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Deflection Model Of A Multi-Actuator Gap
Leveler

R. Brauneis ∗ M. Baumgart ∗ A. Steinboeck ∗ A. Kugi ∗

M. Jochum ∗∗

∗ Automation and Control Institute, Technische Universität Wien,
1040 Vienna, Austria (e-mail:brauneis@acin.tuwien.ac.at)

∗∗ AG der Dillinger Hüttenwerke, 66763 Dillingen, Germany

Abstract: In this paper, a mathematical deflection model of a leveler for cold heavy plates is
presented. The model calculates the work roll profile and the leveling forces for a given plate and
adjustment of the leveler. The force-deflection relations of the machine model are combined with
a nonlinear plate model and solved for the unknown displacements of the work rolls. The plate
model is based on a leveling model found in literature. The analytical solution of this model
ensures a short computation time. Therefore, the model is suitable for feedforward control and
optimization. Finally, the model serves as a basis for calculating the optimal adjustment of the
leveler subject to force constraints, which avoids overloading of the machine.

Keywords: Optimal control, feedforward control, steel industry, deflection compensation, cold
leveling, leveler for heavy plates, analytical leveling model

1. INTRODUCTION

Leveling is a production step in rolling mills to reduce
flatness defects and residual stresses of plates after rolling.
As a final production step, cold levelers are used to
ensure a flat product and to establish a desired residual
stress distribution in the plate. This process is critical
for the product quality because it is the last deformation
step before leaving the rolling mill. During the leveling
process, the work rolls of the leveler (c.f. Fig. 1) impose a
sequence of carefully planned, alternate bending steps onto
the plate, which passes through the leveler. The vertical
adjustment of the work rolls determines the local curvature
of the plate, and therefore its plastification rate. The forces
occurring during the leveling process are in the range of
several meganewtons and cause significant deformation
of the machine. This is why the work rolls may deviate
from their nominal positions, which can result in a lower
plastification rate than required. Thus, the deflection has
to be compensated. High leveling forces may also lead
to local overloading of the support rolls, which must be
avoided.

To ensure consistent product quality and throughput while
also maintaining safe operating conditions the leveling pro-
cess has to be automatized. Because neither the deflection
nor the internal forces of the leveler can be measured,
an accurate force/deflection model is required. The lev-
eling process itself has been studied extensively in the
literature. Henrich (1993), Doege et al. (2002) and Menz
(2002) developed semi-analytical models of the leveling
process. Batty and Lawson (1965) presented force and
power requirements of the leveling process based on the
analytical solution of the consecutive bending process.
Modern approaches as in (Liu et al., 2012) are either
based on the finite element method or incorporate another
tailored numerical model. However, the described works

do not incorporate the deflection of the work rolls and
the machine. Mischke and Jonca (1992) implemented a
rudimentary deflection model of the work rolls. Krämer
et al. (2011) and Bodini et al. (2007) presented successful
implementations of fully automatized leveling processes.
Baumgart et al. (2011, 2012, 2015) developed a detailed
deflection model by combining a machine model and a
simple plate model. Furthermore, an optimal controller of
the adjustment of a hot leveler was presented.
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Fig. 1. Front and side view of the leveler.
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As shown in Fig. 1, the considered leveler has 11 work
rolls, where the 6 upper work rolls can be individually
adjusted. It operates at a rolling mill of AG der Dillinger
Hüttenwerke. The upper rolls are held in place by a
crossbeam, which can be vertically moved and slightly
tilted via four adjustment cylinders. To compensate for
the bending deflection of the machine and to treat non-
developable flatness defects of the plate, the lower part
of the leveler features a bending frame, which can pre-
bend the lower work rolls. In total, the machine offers 11
degrees of freedom (adjustment variables) to control the
roll intermesh.

