system. In
particular with regard to these subordinate controllers, the
velocities of the trolley vT and the winch vH as well as the
corresponding accelerations aT = v̇T and aH = v̇H are
subject to box constraints

vT,min ≤ vT ≤ vT,max vH,min ≤ vH ≤ vH,max (1a)

aT,min ≤ aT ≤ aT,max aH,min ≤ aH ≤ aH,max. (1b)

Similarly, the angle θ has to fulfill

θmin ≤ θ ≤ θmax (1c)

which can be motivated with the determination of θ by
image processing and the load has to stay within the field
of view of the camera.

As will be described in detail in Section 2.2, a trajectory
pL (t) has to be determined. It is a well-known fact that
the gantry crane with the velocity controllers constitutes
a flat system, see, e.g., Fliess et al. (1995). The position of
the load pL is a flat output which implies that all system
variables can be parameterized in terms of pL and a finite
number of its derivatives with respect to time. Hence,
such parameterizations are available for the constrained
quantities in (1) as well in the form

[vH aH vT aT θ]
T

= ψ
(
pL, ṗL, p̈L,p

(3)
L ,p

(4)
L

)
(2)

which will be useful for solving the trajectory generation
task. In particular with regard to the subordinate velocity
controllers for the trolley and the winch, it is advantageous
if vH , aH , vT , and aT are continuous functions of time.
Hence, it is required that the obtained trajectory for pL is
four times continuously differentiable (C4).

2.2 Task Specification

At a given start position pStart, the load (which may be
a container) is picked up by the crane and has to be
moved to a predetermined end position pEnd where it is
unloaded, see Fig. 2. For obtaining a suitable trajectory
connecting pStart and pEnd, a two-step procedure is used.
Firstly, a suitable path has to be found which leads
from pStart to pEnd and avoids obstacles. Secondly, a
time parameterization of the path has to be determined.
According to Section 2.1, the resulting trajectory for the
load has to be element of C4 which means that the same
has to hold for the path and the time parameterization.

For finding the path, waypoints pw,i, i = 0, 1, . . . , l are
supposed to be given in such a way that they have enough
distance to potential obstacles such as other containers on
the cargo ship. For brevity, the start and end point are also
included as the first and last waypoint pw,0 = pStart and

pStart
σ = σs

pEnd
σ = σe

pw,1

pw,2pw,3

pw,4

P
σtr,1

σtr,2σtr,3

σtr,4

Fig. 2. Path from the start to the end position with l = 5.
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pw,l = pEnd, resp. A continuously differentiable path P1 is
generated by sequentially connecting the waypoints with
straight lines and inserting circle arcs at the corners. Sub-
sequently, P1 is replicated with a four times continuously
differentiable B-spline curve ξ (σ) with the path parameter
σ ∈ I = [σs, σe] where σs and σe > σs correspond to
the start and end point. Hence, the final path results in
P =

{
pL ∈ R2

∣∣pL = ξ (σ) , σ ∈ I
}

. For convenience, it is
assumed that P is (at least approximately) parameterized
by the arc length.

The task to be solved is given by finding a time parameter-
ization σ (t) ∈ C4 : [0, T ]→ [σs, σe] for the path parameter
with T denoting the overall time needed for the trajectory,
subsequently also referred to as the trajectory time. To this
end, it is required that

(1) σ (0) = σs and σ (T ) = σe,
(2) the velocity at the start and end of the trajectory can

be specified in the form σ̇ (0) = σ̇s and σ̇ (T ) = σ̇e,
(3) the trajectory time T is as small as possible,
(4) the constraints (1) are fulfilled, and
(5) the computing time TCPU for the corresponding calcu-

lations is as small as possible, particularly TCPU � T .

The desired load trajectory results as pL (t) = ξ (σ (t)).

From an economic point of view, the most important
requirement is given by the third item. However, usually
the computation of the trajectory has to be done right
before it is traversed. Therefore, the time needed for
completing the overall task is given by TCPU+T motivating
the fifth item. Naturally, the third and fifth item are
always contradictory. Hence, the method for solving the
task presented in Section 4 accepts a certain compromise
between these two requirements in order to calculate a fast
trajectory within a reasonable computing time.

