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Backstepping-basedboundary observer for a class of

time-varying linear hyperbolicPIDEs

Andreas Deutschmann aLukas Jadachowski bAndreas Kugi a,b

aAutomation and Control Institute, Complex Dynamical Systems Group, Vienna University of Technology, Vienna, Austria

bChristian Doppler Laboratory for Model-Based Process Control in the Steel Industry, Vienna University of Technology,
Vienna, Austria

Abstract

In this paper, a Luenberger-type boundary observer is presented for a class of distributed-parameter systems described by
time-varying linear hyperbolic partial integro-differential equations. First, known limitations due to the minimum observation
time for simple transport equations are restated for the considered class of systems. Then, the backstepping method is applied
to determine the unknown observer gain term. By avoiding the framework of Gevrey-functions, which is typically used for the
time-varying case, it is shown that the backstepping method can be employed without severe limitations on the regularity of
the time-varying terms. A modification of the underlying Volterra transformation ensures that the observer error dynamics
is equivalent to the behaviour of a predefined exponentially stable target system. The magnitude of the observer gain term
can be traded for lower decay rates of the observer error. After the theoretic results have been proven, the effectiveness of the
proposed design is demonstrated by simulation examples.

Key words: Distributed-parameter System; Hyperbolic PIDE; Luenberger-type Observer; Boundary Observer; Backstepping.

1 Introduction

While the topic of boundary control for first-order hy-
perbolic partial differential equations (PDEs) has been
thoroughly investigated over the last twenty years, see,
e.g., [4,19,20,12,5,9], the problem of state observation
has been addressed only recently [3,24,8,7]. Most of
these contributions apply the backstepping method in-
troduced by Smyshlyaev and Krstic [21], which maps the
observer error dynamics onto a desired (exponentially
stable) target system using Volterra integral transfor-
mations. The strength of this approach is its structural
simplicity, the broad range of possible time-invariant
and time-varying plants [22,13] and the possibility to
combine it with other concepts, as for instance flatness-
based feedforward control [16].

A time-invariant version of the class of linear first-order
hyperbolic PIDEs considered in this paper was intro-

? This paper was not presented at any IFAC meeting. Corre-
sponding author A. Deutschmann Tel. +43 (1) 58801 376263.

Email addresses: deutschmann@acin.tuwien.ac.at
(Andreas Deutschmann),
jadachowski@acin.tuwien.ac.at (Lukas Jadachowski),
kugi@acin.tuwien.ac.at (Andreas Kugi).

duced in [12] which is closely related to the parabolic
type treated in [21]. Such PIDEs usually arise from two
coupled PDEs where one can be perturbed suitably. Very
recently, the boundary control concept presented in [12]
was extended to an adaptive output-feedback design able
to deal with unknown parameters [1] and systems with
Fredholm operators that do not exhibit a strict-feedback
structure [2].

While a filter-based state observer with non-adjustable
error dynamics is used in [1] for time-invariant plants
in the course of designing an output-feedback law us-
ing a backstepping pre-transformation, this paper is
concerned with a Luenberger-type observer for time-
varying hyperbolic PIDEs. Time-varying backstepping
designs are usually treated by employing the framework
of Gevrey-functions [25,16,15,11] which imposes strict
conditions on the regularity of the time-varying terms.
As this paper shows, this can be avoided for linear hy-
perbolic equations. By using a modified backstepping
transformation, a general PIDE can serve as target
system and thus a desired observer error dynamics can
be chosen. Therefore, it enables to trade slower error
dynamics for reduced sensitivity to noise.

The paper is structured as follows: First, the problem
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under consideration is introduced in Section 2. Minimum
observation times known from simple transport systems
give a lower bound of what can be achieved theoretically.
Thus, it is shown in Section 3 that hyperbolic PIDEs
are subject to the same limitation. Section 4 follows the
backstepping approach to calculate the desired observer
gain term. Finally, Section 5 applies the design to spe-
cific examples and analyzes the influence of the design
parameters, introduced by the general target system in
Section 4, on the error dynamics.

2 Problem statement

In the following, the observer design is considered for
systems of the form

xt(z, t) =xz(z, t) + a(z, t)x(z, t) + g(z, t)x(0, t)

+

∫ z

0

f(z, ξ, t)x(ξ, t) dξ, (1a)

with boundary and initial conditions

x(z, 0) = x0(z) (1b)

x(1, t) = u(t) (1c)

and the system output

y(t) = x(0, t) (1d)

defined on the domain (z, t) ∈ Ω = (0, 1) × R+. Here,
u(t) represents an external input. The functions a(z, t),
g(z, t) and f(z, ξ, t) with z, ξ ∈ [0, 1] and t ∈ R+ are as-
sumed to be continuous in z, t and ξ, respectively and
bounded in time. A distributed-parameter Luenberger-
type observer with the observer state x̂(z, t) is formu-
lated in the form

x̂t(z, t) = x̂z(z, t) + a(z, t) x̂(z, t) + g(z, t) x̂(0, t)

