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Modeling and Iterative Pulse-Shape Control of

Optical Chirped Pulse Amplifiers

Andreas Deutschmann aPavel Malevich bAndrius Baltuška bAndreas Kugi a

aAutomation and Control Institute, Complex Dynamical Systems Group, TU Wien, Vienna, Austria

bPhotonics Institute, Ultrafast Laser Group, TU Wien, Vienna, Austria

Abstract

In this paper, we present an iterative learning algorithm for pulse-shape control applications of optical chirped pulse amplifiers
for ultra-short, high-energy light pulses. For this, we first introduce a general nonlinear and infinite-dimensional mathematical
model of chirped pulse amplifiers. By reducing the complexity of this detailed model and reformulating the control task, we
are subsequently able to apply inversion-based iterative learning control to track desired output pulses. Using the reduced
model to estimate both internal states and unknown parameters yields a fast and simple way of consistently estimating the
input-output behavior without relying on a calibrated system model. The effectiveness of the resulting adaptive algorithm is
finally illustrated with simulation scenarios on an experimentally validated mathematical model.

Key words: Chirped pulse amplifier, pulse-shape control, iterative learning control, infinite-dimensional systems.

1 Introduction

Over the last several decades, the systematic genera-
tion, detection, and manipulation of light opened a novel
and rapidly growing field of research, now commonly
known as photonics. However, the contributions of con-
trol engineering to this field are comparatively scarce
with some exceptions like the control of mode-locked
lasers [3], pulse shaping [28,20,21] and pulse propagation
[18]. One particular task in photonic applications is the
amplification of light pulses, especially for ultra-short
high-energy pulses as used in strong field physics [12], for
coherent control [9] or for pumping of optical parametric
amplifiers [15]. The amplification of high-energy pulses
is usually done by multipass amplification [14] using re-
generative amplifiers (RAs), where a (usually) continu-
ously pumped gain medium is placed inside an optical
resonator. The pulse is then cycled several times until
the stored energy of the gain medium is extracted and
the amplified pulse is released. Since the amplification

? This paper was not presented at any IFAC meeting. Cor-
responding author A. Deutschmann Tel. +43 (1) 58801 - 376
263.
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(Pavel Malevich), andrius.baltuska@tuwien.ac.at
(Andrius Baltuška), kugi@acin.tuwien.ac.at (Andreas
Kugi).

of intense laser pulses in active gain media is limited in
its maximum energy due to self-focusing effects, a com-
mon technique to amplify high-energy pulses is to use
so-called optical chirped pulse amplifiers (CPAs) [24].
The idea of CPAs is to stretch the incident pulse to re-
duce its power density and amplify the stretched pulse.
This stretching can be achieved by introducing large
amounts of artificial positive dispersion and thus con-
vert the incident pulse into a chirped pulse. Afterwards,
one wishes to recompress the chirped pulse by applying
negative dispersion [26]. While this is possible for RAs
with spectrally uniform gain, the quality of the amplified
pulse is degrading rapidly for non-uniform gain which is
typically the case for broad-band amplifiers needed for
ultra-short pulse amplification. To approximately com-
pensate for non-uniform gain and resulting effects like
gain-narrowing [11], spectral filters in front of the RA
[15] or within the resonator [13] have been successfully
applied to achieve spectrally broad and thus temporally
short pulses after recompression. However, these filters
have to be adapted individually for each point of oper-
ation. The availability of programmable spectral filters
for pulse shaping [29,25] makes the compensation by au-
tomatic control strategies a desirable option.

In general, the applications of control theory to prob-
lems in photonics mostly utilize model-free concepts like
extremum-seeking (ES) [3,21] or some kind of genetic
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algorithm [18] or model-free versions of iterative learn-
ing control (ILC) [20]. This is typically reasoned by two
arguments, namely the degree of uncertainty inherent
to some parameter values and the highly complex ef-
fects of the nonlinear and infinite-dimensional dynam-
ics involved. In [20], a PD-type ILC is used to find the
input pulse necessary to obtain a desired output pulse
for an (unchirped) single-pass amplifier with spectrally
uniform gain. Unlike such amplifiers, the CPA systems
considered in this paper exhibit a variety of effects that
make them quite challenging from a control point of
view, e.g., extremely high gain levels that are saturat-
ing in a spectrally inhomogeneous way and nonlinear
dispersive effects of the pulse propagation. Additionally,
CPAs are typically operated in a regime where subse-
quent pulses are coupled as the stored energy of the gain
medium is not allowed to fully recover in between two
pulses. This can even induce an unstable system behav-
ior [10]. From a control perspective, CPAs constitute a
challenging class of systems. Accordingly, the main con-
tribution of this paper lies in the introduction of a novel
and challenging application to the control audience, the
derivation of a comprehensive mathematical model and
the development and evaluation of tailored ILC concepts
on an experimentally validated model.

In this paper, we present a pulse-shape control for op-
tical CPAs to track desired output pulses by means of
inversion-based ILC. For this, we start by deriving a de-
tailed nonlinear mathematical model of the process de-
scribing the evolution of the light field in Section 2. Sec-
tion 3 then deduces a simplified linear model upon which
the inversion-based ILC strategy is developed. The ef-
fectiveness of the inversion-based ILC strategy is then
verified by simulation scenarios in Section 4 and some
final conclusions are drawn in Section 5.