3. OPTIMAL SOLUTION

For an assessment of the solution method in Section 4 and
its achieved trajectory time, one way for calculating the
optimal solution (i.e., the actual minimum time trajectory)
regardless of the required computing time is shown in this
section. To this end, it is proposed to solve the optimal
control problem

min
σ̄(·),u(·),T

T (3a)

s.t. ˙̄σ = [σ̄2 σ̄3 σ̄4 σ̄5 u]
T

(3b)

σ̄ (0) = [σs σ̇s 0]
T
, σ̄ (T ) = [σe σ̇e 0]

T
(3c)

h (σ̄ (t)) ≤ 0 ∀t ∈ [0, T ] (3d)

with the state σ̄ =
[
σ σ̇ σ̈ σ(3) σ(4)

]T
and the artificial

input u = σ(5). The integrator chain (3b) ensures that
the optimal time parameterization is element of C4. The
constraints (1) are respected via (3d) with the function

h (σ̄ (t)) =


ψmin −ψ

(
pL, ṗL, p̈L,p

(3)
L ,p

(4)
L

)

ψ
(
pL, ṗL, p̈L,p

(3)
L ,p

(4)
L

)
−ψmax


 (4)

and ψmin/max = [vH,† aH,† vT,† aT,† θ†]
T

†=min/max. Fur-

thermore, pL = ξ (σ (t)), ṗL = ∂ξ
∂σ (σ (t)) σ̇ (t), p̈L =

∂2ξ
∂σ2 (σ (t)) (σ̇ (t))

2
+ ∂ξ

∂σ (σ (t)) σ̈ (t), and analogous expres-

sions for p
(3)
L and p

(4)
L have to be inserted into ψ in (4).

For the results in Section 5, the solution of (3) is obtained
by discretizing the horizon [0, T ] and using the values of
σ̄ and u at the discrete points as optimization variables.
An additional approximation of (3b) by means of the
trapezoidal rule and evaluation of (3d) at the discrete
points results in a finite-dimensional static optimization
problem which is solved with SNOPT, see Gill et al.
(2002). The obtained solution is regarded as the optimal
solution.

4. EFFICIENT SOLUTION

Section 5 shows that the calculation of the optimal time
parameterization requires a considerable computing time
TCPU. Hence, the goal of this section is to develop methods
for achieving TCPU � T at the expense of a larger
trajectory time. However, the sum of TCPU + T is still
much smaller than for the method from Section 3 which
means that the overall task can be completed in less time.

The basic idea is to restrict the shape of the function
σ (t) using a parameterization with piecewise polynomials
being presented in Section 4.1. This reduces the number
of degrees of freedom which is advantageously utilized in
Section 4.2 for the formulation of a tailored optimization
problem together with an efficient solution algorithm in
order to decrease the required computing time.

4.1 Path Parameter Representation

The parameterization of σ (t) is chosen in such a way that
the possible movement along the path is not restricted
much in view of the task to be solved. To this end, the
overall path defined by ξ (σ) is split up into l segments.
The ith segment, i = 1, 2, . . . , l comprises the interval
[σtr,i−1, σtr,i] of the path parameter with σtr,0 = σs and
σtr,l = σe, cf. Fig. 2. The transition points σtr,i, i =
1, 2, . . . , l− 1 are determined such that ξ (σtr,i) is as close
as possible to the middle of the circle arc (forming P1) at
waypoint pw,i.

Based on this definition, the path in each segment re-
sembles a straight line and sections of the adjacent circle
arcs. If just a straight line was present, the time-optimal
movement would roughly consist of an acceleration phase,
a phase with maximum velocity, and a deceleration phase.
Based on this idea, a corresponding piecewise polynomial
representing the path parameter is defined for each seg-
ment. By combining all segments, the overall piecewise
polynomial σp (t) results. The ith segment according to
Fig. 3 with duration Ti consists of nine subsections j =
1, 2, . . . , 9. They have durations ∆Ti,j with