+ p(z, t) (y(t)− ŷ(t)) +

∫ z

0

f(z, ξ, t) x̂(ξ, t) dξ,

(2a)

with the observer’s boundary and initial conditions

x̂(z, 0) = x̂0(z) (2b)

x̂(1, t) = u(t) (2c)

and the corresponding observer output

ŷ(t) = x̂(0, t). (2d)

In view of (1) and (2) the dynamics of the observer error
e(z, t) = x(z, t)− x̂(z, t) follows as

et(z, t) = ez(z, t) + a(z, t) e(z, t) + p1(z, t) e(0, t)

+

∫ z

0

f(z, ξ, t) e(ξ, t) dξ, (3a)

with the associated boundary and initial conditions

e(z, 0) = e0(z) (3b)

e(1, t) = 0 (3c)

using
p1(z, t) = g(z, t)− p(z, t). (4)

The unknown observer gain p(z, t) has to be determined
such that the observer state x̂(z, t) converges to the sys-
tem state x(z, t) in the sense of the L2-norm, i.e., that
the error dynamics (3) is exponentially stable in the L2-
norm.

Remark 1 If instability is introduced to (1) through the
output feedback g(z, t)x(0, t) only, the observer error dy-
namics can be stabilized by choosing p(z, t) = g(z, t).

3 Minimum observation time

It is well known that the observability of simple trans-
port systems (i.e. with f ≡ g ≡ 0) requires a minimum
observation time Tm = 1. Analyzing observability of
distributed-parameter systems is usually done by using
operator semigroup theory, see, e.g., [18,23]. Since these
methods require a closed-form or series solution, an al-
ternative approach is chosen to show that the same min-
imum observation time also serves as a necessary condi-
tion for the considered class of PIDEs (1).

Lemma 2 The system (1) can only be observable for

t ≥ Tm = 1. (5)

PROOF. Without loss of generality, (1) is restricted to
g ≡ 0 since the term g(z, t)x(0, t) is perfectly known. Ap-
plying the method of characteristics yields the implicit
integral equation

x(z, t) = u (t+z− 1)+

∫ 1

z

a(σ, t+z−σ)x(σ, t+z−σ)dσ

+

∫ 1

z

∫ σ

0

f (σ, ξ, t+z−σ)x (ξ, t+z−σ) dξ dσ. (6)

This equation shows that the solution at a single point
(z∗, t∗) depends on the solution of a whole subset of Ω,
i.e. the domain of dependence

ΩD∗ = {(z, t) ∈ Ω | z∗ ≤ σ ≤ 1 and 0 ≤ z ≤ σ} ⊂ Ω
(7)

with σ = z∗ + t∗ − t. Hence, ΩD∗ is determined by the
inequalities

z ≥ 0, (8a)

z − z∗ ≤ −(t− t∗), (8b)

t ≤ t∗, (8c)

t− t∗ ≥ z∗ − 1. (8d)

2
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ΩD1 6⊂ ΩD∗

z1

(z1, t1)

z∗

t∗

1

(z∗, t∗)

ΩD∗

0

t1

z

t

t∗ − 1

t∗

1

y(t∗)

0 = z∗

Not observable
at t = t∗

z

t

Fig. 1. The region of dependence ΩD∗ for an arbitrary point
(z∗, t∗) ∈ Ω is depicted on the left. For an additional point
(z1, t1) ∈ ΩD∗ it follows that ΩD1 6⊂ ΩD∗ . Considering the
output y(t∗) by setting z∗ = 0 as shown on the right, points
that comply with t ≥ t∗− z might be observable at t∗, while
the remaining region is certainly not.

However, the solution for points (z, t) ∈ ΩD∗ will depend
on points outside of ΩD∗ . For example, a point (z1, t1) ∈
ΩD∗ has its own domain of dependence ΩD1 6⊂ ΩD∗ as
shown in Fig. 1. Therefore, the question is if any inequal-
ity (8) will hold for iterative application of this depen-
dence relation. It is easy to see that (8a), (8b) and (8c)
indeed hold for this iterative relation. When considering
the solution at the left boundary, e.g., (z, t) = (0, t∗),
points that comply with

t ≥ t∗ − z (9)

do not influence the solution and thus the output y(t∗).
As a consequence, this part of the domain Ω can not be
observable at time t∗ (see Fig. 1 on the right). 2

Condition (5) is - without further investigation - just a
necessary one for hyperbolic PIDEs of type (1).

4 Backstepping design

To determine p1(z, t) in (3a) and thus the observer gain
p(z, t), the backstepping method [21,12,13] is employed
in a slightly different way due to the general target sys-
tem that will be taken into consideration.