In this paper, a mathematical model of the deformation
of the machine for given adjustment values and plate
properties is presented. The proposed approach features
an efficient implementation and low computational costs.
Furthermore, the developed model serves as a basis for
determining adjustment settings which achieve an optimal
compensation of the deflection with respect to the leveling
quality while respecting the maximum feasible support roll
forces. The paper is organized as follows: In the first two
sections the machine and the plate model will be derived.
The combination of both models, which yields the full
deflection model, will be presented in the third section.
Finally, the feasibility of this approach is shown in the last
section, where an example of the application to determine
optimal adjustment values is given.

2. MACHINE MODEL

In this section, the deflection model of the machine is de-
rived. Some parts of this model are adopted from (Baum-
gart et al., 2011). The main purpose of the machine model
is to calculate the shape and position of the work rolls
for a given distributed load qk(z) on each work roll k.
Additionally, the contact forces between the work and
support rolls are determined.

The machine consists of several elastic components which
contribute to the deflection. The crossbeam, the adjust-
ment cartridge with the (upper) support rolls and the
posts belong to the upper frame. The lower frame consists
of the bending frame with the lower support rolls and
the lower crossbeam. The 11 degrees of freedom can be
grouped into vectors according to their influence on the ad-

justment of the leveler. The vector adwr = [adwr,k]
T

with
k ∈ {1, 3, 5, 7, 9, 11} contains the 6 individual adjustments

of the upper work rolls, the vector adtr = [adm, adt, ads]
T

the 3 degrees of freedom of the upper crossbeam, and the

vector adbf = [adbf,drs, adbf,ops]
T

the 2 tilting angles of
the bending frames.

Similar to (Baumgart et al., 2011), the work rolls are mod-
eled as Euler-Bernoulli beams. To solve the static beam
equation with multiple complex boundary conditions, a
finite element model of the work rolls is used. The rolls are
discretized along the axis z with the mesh zwr. A subset
z̃wr of these nodes coincides with the support roll nodes
zsr and the relation zsr = z̃wr = Ũzwr with an appropriate
mapping Matrix Ũ can be formulated. The center points
of the rolls along the axis x are assembled in the vector
xwr.

Assuming that the rotational displacements of the upper
crossbeam are small, their influence on the x and z
coordinates of the nodes is negligible. The rigid body
positions y of the nodes can then be expressed in terms

of the adjustment ad =
[
adT

tr,ad
T
wr,ad

T
bf

]T
in the form

ywr,0 =

[
yup
wr,0(adwr,adtr)

ylo
wr,0

]
(1)

for the work rolls and

ysr,0 =

[
yup
sr,0(adwr,adtr)

ylo
sr,0(adbf)

]
(2)

for the support rolls. The nodes of the upper and lower
frame are labeled with the superscript up and lo, respec-
tively.

The linear force-deflection relations of the work rolls can be
defined by block-diagonal stiffness matrices Kup

wr and Klo
wr

for all upper and lower work rolls. The upper and the lower
frames of the machine consist of several complex parts. The
force-deflection relations of these structures are derived by
finite element models and model reduction techniques. As
a result, the stiffness matrices of the upper and the lower
frames, Kup

frm and Klo
frm, are obtained. With the given nodal

forces Fwr =
[
Fup

wr Flo
wr

]T
acting on the work rolls, it is

possible to calculate the deflection of the work and support
roll nodes. The equilibrium of forces

Fpwr − ŨT
pF

p
sr = Kp

wru
p
wr (3a)

Fpsr = Kp
frmu

p
sr (3b)

can be solved for the deflections upsr and upwr of each
frame p ∈ {up, lo}. To avoid the solution of the nonlinear
contact problem between the work and the support rolls,
it is assumed that all rolls are in contact when the leveler
is loaded. Due to the adjustment of the bending frame,
the required relative displacements ulo

gap = Ũloy
lo
wr,0 −

ylo
sr,0(adbf) to close the gap between the rolls of the lower

frame has to be considered. The displacements of the
support roll nodes thus read as ulo

sr = Ũlou
lo
wr − ulo

gap and

uup
sr = Ũupu

up
wr. Using these displacements in (3) yields the

effective force-deflection relations

uup
wr =

(
Kup

wr + K̃up
frm

)−1

Fup
wr (4a)