∑9
j=1 ∆Ti,j =

Ti which allow to define the points

Ti,j=





0 i= 1, j = 1∑j−1
m=1 ∆T1,m i= 1, 2≤ j ≤ 10

Ti−1,10 +
∑j−1
m=1 ∆Ti,m 2≤ i≤ l, 1≤ j ≤ 10

(5)

with Ti,10 = Ti+1,1, i = 1, 2, . . . , l − 1 and Tl,10 = T =∑l
i=1 Ti, see Fig. 3. At the beginning of each subsection,

σp, σ̇p, and σ̈p have initial values σp,i,j , σ̇p,i,j , and σ̈p,i,j ,
resp. For the subsections j = 1, 5, 9, the velocity along the
path is constant resulting in

σp (t) = σp,i,j + σ̇p,i,j (t− Ti,j) (6a)
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σp,i,1 σp,i,2 σp,i,3 σp,i,4
σp,i,5

σp,i,6

σp,i,7
σp,i,8

σp,i,9

σ
p
(t
)

0
σ̇p,i,1 σ̇p,i

,2 σ̇p,i,3

σ̇p,i,4
σ̇p,i,5 σ̇p,i,6

σ̇p,i,7
σ̇p,i,8

σ̇p,i,9σ̇
p
(t
)

0 σ̈p,i,2

σ̈p,i,3

σ̈
p,i,4 σ̈p,i,5 σ̈p,i,6

σ̈p,i,7 σ̈ p
,i
,8

σ̈p,i,9

σ̈
p
(t
)

0

σ
(3

)
p

(t
)

∆Ti,1 ∆Ti,2 ∆Ti,3 ∆Ti,4 ∆Ti,5 ∆Ti,6 ∆Ti,7 ∆Ti,8 ∆Ti,9

0

σ
(4

)
p

(t
)

Ti,1 Ti,2 Ti,3 Ti,4 Ti,5 Ti,6 Ti,7 Ti,8 Ti,9 Ti,10

Ti−1,10 t

Fig. 3. Piecewise polynomial σp in the ith segment.

σ̇p (t) = σ̇p,i,j (6b)

σ̈p (t) = 0. (6c)

The subsections j = 3, 7 are characterized by a constant
acceleration in the form

σp (t) = σp,i,j + σ̇p,i,j (t− Ti,j) + σ̈p,i,j
(t− Ti,j)2

2
(7a)

σ̇p (t) = σ̇p,i,j + σ̈p,i,j (t− Ti,j) (7b)

σ̈p (t) = σ̈p,i,j . (7c)

In order to enable that σp is four times continuously
differentiable, the subsections j = 2, 4, 6, 8 comprise poly-
nomials of the form

σp (t) = (σ̈p,i,j+1 − σ̈p,i,j)
[

t̃5

2∆T 3
i,j

− t̃6

2∆T 4
i,j

+
t̃7

7∆T 5
i,j

]

+ σp,i,j + σ̇p,i,j t̃+ σ̈p,i,j
t̃2

2
(8a)

σ̈p (t) = (σ̈p,i,j+1 − σ̈p,i,j)
[

10t̃3

∆T 3
i,j

− 15t̃4

∆T 4
i,j

+
6t̃5

∆T 5
i,j

]

+ σ̈p,i,j (8b)

with σ̈p still being two times continuously differentiable,
t̃ = t−Ti,j , and σ̇p (t) omitted for brevity. For all functions
(6)–(8), it holds that t ∈ (Ti,j , Ti,j+1] except for i = j = 1
for which T1,1 is included in the interval. Amongst others,
the requirement of an (approximate) natural parameteri-
zation of P in Section 2.2 stems from the demand that the
chosen representation of the path parameter is reasonable

and well interpretable. For example, if
∥∥∥ ∂ξ∂σ

∥∥∥ 6= 1 and not

constant, then a constant value for σ̇ does not entail a
constant velocity along the path.