4.1 Selection of the target system

The choice of the target system is a crucial step when
applying the backstepping method. In the following, let

us presume a target system dynamics of the form

wt(z, t) = wz(z, t)− µ(z)w(z, t)

−
∫ z

0

h(z, ξ)w(ξ, t) dξ (10a)

w(1, t) = 0, (10b)

with the design parameters µ(z) and h(z, ξ). As shown
in [17], this system can be written as an abstract Cauchy
problem with solutions in L2(0, 1). For the choice µ ≡
h ≡ 0, the target system (10) constitutes a simple trans-
port equation, as for instance used in [12] and [1] for con-
trol and observation problems, respectively. Introducing
these additional design parameters allows to influence
the decay of the observer error. However, the existence
of a minimum observation time, as shown in Section 3,
limits the rate of decay which is why the choice of a sim-
ple transport equation as target system cannot be sur-
passed in terms of convergence speed.

The system (10) is not L2-stable for an arbitrary choice
of design parameters. A sufficient condition is given by
the following lemma:

Lemma 3 The target system (10) is exponentially stable
if

µinf − hsup > 0, (11)

where

µinf = inf
z∈[0,1]

µ(z), (12)

hsup = sup
(z,ξ)∈T

|h(z, ξ)| (13)

with T = {(z, ξ) ∈ R2 | 0 ≤ ξ ≤ z ≤ 1}. The norm
‖w(z, t)‖L2 can be bounded by

‖w(z, t)‖L2 ≤ e−(µinf−hsup) t‖w(z, 0)‖L2 . (14)

PROOF. Using Cauchy-Schwarz’s inequality to show
that

∣∣∣∣∣

∫ 1

0

w(ξ, t)

∫ ξ

0

h(ξ, y)w(y, t) dy dξ

∣∣∣∣∣

2

≤ h2
sup‖w(z, t)‖4L2 ,

(15)
the time derivative of

V (t) =
1

2
‖w(z, t)‖2L2 =

1

2

∫ 1

0

w2(ξ, t) dξ (16)

3
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along a solution trajectory of (10) yields

V̇ (t) =

∫ 1

0

[
w(ξ, t)wz(ξ, t)− µ(ξ)w2(ξ, t)

− w(ξ, t)

∫ ξ

0

h(ξ, y)w(y, t) dy

]
dξ

≤ −1

2
w2(0, t)− µinf‖w(t)‖2L2 −

∫ 1

0

w(ξ, t)×
∫ ξ

0

h(ξ, y)w(y, t) dy dξ

≤ −1

2
w2(0, t)− µinf‖w(z, t)‖2L2 + hsup‖w(z, t)‖2L2

≤ − (µinf − hsup) ‖w(z, t)‖2L2 (17)

and thus

‖w(z, t)‖L2 ≤ e−(µinf−hsup) t‖w(z, 0)‖L2 . 2

Remark 4 For hsup ≤ 1, the stronger criterion

µinf − ln(hsup)− 1 > 0 (18)

can be given by using the Lyapunov function V (t) =∫ 1

0
w2(z, t) ecz dz with an arbitrary positive constant c as

proposed in [5] (see Appendix for more details). However,
since in either case the integral term can only be bounded
with respect to absolute values (as in (15)), both are quite
conservative for dominating integral action.

4.2 Determination of the kernel-PIDE

A Volterra transformation

e(z, t) = α(z, t)w(z, t)−
∫ z

0

k(z, y, t)w(y, t) dy, (19)

with the unknown, time-varying kernel function k(z, y, t)
and the unknown auxiliary function α(z, t), is used to
map (3) onto (10). As will be seen later on, the addi-
tional auxiliary function α(z, t) in (19) is closely linked
to exponential ”pre-transformations”. It shall be deter-
mined in such a way that µ(z) in (10a) can be chosen
arbitrarily. This is of particular interest since, according
to Lemma 3, the target system’s stability depends on
both h(z, ξ) and µ(z). A similar approach with a given
auxiliary function is used in [17] for the time-invariant
case.

Following the backstepping approach by differentiating
(19) with respect to z and t and inserting the results into

(3) yields the kernel equation

kz(z, y, t) + ky(z, y, t)− kt(z, y, t) = −β(z, y, t)k(z, y, t)

+ α(z, t)h(z, y) + α(y, t)f(z, y, t)

−
∫ z

y

k(z, ξ, t)h(ξ, y) + f(z, ξ, t)k(ξ, y, t) dξ

(20a)

using the abbreviation β(z, y, t) = a(z, t) + µ(y). The
auxiliary function α(z, t) is determined by

αt(z, t) = αz(z, t) + β(z, z, t)α(z, t) (20b)

with the arbitrary boundary condition α(1, t) = 1. The
observer gain finally is linked to the kernel via

p1(z, t) =
1

α(0, t)
k(z, 0, t). (20c)

The boundary condition

k(1, y, t) = 0 (20d)

for (20a) can be obtained by evaluating (19) for z = 1
and using (3c) and (10b).