ulo
wr =

(
Klo

wr + K̃lo
frm

)−1(
Flo

wr + ŨT
loK

lo
frmu

lo
gap

)
(4b)

with K̃p
frm = ŨT

pK
p
frmŨp. The absolute positions of the

work roll nodes

yup
wr = yup

wr,0(adwr,adtr) + uup
wr(F

up
wr) (5a)

ylo
wr = ylo

wr,0 + ulo
wr

(
adbf ,F

lo
wr

)
(5b)

are then obtained by adding the deflections upwr to the
undeformed nodal positions ypwr,0. This yields the final
machine model

ywr =
[
yup
wr ylo

wr

]T
= f(ad,Fwr) (6)

for the work roll profiles.

The machine model (6) was verified by loading the lev-
eler with five independent test beams and measuring the
change of the roll intermesh ∆yim,meas,k (c.f. Fig. 2)
while rising the force in all four adjustment cylinders
from an initial force level to a maximum test force.
The stiffness matrices have been slightly tuned to ac-
count for modeling errors. As shown in Fig. 3, the error
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ey,k = ∆yim,meas,k − ∆yim,calc,k between the calculated
and the measured roll intermesh is lower than 0.1 mm for
all measured points. These error values are lower than the
adjustment accuracy of the actuators of the leveler.

ywr,k−1
ywr,k ywr,k+1

yim,k

h

Plate
tk−1 tk

Fig. 2. Definition of work roll intermesh.
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Fig. 3. Error between measured and calculated roll inter-
mesh.

3. PLATE MODEL

In this section, a plate model is presented. Its main purpose
is to calculate the distributed forces qk(z) exerted on the
work rolls due to the leveling deformation of the plate. To
simplify the calculation, the plate is divided into several
independent stripes, which can be modeled as beams. The
force-deflection relations are then individually solved for
each stripe.

The basic principle of the leveling process is to eliminate
the unknown initial residual stress state by excessive
plastic deformation during the first few bends and to
impose a desired stress distribution by decreasing alternate
plastic deformation during the subsequent bending steps.
This explains why both the sequential stress distributions
and the leveling forces depend on the (plastic) bending
history of the plate. Thus, a model which adequately
captures this effect is required.

3.1 The leveling model by Henrich

The leveling model by (Henrich, 1993) was developed as a
tool to determine optimal leveler adjustments. The model
is individually evaluated for each stripe j and its main
results are the corresponding (concentrated) leveling forces
Fs,j = [Fj,k] on the rolls for a given roller configuration
(xj , yj). Here xj = [xj,k] and yj = [yj,k] denote the
absolute positions of all work roll axes at the point zj
of the respective stripe j. Henrich’s model provides a
good insight into the leveling process because it also gives
the strain distribution εk(y) and the stress distribution
σk(y) at each bending step k. The model iteratively solves
the static beam equation of an elasto-plastically deformed

Euler-Bernoulli beam. The nonlinear material behavior
of the plate is approximated by a linear-elastic linear-
plastic stress-strain relation, which can also incorporate
some typical work hardening mechanisms.

Based on the static equilibrium of moments, it is clear that
the bending moment M of a beam only loaded with shear
forces has a piecewise linear shape along the direction x
as shown in Fig. 4. This must also hold for plastic defor-
mation. Henrich’s solution algorithm (c.f. Fig. 5) uses a
piecewise polynomial ansatz (spline) for the elastic-plastic
deflection curve of a beam, as indicated in the top part
of Fig. 4. The algorithm iteratively adapts the boundary
points xA,k (roll contact points) and xG,k (transition from
purely elastic bending to elasto-plastic bending) to achieve
a piecewise linear moment characteristics. Note that the
contact points xA,k do not necessarily coincide with the
vertex points xj,k of the work rolls. In each iteration,
the stress distributions σk(y) and the bending moments
Mk = M(xA,k) are calculated for all bending steps k.

Roll k − 1

Roll k

Roll k + 1

M

κ

x

x

xA,k

xA,k+1xA,k−1

xG,k

xG,k−1 κy,k

κy,k−1

Fig. 4. Shape of the deformed plate, bending moment M ,
and curvature κ.