The overall degrees of freedom of σp (t) for all segments
and subsections are given by the durations ∆Ti,j as well
as σp,i,j , σ̇p,i,j , i = 1, 2, . . . , l, j = 1, 2, . . . , 9 and σ̈p,i,j
with j = 2, 3, . . . , 9 as σ̈p,i,1 does not occur. Naturally,

they cannot be chosen freely but a number of conditions
have to be fulfilled. Firstly, continuity within the segments
has to be ensured resulting in

σp,i,j = σp (Ti,j) and σ̇p,i,j = σ̇p (Ti,j) (9a)

for j = 2, 3, . . . , 9. Similarly, six conditions follow for the
acceleration as

σ̈p,i,2 = σ̈p,i,5 = σ̈p,i,6 = σ̈p,i,9 = 0 (9b)

σ̈p,i,4 = σ̈p,i,3 σ̈p,i,8 = σ̈p,i,7 (9c)

with σ̈p,i,3 and σ̈p,i,7 remaining free. Secondly, continuity
between the segments is ensured with

σp,i+1,1 = σp (Ti,10) and σ̇p,i+1,1 = σ̇p,i,9 (10)

for i = 1, 2, . . . , l− 1. Such a condition is not necessary for
σ̈p as it is zero at the beginning and end of each segment
by (6c). Thirdly, the overall initial and terminal conditions
have to be fulfilled requiring

σp (0) = σs, σ̇p (0) = σ̇s, σp (T ) = σe, σ̇p (T ) = σ̇e. (11)

Fourthly, by demanding

σp (Ti,10) = σtr,i, i = 1, 2, . . . , l − 1, (12)

the segments are aligned with the path. The conditions
(9)–(12) effectively reduce the number of degrees of free-
dom for σp (t) to 10l − 1.

These actual degrees of freedom are chosen as

Y = [∆T1,1 ∆T1,2 · · · ∆T1,9 σ̇tr,1 ∆T2,1 · · · σ̇tr,2 · · ·
· · · ∆Tl−1,9 σ̇tr,l−1 ∆Tl,1 · · · ∆Tl,9]

T ∈ R10l−1 (13)

which will be motivated later. The quantities σ̇tr,i :=
σ̇p,i,9, i = 1, 2, . . . , l − 1 are the transition velocities be-
tween the segments. For fully determining σp (t), relations

σp,i,j = f0j (σtr,i−1, σ̇tr,i−1, σtr,i, σ̇tr,i,∆Ti,1:9) (14a)

σ̇p,i,j = f1j (σtr,i−1, σ̇tr,i−1, σtr,i, σ̇tr,i,∆Ti,1:9) (14b)

σ̈p,i,j = f2j (σtr,i−1, σ̇tr,i−1, σtr,i, σ̇tr,i,∆Ti,1:9) (14c)

exist where ∆Ti,1:9 is a substitute for all ∆Ti,j , j =
1, 2, . . . , 9 and σ̇tr,0 = σ̇s, σ̇tr,l = σ̇e.

4.2 Static Optimization Problem and Efficient Solution

The variables Y are used for the formulation of a tailored
static optimization problem which aims at minimizing the
trajectory time. To this end, two possible approaches are
proposed. Firstly, the whole trajectory, i.e., all segments,
can be optimized at once. Secondly, a finite number of
segments in the form of a horizon le− ls + 1 = ∆l ≥ 1 can
be considered. The trajectory is just optimized for the lsth
up to the leth segment. In the following, only the second
approach is described as the first one is included for ∆l = l
and ls = 1.

For finding the optimal trajectory, the constraints (1)
have to be respected. This is implemented with barrier
functions. Hence, in order to be able to apply a nu-
meric optimization algorithm, a feasible trajectory act-
ing as start solution is required. This start solution is
proposed to be a trajectory with a small velocity vf �
min (|vT,min| , vT,max, |vH,min| , vH,max). Based on intuition,
vf (being small enough) always exists such that all con-
straints (1) are fulfilled. Hence, for the variables Y ,

σ̇tr,i = vf i = 1, 2, . . . , l − 1 (15a)

∆T1,1 = ∆Tl,9 = 0 (15b)
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∆T1,j =
4

3

σtr,1 − σtr,0
9

2

σ̇tr,0 + σ̇tr,1
j = 2, 3, 4 (15c)

∆Tl,j =
4

3

σtr,l − σtr,l−1

9

2

σ̇tr,l−1 + σ̇tr,l
j = 6, 7, 8 (15d)

∆Ti,j = (σtr,i − σtr,i−1) / (9vf ) (15e)

is set as a start solution, where (15e) holds for all i, j being
not covered by (15b)–(15d). Essentially, (15e) sets the
durations of the subsections according to vf while (15c),
(15d) account for the start and end velocities by averaging.
During these velocity transitions, e.g., the acceleration
limits may be violated which has to be checked separately.
If necessary, corrections have to be made, e.g., by suitably
adjusting the durations of the subsections.