4.3 Well-posedness of the kernel equations

The boundary condition (20d) imposed by the back-
stepping design is not sufficient to determine a solution
on the domain T ×R+, additional conditions regarding
times t ≤ 0 are required. This could be accomplished by
imposing initial conditions on the kernel function and
the auxiliary function. Evaluating (19) for t = 0 gives

e0(z) = α(z, 0)w0(z)−
∫ z

0

k(z, y, 0)w0(y) dy, (21)

which relates the three undetermined inital valuesw0(z),
α(z, 0) and k(z, y, 0).

The approach used in this paper is to expand the do-
main to negative times, meaning K = T ×R, and apply
(20d) to all times t ∈ R. Solving (20b) by the method of
characteristics yields

α(z, t) = exp

[∫ 1

z

β(s, s, t+ z − s) ds

]
(22)

which is why α(z, t) is uniformly bounded from above
and below for all (z, y, t) ∈ K with the upper and lower
bounds

αsup = sup
(z,y,t)∈K

α(z, t) and αinf = inf
(z,y,t)∈K

α(z, t)

(23)

4
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due to the boundedness of β(z, y, t). Using this result,
the kernel equation (20a) in fact forms a well-posed
boundary value problem on the domain K according to
the following theorem:

Theorem 5 (Well-posedness of (20a)) For contin-
uous functions f(z, y, t), h(z, y) and β(z, y, t) that are
bounded in time, the time-variant kernel equation (20a)
has a unique solution k(z, y, t) ∈ C0(K) which is uni-
formly bounded with the upper bound

|k(z, y, t)| ≤αsup(hsup + fsup)×
exp [(βsup + hsup + fsup) (1− y)] , (24)

where

βsup = sup
(z,y,t)∈K

|β(z, y, t)|,

hsup = sup
(z,ξ)∈T

|h(z, ξ)|,

fsup = sup
(z,ξ,t)∈K

|f(z, ξ, t)|. (25)

PROOF. Applying the method of characteristics to
(20a) using (20d) yields the implicit integral equation

k(z, y, t) = F0(z, y, t) + F [k](z, y, t) (26a)

with

F0(z, y, t) = −
∫ 1−z

0

α (σ + z, t− σ) h(σ + z, σ + y)

+ α (σ + y, t− σ) f (σ + z, σ + y, t− σ) dσ
(26b)

and

F [k](z, y, t) =
∫ 1−z

0

β (σ + z, σ + y, t− σ) k (σ + z, σ + y, t− σ) dσ

+

∫ 1−z

0

∫ z

y

[
k (σ + z, ξ + σ, t− σ)h(ξ + σ, σ + y)

+ f (σ + z, ξ + σ, t− σ) k (ξ + σ, σ + y, t− σ)
]

dξ dσ.

(26c)

Considering the iteration

kn+1(z, y, t) = F [kn](z, y, t) (27)

starting with k0(z, y, t) = F0(z, y, t), it is easy to show
that the assumption

|kn(z, y, t)| ≤ L (βsup + hsup + fsup)n

n!
(1− y)n (28)

with L = αsup(hsup +fsup) holds for n ≥ 0. For the next
element it follows that

|kn+1(z, y, t)| =∣∣∣∣∣

∫ 1−z

0

β(σ + z, σ + y, t− σ) kn(σ + z, σ + y, t− σ) dσ

+

∫ 1−z

0

∫ z

y

[
kn(σ + z, ξ + σ, t− σ)h(ξ + σ, σ + y)

+ f(σ+z, ξ+σ, t−σ) kn(ξ+σ, σ+y, t−σ)
]

dξ dσ

∣∣∣∣∣

≤ L (βsup + hsup + fsup)n

n!

{
βsup

∫ 1−z

0

(1−σ−y)n dσ

+

∫ 1−z

0

∫ z

y

hsup (1−σ−ξ)n︸ ︷︷ ︸
≤(1−σ−y)n

+fsup(1−σ−y)n dξ dσ

}

≤ L (βsup + hsup + fsup)n+1

n!