Henrich’s leveling model has been extensively studied in
the literature and generally yields accurate results (c.f.
Doege et al. (2002); Dratz et al. (2009)). The main benefit
of the model is its simplicity while covering all important
aspects of the leveling process. However, the calculation of
the full stress profiles σk(y) is computationally expensive
and in fact not always necessary.

3.2 A tailored leveling model

Henrich’s solution algorithm offers a wide range of ad-
justable parameters to analyze the leveling process. How-
ever, to calculate a sufficiently accurate approximation of
the leveling forces, only a reduced set of parameters is
required. Moreover, a typical leveling process allows the
following assumptions, which simplify the solution process,
c.f. (Batty and Lawson, 1965).

First, a linear-elastic ideal-plastic stress-strain relation of
the material, as shown in Fig. 6 (a), is assumed. Second,
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Fig. 5. Flowchart of Henrich’s solution algorithm.

it is assumed that the initial residual curvature is small,
i.e., κ1 = κres ≈ 0 and that the initial residual stress
distribution vanishes, i.e., σres(y) = 0. A third assumption
is that the curvatures κk at the consecutive bending steps
k satisfy the following inequality relations

|κ2| > 0 (7a)

|κ3| > |κ2| (7b)

|κk+1| ≤ |κk| for k ≥ 3 . (7c)

That is, the curvature rapidly increases until step k = 3,
which eliminates (unknown) initial residual stresses. For
the considered leveler, the maximum curvature is usually
achieved at the 3rd roll. In the subsequent steps, the
curvature is decreased to establish the desired stress dis-
tribution. Under the assumptions above, it is possible to
directly calculate the bending moment for given curvatures
as indicated in Fig 6 (b).

σy

−σy

ε

σ

(a)

My

κ

M

(b)

Fig. 6. Linear-elastic ideal plastic stress-strain relations (a)
and corresponding curvature-moment relations (b).

The bending moment of a beam with the height (plate
thickness) h and the width bj

Mk = −2bj

∫ h
2

0

yσk(y)dy (8)

can be evaluated if the stress distribution σk(y) over
the cross section of the beam is known. The previous
assumptions lead to two different cases for the calculation
of the bending moment in the elastic-plastic region: In
case one, if the residual stress is completely overwritten
(i.e., the maximum curvature is large enough), the elastic-

plastic bending moment is independent of the previous
steps and can be written as

Mk = sgn(κk)

(
3− κ2y

κ2k

)
S

2
σy (9)

with the yield curvature κy =
2σy

Eh (onset of plastic
deformation), the Young’s modulus E, the elastic section

modulus S =
bjh

2

6 , and the yield strength σy of the plate
material. In the second case, the absolute curvature values
monotonically decrease from a (known) maximum value.
Then the bending moment Mk+1 can be expressed in
terms of the change of curvature ∆κk = κA,k+1 − κA,k,
∆κy,k = κy,k−κA,k and the previous bending moment Mk.
If the deformation is purely elastic, i.e., |∆κk| ≤ |∆κy,k|,

Mk+1 = Mk + EI∆κk , (10)

otherwise (elasto-plastic bending)

Mk+1 = Mk + sgn(∆κk)

(
3− ∆κy,k

2

∆κk
2

)
Sσy . (11)

In (10), I =
bjh

3

12 is the 2nd moment of area of the beam
cross section.

Equations (9)–(11) facilitate a direct calculation of all
required values of the consecutive bending process as
outlined in Fig. 7. These equations replace part (a) of

κk Mk

εk(y),σk(y)
∫
yσk(y)dy

Fig. 7. Algorithm (a).

Henrich’s algorithm in Fig. 5 and significantly reduce
the overall computational load of the algorithm. The
computation time with MATLAB R© R2016a on a 3.4 GHz
CPU is reduced from about 0.8 s for Henrich’s original
algorithm to 0.16 s for the improved algorithm if maximum
50 iterations are used. To achieve accurate results for the
leveling forces, only 5 to 10 iterations are usually required.