For an optimization horizon ∆l starting at ls, just the
corresponding elements Yi, i = 10 (ls − 1) + 1, . . . , 10le− 1
are adapted and the other ones are set according to (15).
Naturally, σ̇tr,i ≥ 0 and ∆Ti,j ≥ 0 and therefore Y ≥ 0
has to hold. By setting Yi = X2

i−10(ls−1), i = 10 (ls − 1) +

1, . . . , 10le − 1 with Xi being the components of the
vector of optimization variables X ∈ R10∆l−1, this can be
respected easily which is one advantage of the choice (13).

For considering the constraints (1), (4) is normalized by
dividing its components hi and hi+5 by ψmax,i − ψmin,i,
i = 1, 2, 3, 4, 5 resulting in hn (σ̄ (t)). Subsequently, the
constraints are taken into account with barrier functions

fb (σ̄ (t)) =−
10∑

k=1

λk log(−hn,k (σ̄ (t)))+λp

(
σ(4)
p (t)

)2

(16)

with the weighting factors λk > 0 and λp > 0. Naturally, σ̄
is now meant to contain σp and its derivatives. In (16), an

additional penalty term for σ
(4)
p is contained. It basically

acts as a regularization term, especially for preventing the
durations of subsections 2, 4, 6, 8 from being optimized to
zero which would cause a jump in σ̈p. As a result, also, e.g.,
aH could jump which is unfavorable. Based on (14), σp (t)
according to (6)–(8) and its derivatives can be expressed
as functions of X and t. By inserting these quantities into
fb, a function Fb (X, t) can be obtained which allows to
formulate the constrained minimization of the trajectory
time as the unconstrained problem

min
X

∫ Tle,10

Tls,1

(1 + Fb (X, t)) dt. (17)

Naturally, (17) needs to be suitably discretized which is

done with four points Ti,j + k
∆Ti,j

4 , k = 0, 1, 2, 3 per
subsection j in the ith segment. By collecting these points
in ascending order for all subsections j = 1, 2, . . . , 9 in
the segments i = ls, ls + 1, . . . , le in the horizon and
appending Tle,10, the vector d ∈ RNd with Nd = 36∆l+ 1
is obtained. In view of the barrier functions contained in
the cost functional of (17), four points per subsection are

chosen such that all minimum and maximum values of σ
(3)
p

and σ
(4)
p are (approximately) captured, see Fig. 3 where

these points are marked with vertical dash-dot lines for the
subsection ∆Ti,2. The discretization of (17) is undertaken
with the lower sum resulting in the unconstrained static
minimization problem

min
X

Tle,10 − Tls,1 +

Nd−1∑

k=1

(dk+1 − dk)Fb (X, dk) . (18)

For the solution of (18), it is proposed to use the conju-
gate gradient (CG) method with utilizing the formula of
Hestenes-Stiefel, the underlying line search based on the
Armijo rule, and performing periodic restarts by setting
the search direction to the steepest descent direction,
see, e.g., Nocedal and Wright (2006). Regarding the CG
method, a further advantage of the choice (13) emerges.
Due to the local nature of (14), the calculation of the
gradient of the cost function in (18) is possible in an
efficient and numerically favorable way.