∫ 1−y

0

(1− σ − y)n dσ

≤ L (βsup + hsup + fsup)n+1

(n+ 1)!
(1− y)n+1 (29)

and
|k0(z, y, t)| ≤ L, (30)

thus proving the statement (28) by induction. Thus, by
successive approximation there exists a continuous ker-
nel

|k(z, y, t)| ≤
∞∑

n=0

|kn(z, y, t)| (31)

≤ L exp [(βsup + hsup + fsup) (1− y)] . (32)

Analogous to the proof in [12], this already implies
uniqueness of the solution

k(z, y, t) =

∞∑

n=0

kn(z, y, t). 2 (33)

Remark 6 The proof of Theorem 5 exploits the fact that
(20a) can be converted into a single implicit integral equa-
tion without time-derivatives of the kernel function on
the domain K by applying the method of characteris-
tics. Thus, one avoids a convergence analysis in terms
of Gevrey-functions [16,25] and the accompanied limita-
tions on the regularity of the parameter functions. While
imposing initial conditions would in principle allow the
same treatment, the integration along a characteristic
curve to obtain (26) would have to distinguish between
points that have to be integrated towards the boundary
condition or the initial condition, respectively. The re-
sulting pair of coupled implicit integral equations is sig-
nificantly harder to analyze. However, the extension of
the domain requires additional values of the parameter

5
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functions for times t < 0. If no such values can be given
due to the nature of the problem, a simple choice is to
expand the values of t = 0 to earlier times. Such an ap-
proach is utilized in Section 5. This procedure is imposing
specific but unknown initial conditions defined by the pa-
rameter values chosen. By expanding the values of t = 0,
one is in fact imposing stationary solutions of (20a) and
(20b) as initial conditions.

4.4 Relation to ”pre-transformation”

It shall be pointed out that the modified Volterra trans-
formation is closely related to exponential scalings called
pre-transformations as used in [6,12]. Applying the time-
varying exponential scaling

e(z, t) = exp

[∫ 1

z

a(s, t+ z − s) ds

]
ē(z, t) (34)

to the observer error (3) and the time-invariant scal-

ing w(z, t) = exp[
∫ 1

z
−µ(s) ds]w̄(z, t) to the target sys-

tem dynamics (10) yields the “traditional” backstepping
transformation ē(z, t) = w̄(z, t) −

∫ z
0
k̄(z, y, t)w̄(y, t) dy

with the kernel function k̄(z, y, t) = exp[−
∫ 1

z
a(s, t+z−

s) ds−
∫ 1

y
µ(s) ds]k(z, y, t) and the corresponding kernel

equation

k̄z(z, y, t) + k̄y(z, y, t)− k̄t(z, y, t) = h̄(z, y) + f̄(z, y, t)

−
∫ z

y

k̄(z, ξ, t)h̄(ξ, y) + f̄(z, ξ, t)k̄(ξ, y, t) dξ. (35)

with

f̄(z, y, t) = exp

[
−
∫ 1

z

a(s, t+ z − s) ds

+

∫ 1

y

a(s, t+ y − s) ds

]
f(z, y, t) (36)

h̄(z, y) = exp

[
−
∫ 1

y

µ(s) ds

+

∫ 1

z

µ(s) ds

]
h(z, y). (37)

Equation (34) is in fact the time-varying generalisation
of the pre-transformations used in [6,12]. Thus, the aux-
iliary function α(z, t) is determined by (20b) in such a
way (cf. its solution (22)) that the Volterra transforma-
tion (19) in fact comprises pre-transformations for both,
the error system and the target system.

Remark 7 Since the reaction term a(z, t) could be elim-
inated by applying (34), one could set µ(z) = 0 in (10)
and remain with a single design parameter h(z, ξ). While
this is true in principle, the stability criterion (11) is espe-
cially conservative in handling the integral term. Thus, by

including the reaction term into the integral term through
exponential scaling, the estimates of (11) are becoming
quite vague.

4.5 Stability of the closed loop

Before being able to prove exponential stability of the ob-
server error dynamics, boundedness of the inverse trans-
formation of (19) has to be shown. This can be done by
explicitly calculating its kernel function in the same way
as above or by using operator theory as presented in [14]
for the case α(z, t) ≡ 1.

Lemma 8 (Bounded inverse) The linear bounded
operator K : L2(0, 1)→ L2(0, 1) given by

e(z, t) = (K w)(z, t)

= α(z, t)w(z, t)−
∫ z

0

k(z, y, t)w(y, t) dy (38)

has a linear inverse K−1 uniformly bounded for t ≥ 0
with the upper bound

N = ‖K−1‖L2 =
1

αinf

(
1 +M eM

)
(39)

and

M = sup
(z,y,t)∈T ×R+

∣∣∣∣
k(z, y, t)

α(z, t)

∣∣∣∣ . (40)

PROOF. See Appendix A.

This result enables us to prove stability of the observer
error dynamics.

Theorem 9 (Stability of the error dynamics) The
observer error e(z, t) for the time-varying system (1)
described by (3) is exponentially stable in the L2-norm if
(11) is satisfied. For the case h ≡ 0, the observer error
vanishes after the minimum observation time Tm = 1.