To assemble the model for the whole plate, consider that
the plate is approximated by m independent stripes with
the width bj . Let

Fs,j = [Fj,1, . . . , Fj,k, . . . , Fj,11]
T

= g(yj) (12)

be a short notation of the leveling forces of a single stripe j
calculated by the proposed algorithm. Then the full model
of the whole plate can be assembled in the form

Fs =
[
FT

s,1, . . . ,F
T
s,j , . . . ,F

T
s,m

]T
= g(ys) (13)

with ys = [yj ] where j = 1, . . . ,m.

4. DEFLECTION MODEL

4.1 Combination of machine and plate model

To finalize the mathematical deflection model, the machine
and the plate model are combined in this section. Although
the leveling forces are distributed forces along the direction
z, the strip model gives concentrated forces Fs,j for each
stripe, cf. (13). It is assumed that the leveling force is

Post-print version of the article: R. Brauneis, M. Baumgart, A. Steinboeck, A. Kugi, and M. Jochum, “Deflection model of a multi-actuator
gap leveler”, IFAC-PapersOnLine, vol. 50, no. 1, pp. 11 295–11 300, 2017, issn: 2405-8963. doi: 10.1016/j.ifacol.2017.08.1647
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

https://doi.org/10.1016/j.ifacol.2017.08.1647


uniform along the direction z within each stripe, i.e.,
the distributed total leveling force qk(z) of a work roll

k has a piecewise constant shape with the values
Fj,k

bj
,

j = 1, . . . ,m. The nodes of the machine do not necessarily
coincide with those of the plate model. Based on the finite
element method, the nodal forces on a work roll k are
obtained by evaluating the integrals

fk,i,p =

∫ zwr,i+1

zwr,i

qk(z)ϕp(z)dz (14)

with the distributed load qk(z) and the test functions
ϕp(z), p = 1, . . . , 4 for each element i = 1, . . . , n. The
Euler-Bernoulli beam-element has two degrees of freedom
at each node, the test functions are Hermite polynomials.
By assembling of (14) for all elements i, the linear relation
Fwr = ATFs between the stripe forces Fs and the nodal
work roll forces Fwr is obtained. According to the virtual
work principle, the relation ys = Aywr must hold for the
vertical displacements of the stripes and work rolls. The
deflection problem can then be obtained by combining (6)
and (13) in the form

R(ywr) = ywr − f
(
ad,ATg(Aywr)

)
= 0 . (15)

This relation can be numerically solved for the displace-
ments ywr of the work rolls by means of the Levenberg-
Marquardt algorithm. This method requires the Jacobian

J =
dR

dywr
= I− df

dFwr︸ ︷︷ ︸
JF

AT dg

dys︸︷︷︸
Js

A . (16)

The Jacobian of the machine model

JF =
df

dFwr
=
(
K̃frm + Kwr

)−1

(17)

is the flexibility matrix of the leveler. The Jacobian of the
plate model Js is numerically determined using finite dif-
ferences. The nonlinearity of the problem (15) is moderate,
which implies that J does not change significantly during
the iterative solution process. In fact, rapid convergence
is even achieved if J is computed only during the first
iteration and if the same values are used in all subsequent
iterations.

4.2 Model validation

To verify the combined model, several load cases that
occurred during the production process of the considered
plate leveler are studied. The forces in the adjustment
cylinders were measured for different leveling passes. Be-
cause the plates were laterally centered and symmetric,
the mean values of the forces on the entry and exit side
cylinders are used for validation. The leveling force on
each work roll cannot be measured. However, the difference
between the forces on the entry and the exit side of the
leveler provide a good indication of the force distribution
within the leveler.

Table 1 contains the measured and the calculated mean
adjustment cylinder forces for three load cases. The first
two rows show force values for two passes of a plate with
the width b = 2.5 m, the thickness h = 15.1 mm, and the
yield strength σy = 424 MPa. In the first case, the set
points were chosen for the nominal yield strength σy =
424 MPa. In the second case, the set points were chosen as
if the leveler would process a plate with a yield strength

of σy = 550 MPa. This leads to a higher plastification rate
and higher leveling forces. In the third row, force values
for a plate with the same yield strength and thickness but
a width of b = 3.0 m are shown.