Based on the CG method, the optimal trajectory can be
calculated for the whole path, i.e., all segments, at once
by setting ∆l = l and ls = 1. Although this solution
strategy already significantly reduces the computing time
compared to Section 3, an even more efficient strategy can
be deduced. As already indicated above, a fixed number
of ∆l < l segments are considered and the optimization
can be performed in a receding horizon fashion. Initially,
(18) is solved for ls = 1 (i.e., the first horizon) based
on the start solution (15). Afterward, ls = 2 is set (the
horizon is shifted forward) and (18) is solved again with
the quantities for the first segment retaining their optimal
values found previously. Then this optimization is repeated
for ls = 3 and segments one and two are left unchanged.
These steps are iterated until ls = l is reached. If le > l
occurs, le = l is set. In this way, the whole trajectory is
gradually optimized. For all ls ≥ 2, a feasible start solution
is also readily available by combining the optimal solution
of the previous horizon on the last ∆l − 1 segments with
the start solution (15) for the leth segment. This is feasible
as the transition velocity σ̇tr,le at the end of each horizon
is not optimized which entails that the optimal solutions
are connected to the start solution (15). The fact that
σ̇tr,le is not optimized also brings about that ∆l = 1 is
only reasonable if l = 1. Otherwise, the variables σ̇tr,i,
i = 1, 2, . . . , l − 1 would retain their conservative values
from (15) resulting in a very slow trajectory.

The receding horizon strategy has several major advan-
tages. Depending on the value of ∆l, the number of op-
timization variables is significantly smaller compared to
optimizing the whole trajectory at once which reduces
the required computing time. Furthermore, the computing
time is better predictable as the number of optimization
variables is constant and not depending on the length
of the path (i.e., the number of segments). In view of
saving valuable time, the crane should start its movement
immediately after the loading and unloading position and
the corresponding path are known. However, due to the
inevitable calculation of the trajectory, there is always a
certain lag. In this regard, the receding horizon strategy
also proves valuable as the crane movement can start right
after the optimization for the first horizon ∆l is completed.
The second optimization for ls = 2 can be done when the
crane is already moving. Amongst others in this regard, it
is crucial that at least one feasible solution is available for
each horizon. However, based on the above description of
obtaining feasible start solutions for each horizon, this is
readily fulfilled. These solutions can also be used for the
unlikely event that the iterations of the CG method do not
converge.

For all strategies, the CG method can be executed until
some kind of optimality condition is satisfied. However,
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Fig. 4. Test paths plotted in the two-dimensional
workspace of the crane (all quantities in m).

the corresponding computing time is hard to predict as
the required number of iterations is unknown and varying.
At this point, the utilization of barrier functions proves
valuable as they ensure that the solutions in all iterations
of the CG method are feasible. Hence, the CG method
can be stopped at any number of iterations, e.g., to satisfy
an upper limit for the computing time. Naturally, then
a further trade-off regarding optimality has to be made.
However, experience shows that the convergence close to
the optimal value is often rather slow which means that
the trade-off may not be significant.

5. RESULTS

This section aims at evaluating the methods from Sec-
tions 3 and 4. To this end, they are implemented in C-code
and executed with Matlab R2015b. All calculations are
done on a 64 bit Windows 10 computer with an Intel Core
i7-4700HQ CPU with four cores/eight threads but where
no use of parallel computing features is made.

For obtaining the optimal solution according to Section 3,
the optimization horizon is discretized with 400 points.
The efficient methods from Section 4 use λp = 0.01,
λ1 = λ3 = λ6 = λ8 = 0.001, λ2 = λ5 = λ7 = λ10 =
0.01, and λ4 = λ9 = 0.1. The maximum number of
iterations for the CG method is set to 600 for calculating
the whole trajectory at once and 300 for the receding
horizon solution. For the start solution, vf = 0.3 m s−1

is chosen. The limits of the gantry crane are given by
vT,max = −vT,min = 4 m s−1, vH,max = −vH,min = 3 m s−1,
aH,max = −aH,min = 0.75 m s−2, aT,max = −aT,min =
0.67 m s−2, and θmax = −θmin = 3◦.

For the evaluations, four representative paths according to
Fig. 4 are considered. While path 1 roughly resembles the
scenario depicted in Fig. 2, path 2 is of a rather simple
form. Path 3 has a tricky shape due to the narrow curves.
In contrast to paths 1–3 with σ̇s = 0, σ̇s = 1.5 m s−1 is
given for path 4. For all four paths, σ̇e = 0 holds.

The trajectory times and the required computing times
of the optimal solution for all four paths are listed in
Table 1. Especially for path 1, the required computing
time is of the same order as the obtained trajectory
time. This underlines that the method of Section 3 is
not suitable for a fast calculation of the trajectories right
before they are executed. On the contrary, this does not

Table 1. Optimal solution and efficient solution
for ls = 1 and ∆l = l.