PROOF. The backstepping transformation (19) has a
uniformly bounded inverse and from Lemma 8 it follows
that

‖w(z, t)‖L2 ≤ N ‖e(z, t)‖L2 (41)

with N defined in (39). Thus, combining Lemma 3 and
(41), we see that

‖e(z, t)‖L2 =

∥∥∥∥α(z, t)w(z, t)−
∫ z

0

k(z, y, t)w(y, t) dy

∥∥∥∥
L2

≤ C‖w(z, t)‖L2≤Ce−(µinf−hsup)t‖w(z,0)‖L2

≤ C N e−(µinf−hsup) t‖e(z, 0)‖L2 (42)
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with

C = sup
(z,t)∈Ω

|α(z, t)| + sup
(z,y,t)∈T ×R+

|k(z, y, t)| . (43)

This implies exponential stability of the observer error
dynamics if (11) is met. If h ≡ 0 the target system (10)
represents a transport system. Since its solution vanishes
for t > Tm = 1 (see [12]), the observer error will also
vanish due to

‖e(z, t)‖L2 ≤ C‖w(z, t)‖L2 . 2 (44)

5 Simulation examples

The considerations above guarantee the existence and
uniqueness of a suitable kernel function to exponentially
stablise the observer error dynamics. In this section, the
theoretical concepts will be applied to concrete exam-
ples. The first example presents the observer design for
a simple, time-invariant case where an analytic solution
for the kernel function can be obtained. Then, the ef-
fects of different choices for the design parameters µ(z)
and h(z, ξ) are studied. Finally, a general time-variant
system is treated in the second example comparing the
fully-fledged time-variant observer design with a simpler
“naive” approach.

Contrary to the dual problem of boundary control, the
output-feedback term g(z, t) in (1a) can be compensated
directly through the observer gain p(z, t), see (4), and
thus does not appear in the kernel equation (20a). There-
fore, g is considered identical to zero for the following
examples.

5.1 Time-invariant case

Let us consider the system

xt(z, t) = xz(z, t) +

z∫

0

fce
z−ξ x(ξ, t) dξ (45)

presented in [12] for the control problem. Fig. 2 shows
the behaviour of the plant for fc = 4. A Luenberger-type
observer

x̂t(z, t) = x̂z(z, t)+p(z)(y(t)−ŷ(t))+

z∫

0

fce
z−ξ x̂(ξ, t) dξ

(46)
is constructed by considering the integral kernel k(z, y)
and the auxiliary function α(z), which both do not de-

0

0.5

1 0 1 2 3

0

200

400

z
t

x
(z
,t
)

Fig. 2. Behaviour of the plant (45) for fc = 4.

pend on the time t. Therefore, (20a) reduces to

kz(z, y) + ky(z, y) = −µ(y) k(z, y)

+ α(z)h(z, y) + α(y)fce
z−y

−
z∫

y

k(z, ξ)h(ξ, y) + fce
z−ξk(ξ, y) dξ (47)

with

α(z) = exp

[∫ 1

z

µ(s) ds

]
. (48)

No closed-form solution can be given for this equation
with general design parameters. For the special case of
a transport-like target system with h ≡ µ ≡ 0 however,
it follows that α(z) = 1 and thus

kz(z, y) + ky(z, y) = fce
z−y −

z∫

y

fce
z−ξk(ξ, y) dξ (49)

with k(1, y) = 0. This equation closely resembles the
kernel equation presented for the control problem. Fol-
lowing the procedure provided in [12] and [21], the solu-
tion to (49) is given by

k(z, y) = −fc (1− z) ez−y
I1

(
2
√
fc (1− y)(z − y)

)

√
fc (1− y)(z − y)

(50)
using the modified Bessel functions of the first kind In.
Thus, using (20c) and (4) the observer gain follows as

p(z) = fc (1− z) ez
I1
(
2
√
fc z
)

√
fc z

. (51)

With this solution, the observation error indeed vanishes
for t > 1 as shown in Fig. 3.
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Fig. 3. Time evolution of the L2-norms of the observer er-
ror e(z, t) and the system state x(z, t). While the system is
unstable, the observer error vanishes for t > 1.

5.2 Influence of the design parameters

To gain insight on how to choose the design parame-
ters, they are assumed to be constant for simplicity, i.e.
µ(z) = µc and h(z, y) = hc. Thus, the kernel equation
(47) reduces to

kz(z, y) + ky(z, y) = −µck(z, y) + hcα(z) + fcα(y)ez−y

−
z∫

y

hck(z, ξ) + fce
z−ξk(ξ, y) dξ (52)

with α(z) = eµc(1−z). Equation (52) can be solved with
sufficient precision by using a finite approximation of
(33). From (42) we know that

‖e(z, t)‖L2 ≤ C N e−(µc−|hc|) t‖e(z, 0)‖L2 . (53)