The distribution of the forces between entry and exit
side is adequately captured by the model. The calculated
absolute force values differ roughly 10 % from the mea-
sured forces. This is to be expected because the actual
yield strength of the plate can easily vary within a range
of ±10 %. Note that the plate model is calculated with
nominal parameters only.

Table 1. Comparison of adjustment cylinder
forces (kN) for different plates with thickness
h = 15.1 mm and yield strength σy = 424 MPa.

F̄en,meas F̄en,calc F̄ex,meas F̄ex,calc

b = 2.5 m 1835 1954 716 869
b = 2.5 m 2074 2105 931 1189
b = 3.0 m 2377 2105 1048 1188

5. OPTIMAL LEVELER ADJUSTMENT

In the last part of this paper, the developed model is used
to calculate optimal adjustment set points. Based on the
model, the limits of the load and the adjustment values can
be systematically considered in a constrained optimization
problem. A successful leveling process highly depends on
the consecutive curvature values imposed on the plate.
Therefore, the degrees of freedom of the leveler have to be
utilized to set certain roll gap values which guarantee that
the plate undergoes a bending process with the desired
curvature values.

Based on the leveling theory, nominal adjustment values
yd,k for the upper work rolls can be determined. These
values lead to a reference curvature κd,k for each bending
step k. Due to the elastic deformation of the leveler, the
actual positions of the work rolls differ from the nominal
reference positions and, therefore, the curvature. In order
to compensate the deflection of the machine, additional
adjustment values adcomp have to be determined. This
gives the new reference adjustment

adref = adcal + adnom + adcomp . (18)

The adjustment adcal is determined when calibrating the
leveler. During the calibration process, the adjustment for
a given test load is measured. All future adjustments are
relative to the calibrated adjustment. An exact compen-
sation of the deflection of the machine is impossible due
to the finite number and the bounds of the adjustment
variables. This is why a constrained optimization problem
is formulated to find optimal values adcomp.

5.1 Optimal deflection compensation

The constrained static optimization problem is chosen in
the form

adopt,comp = arg min
ad

m∑

j=1

11∑

k=1

γk,j(κd,k − κk,j)2 (19a)

s.t. R(ywr) = 0

admin ≤ ad ≤ admax (19b)

Fsr,k,i < Fsr,max . (19c)
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This problem minimizes the quadratic error between the
desired and the actual curvature values of each stripe j and
each work roll k. The user-defined weighting parameters
γk,j > 0 provide means to emphasize specific bending steps
or stripes.

To account for force and adjustment limits the constraints
(19b) and (19c) have to be considered. The constraint
(19c) ensures that support rolls are not overloaded, which
could entail breakage of the rolls or their bearings. If
constraints are active, it may happen that the desired
plastification of the plate is not reached. The optimization
problem (19) can be solved, for example, by an active-
set method or an interior-point algorithm. In this paper,
(19) is solved by the interior-point algorithm provided by
MATLAB R©.

5.2 Numerical results

To show the feasibility of the optimization approach, an
example of a plate with the yield strength σy = 425 MPa,
the width b = 2.5 m, and the thickness h = 10 mm is
considered. The plate is divided into 5 stripes. In this
example, only the parallel adjustment of the traverse
adm and the symmetric adjustment of the bending frame
adbf,drs = adbf,ops = adbf are used as optimization
variables.

In Fig. 8, the nominal and the actual curvature values of
the first three stripes are shown (the plate is symmetric).
The upper diagram shows the curvature values for the
nominal adjustment without compensation. It is obvious
that the calibration adjustment adcal overcompensates the
deflection for the considered plate. In the lower diagram,
the actual curvature values are in good accordance with
the reference values for each stripe. The optimization
algorithm adjusts the bending frame properly in order to
compensate the deflection of the machine and also reduces
the parallel adjustment adm to account for the undesired
overcompensation caused by adcal.
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