T in s TCPU in s
opt. sol. eff. sol. opt. sol. eff. sol.

Path 1 34.3 36.9 31.3 1.28
Path 2 28.9 29.8 18.5 0.23
Path 3 22.6 25.0 17.2 1.10
Path 4 33.0 35.4 23.0 0.97
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Fig. 5. T and TCPU for the efficient solution with ∆l = l
and ls = 1 over the number of iterations for path 1.

apply to the proposed method from Section 4 for efficiently
calculating the trajectories, even when this is done for
the whole path at once, i.e., ∆l = l and ls = 1. The
corresponding trajectory and computing times are also
shown in Table 1. Although the obtained trajectory times
are not much larger than the ones for the optimal solution,
the reductions in TCPU are tremendous. The total time
TCPU + T needed for the overall task is roughly 40 %
smaller than for the optimal solution.

Apart from path 2 where an optimality condition is sat-
isfied, the CG method always stops by reaching the max-
imum number of iterations (600). In order to show that
this does not significantly influence the achieved trajectory
time, Fig. 5 depicts T and TCPU over the number of
iterations of the CG method for path 1. Clearly, after
approx. 600 iterations, the obtained trajectory time does
not become much smaller. This also fortifies the statement
at the end of Section 4 that the convergence close to the
optimal value is usually rather slow. On the contrary, the
required computing time roughly increases linearly with
the number of iterations which does not justify further
iterations with a rather small decrease of T .

For illustration, Fig. 6 shows vH , aH , vT , σ, σ̇, and θ over
time obtained by the optimal and the efficient solution
for path 1. The horizontal dash-dot-dot lines represent the
corresponding constraints. In principle, the quantities from
the optimal and efficient solution look similar. However,
the latter is not able to utilize the constraints to the same
extent as the optimal approach which results in the larger
trajectory time. Amongst others, this is due to the chosen
polynomial representation of the path parameter. This
representation (and the difference to the optimal solution)
can be clearly seen, e.g., at around 18 s in the constant
value of σ̇. The efficient solution meets the constraints well
apart from very small time intervals. This also justifies the
chosen discretization.

Table 2 serves for illustrating the characteristics of the
efficient method in receding horizon fashion according to
Section 4. To this end, this method is executed for the
paths 1, 3, and 4, each with ∆l = 2 and ∆l = 3 (path 2 is
not relevant as l = 1). The CG method always terminates
by reaching the maximum number of iterations (300),
except for the cases where just one segment is optimized.
Initially, TCPU for ls = 1 decides when the crane can start
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Fig. 6. Comparison of the optimal (solid lines) and the
efficient solution (dashed lines) for ∆l = l and ls = 1
for test path 1.

Table 2. Efficient solution, ∆l = 2 and ∆l = 3.

T in s
TCPU in s

ls = 1 ls = 2 ls = 3 ls = 4

Path 1
∆l = 2 38.6 0.32 0.43 0.36 0.26
∆l = 3 36.8 0.49 0.34 0.27 0.04

Path 3
∆l = 2 25.4 0.46 0.54 0.19 -
∆l = 3 25.3 0.50 0.30 0.07 -

Path 4
∆l = 2 38.2 0.42 0.57 0.03 -
∆l = 3 35.5 0.45 0.35 0.03 -

to traverse the trajectory. This computing time is smaller
by approx. 50 % or even more compared to Table 1 based
on optimizing the whole trajectory at once. This is mainly
due to the fact that only half as much iterations are carried
out (300 vs. 600 iterations at most). Despite this fact, the
obtained trajectory time for ∆l = 3 is almost identical
to the one from optimizing the whole trajectory at once,
or even smaller for path 1, cf. Table 1. This comes from
the incremental refinement done by the receding horizon
approach inducing that most segments are optimized more
than once (with the previous solution as starting point for
the iterations). Naturally, this effect is weaker for ∆l = 2
which provokes that T is larger than for ∆l = 3. Hence,
the choice ∆l = 3 is quite reasonable and the receding
horizon approach effectively enables to further reduce the
time TCPU + T required for the overall task.
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