Thus, an approximately similar decay of the observer
error is expected for parameter sets fulfilling the con-
dition µc − |hc| = c. Fig. 4 shows the L2-norms of the
observer errors and the corresponding observer gains for
four parameter sets with c = 1. While the observer er-
rors show some differences prior to t = Tm = 1, they
decline at approximately the same rate as predicted ex-
cept for the transport-like case hc = 0, where the sim-
ple stability criterion (11) is very restrictive as indicated
in Appendix A.2. However, the necessary observer gain
p(z) varies considerably. As one would expect, values
of hc closer to the plant’s integral action with fc = 4
(notice the negative sign in (10a)) exhibit significantly
lower observer gain functions p(z). Since higher observer
gains increase the sensitivity to measurement noise, us-
ing negative values for hc can be used to trade dynamics
for robustness against noise by lowering c as shown in
Fig. 5 and Fig. 6.

Remark 10 Conversely, a target system like (10) could
be used for boundary control applications to reduce the
necessary control effort.
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Fig. 4. Observer error ‖e(z, t)‖L2 and observer gain p(z) for
the plant (45) and the observer (46) with fc = 4 shown for
various parameter sets hc and µc = |hc|+ 1.
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Fig. 5. Observer error ‖e(z, t)‖L2 and observer gain p(z) for
the plant (45) and the observer (46) with fc = 4 shown for
hc = −5 and various values of µc.

8

Post-print version of the article: A. Deutschmann, L. Jadachowski, and A. Kugi, “Backstepping-based boundary observer for a class of
time-varying linear hyperbolic PIDEs”, Automatica, vol. 68, pp. 369–377, 2016. doi: 10.1016/j.automatica.2016.02.007
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.automatica.2016.02.007


0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

t

‖e
(z
,t
)‖

L
2

hc = 5
hc = −5

Fig. 6. Presence of noise in the observer error’s L2-norm
‖e(z, t)‖L2 for two different observer gain functions (cf.
Fig. 4).

5.3 Time-variant case: Comparison to a naive ap-
proach

A common approach often used in practical applications
with time-varying parameters, henceforth also referred
to as naive approach, is to consider all parameters time
invariant for the controller or observer design and re-
placing them with the original time-varying versions af-
terwards. This approach does adjust to the set of param-
eters currently governing the system but lacks to incor-
porate their rates of change influencing the dynamic be-
haviour. Thus, these techniques usually work quite well
for small rates of change, while for more rapid changes
they fail to achieve their goal, as will be demonstrated
by the following example.

Consider the scenario of Section 5.1 but now with a time-
varying function

f(z, y, t) = fc(t) ez−y, (54)

where

fc(t) = 8

[
1 + sin2

(
πt

3

)]
. (55)

Regarding the observer design presented in this paper,
the naive approach described above essentially boils
down to using the time-invariant kernel equation (49)
with time-varying parameters. This neglects parts of the
structure introduced by the full time-varying observer,
see (20a), whose kernel equation

kz(z, y, t) + ky(z, y, t)− kt(z, y, t) = fc(t)e
z−y

− fc(t)
z∫

y

k(z, ξ, t)ez−ξ dξ (56)

contains an additional time derivative kt(z, y, t) com-
pared to (49). By simply replacing fc with fc(t) in (51),

0

0.5

1

0123450

200

400

z

t

p
(z
,t
)

Fig. 7. The observer gain p(z, t) = −k(z, 0, t) by solving (56).
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Fig. 8. Difference of observer gains between the naive design
(57) and the full time-varying observer design.

the observer gain takes the form

pn(z, t) = fc(t) (1− z) ez
I1

(
2
√
fc(t) z

)

√
fc(t) z

(57)

for the naive approach. The solution of (56) (see Fig. 7)
can again be obtained by using a finite approximation
of (33). According to Remark 6, for times 0 ≤ t ≤ 1
the values at time t = 0 were used for f(z, y, t) which is
equivalent to using a stationary solution of (56) as initial
condition. However, precalculating the observer gain for
all times clearly is not a practical solution. Therefore, a
numerical method to determine the observer gain simi-
larly to [10] has been employed.

Comparing the fully time-varying solution p(z, t) to the
solution (57) using the naive approach pn(z, t) in Fig. 8
shows that there are significant deviations. The effect of
this difference can be seen in Fig. 9. While the full time-
varying observer is able to stabilize the error and force
it to zero, the naive approach fails to do so.
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Fig. 9. Comparison of the L2 norms over time between
the naive approach and the full time-varying observer. The
naive approach is not capable of bounding the observer error
(dashed) while the full time-varying observer (solid) does.

6 Conclusion

In this paper, a Luenberger-type observer for a class of
time-varying hyperbolic PIDEs is presented. As shown
in Section 3, the class of hyperbolic PIDEs exhibits a
minimum observation time analogous to simple trans-
port systems without non-local effects. The unknown
observer gain is determined by using the backstepping
method. The choice of the target system and its condi-
tions for exponential stability requires to specifically in-
fluence the reaction term. This is achieved by introduc-
ing an auxiliary function into the backstepping trans-
formation which is determined as part of the design. As
shown, this auxiliary function is closely related to expo-
nential pre-transformations and generalizes known time-
invariant results. Thus, we are able to reduce the nec-
essary observer gain by allowing a slower decay of the
observer error. While this reduces the sensitivity to mea-
surement noise for observers it can be used to reduce
the necessary control effort in boundary control appli-
cations. By avoiding the Gevrey framework, it is suffi-
cient that the parameter functions are continuous and
bounded in time.

The generality of the target system increases the com-
plexity of determining the observer gain while the time-
varying nature limits the usability of precalculated ker-
nel functions. Therefore, an efficient algorithm is deemed
necessary to determine the observer gain in real time.
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A Appendix

A.1 Proof of Lemma 8

This proof follows the one presented in [14]. By defining
v(z, t) = e(z, t)− α(z, t)w(z, t), we get

v(z, t) = −
z∫

0

k(z, y, t)

α(y, t)
[e(y, t)− v(y, t)] dy. (A.1)

To solve this implicit integral equation, again successive
approximation is used. Theorem 5 ensures that the ker-
nel function k(z, y, t) is uniformly bounded in time. Due
to (22) and (23), the same holds true for 1/α(z, t). Set-
ting

v0(z, t) = −
z∫

0

k(z, y, t)

α(y, t)
e(y, t) dy and

vn(z, t) =

z∫

0

k(z, y, t)

α(y, t)
vn−1(y, t) dy, (A.2)

the absolute value of v0(z, t) can be bounded by

|v0(z, t)| ≤
1∫

0

∣∣∣∣
k(z, y, t)

α(y, t)

∣∣∣∣ |e(y, t)|dy ≤M ‖e‖L2 (A.3)

with M = sup(z,y,t)∈T ×R+ |k(z,y,t)
α(y,t) | using Hölder’s in-

equality. This induces a sequence of inequalities

|v0(z, t)| ≤
1∫

0

∣∣∣∣
k(z, y, t)

α(y, t)

∣∣∣∣ |e(y, t)|dy ≤M ‖e‖L2 ,

|v1(z, t)| ≤M2z ‖e‖L2 ,

|v2(z, t)| ≤ M3

2!
z2 ‖e‖L2 ,

...

|vn(z, t)| ≤ Mn+1

n!
zn ‖e‖L2 . (A.4)

The series

v(z, t) =

∞∑

n=0

vn(z, t) (A.5)

therefore converges absolutely and uniformly to a con-
tinuous solution of (A.1) which is bounded by

|v(z, t)| ≤M
∞∑

n=0

Mn

n!
zn ‖e‖L2 ≤M eMz ‖e‖L2 . (A.6)

Thus, there exists a constant B = MeM that

‖v(z, t)‖L2 ≤ B‖e(z, t)‖L2 . (A.7)

This implies the existence of a bounded linear operator
Φ : L2(0, 1) → L2(0, 1) mapping e(z, t) onto v(z, t) =
(Φ e)(z, t). By using the definition of v(z, t), we obtain
the relation

w(z, t) =
1

α(z, t)
[e(z, t)− v(z, t)]

=

[
1

α(z, t)
(I − Φ)e

]
(z, t) = (K−1e)(z, t).

(A.8)

Thus, the linear operator K−1 is uniformly bounded by

‖w(z, t)‖L2 ≤ N ‖e(z, t)‖L2 (A.9)

with

N =
1

αinf
(1 +B) > 0. (A.10)
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A.2 Addendum to Remark 4

Using the Lyapunov function V (t) =
∫ 1

0
w2(z, t)ecz dz

with an arbitrary positive constant c (see [5]) and pro-
ceeding analogous to Lemma 3 using

∣∣∣∣
∫ 1

0

w(z, t) ecz
∫ z

0

h(z, ξ)w(ξ, t) dξ dz

∣∣∣∣
2

≤ ech2
supV

2(t)

(A.11)
one obtains

V̇ (t) ≤ −2
( c

2
+ µinf − ec/2hsup

)
V (t) = −2κ(c)V (t).

(A.12)
Maximizing κ(c) for c ≥ 0 yields

c∗ =

{−2 ln(hsup) for hsup < 1

0 else
(A.13)

and therefore V̇ (t) ≤ −2 (µinf − ln(hsup)− 1)V (t) for
hsup < 1. Fig. A.1 illustrates the stronger stability result.

hsup

µinf

instability region

1 2 3 4 5
−1

1

2

3

4

5

Fig. A.1. Stability of the target system.
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