1.1 Mathematical Framework and Nomenclature

Before beginning to derive a complete mathematical
model of the CPA, some preliminary statements will
be made. In ultra-fast optics it is common to repre-
sent field quantities as real parts of complex quanti-
ties A that are described by complex envelope repre-
sentations. For a plane wave with fixed polarization
propagating along the z axis, this can be written as
A(z, t) = A(z, t) e−i(k0z−ω0t), with the complex pulse
envelope A(z, t) of a carrier wave, the time t, the spa-
tial coordinate z, the imaginary unit i, the angular
frequency ω0 and the spatial wave number k0. Since
the pulses of interest are typically signals where the
spatial and temporal variations of the complex pulse
envelope are slow compared to the carrier oscilla-

tions, the approximations
∣∣∣∂

2A(z,t)
∂z2

∣∣∣ �
∣∣∣k0
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slowly varying envelope approximation (SVEA), see,
e.g., [23, Sec. 24.4] or [19], are applied. To analyze a pulse

Stretcher
Filter

RA Comp.

Ein(t) En
in,RA(t) En

out,RA(t) En
out(t)

Fig. 1. Components of a CPA system and associated pulses.
The schematic graphs in blue illustrate the ideal temporal
pulse shapes for a desired Gaussian output pulse.

spectrally, the Fourier transform Â(z, ω) = F {A(z, t)}
is used. All considered pulses at some location z0 are
bounded and of finite energy and thusA(z0, ·) ∈ L2∩L∞
with the common norms

‖A(z0, ·)‖22 =‖A(z0, ·)‖22 =

∫ ∞

−∞
|A(z0, t)|2dt (1a)

‖A(z0, ·)‖∞=‖A(z0, ·)‖∞= supt∈R |A(z0, t)| . (1b)

Following the convention to describe the light pulse using
the electric field E , its pulse energy at z0 is given by
W = AB/2Z0‖E(z0, ·)‖22 = AB/4πZ0‖Ê(z0, ·)‖22, where Z0

denotes the impedance of free space and AB is the cross
section of the laser beam. In the sequel, spatial mean
values over the length of the gain medium L are denoted

by an overline, i.e. N = 1/L
∫ L

0
N(z)dz.

2 Mathematical Model

Apart from the source of input pulses, a CPA system con-
sists of three main components: a pulse stretcher with a
spectral filter afterwards, a regenerative amplifier (RA)
and a pulse compressor at the end. Such CPA systems
are usually operated in a repetitive fashion, where iden-
tical seed pulses Ein(t) at a repetition frequency frep are
fed into a (typically grating-based) pulse stretcher. De-
pending on the settings of the spectral filter and the state
of the RA, this gives a heavily chirped pulse Enin,RA(t)

which is amplified to Enout,RA(t) and compressed back to

yield the output pulse Enout(t). The overall goal is to ad-
just the amplitude and phase characteristic of the spec-
tral filter such that Enout,RA(t) is compressed back into

an unchirped pulse of desired shape Ed
out(t) as indicated

in Fig. 1. While pulse stretchers and compressors can be
easily described in terms of their spectral properties, the
behavior of RAs is quite complex and requires a more de-
tailed model. Thus, we start by addressing the descrip-
tion of the stretcher, the compressor and the spectral
filter in Section 2.1 and then continue with the RA in
Section 2.2.

2.1 Stretcher, Filter and Compressor

The basic idea of grating-based pulse stretchers (and
compressors) is to vary the spatial paths depending on
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the frequency and thus introduce frequency-depending
delays. When propagating through the device, each fre-
quency component ω of the complex envelope’s Fourier
transform Ê(z, ω) thus receives an additional phase
ϕS(ω) that can be approximated around the carrier
frequency ω0 with high accuracy by

ϕS(ν) = ϕS,0 + ϕS,1ν + ϕS,2ν
2 + ϕS,3ν

3 (2)

where ν = ω − ω0. The constants ϕS,i, i ∈ {0, 1, 2, 3}
depend on the geometry, the pulse’s center frequency ω0

and the grating constant as shown in [26]. The transfer
function of the pulse stretcher can therefore be written
as GS(ω) = ηS eiϕS(ω−ω0) with the spectrally uniform
efficiency coefficient ηS. Thus, the input pulse to the RA
is given by

Enin,RA(t) = F−1
{
GnF(ω)GS(ω) Êin(ω)

}
, (3)

where GnF(ω) denotes the adjustable transfer function
of the spectral filter (set for the n-th pulse). Since the
filter is not able to amplify any frequency component,
its transfer function has to fulfill the constraint

|GnF(ω)| ≤ 1 (4)

for all ω ∈ R. Analogously, the compressor can be de-

scribed by Enout(t) = F−1
{
GC(ω) Ênout,RA(ω)

}
with

GC(ω) = ηC eiϕC(ω−ω0) and ϕC according to (2).

Remark 1 Analyzing the effect of (2) shows that the
constant and linear terms introduce a phase shift and a
time delay to the incident pulse, which can be neglected
when studying the pulse shape, i.e. ϕC,0 = ϕS,0 = 0 and
ϕC,1 = ϕS,1 = 0. The quadratic term produces the de-
sired linear chirp while the cubic term generates a non-
linear chirp that typically becomes relevant for very short
pulses below 20 fs [17].

Depending on the source of seed pulses, a general in-
cident pulse Ein(t) is showing some amount of chirp.
Thus, the pulse stretcher only adds such an amount of
quadratic phase that the desired temporal stretching is
achieved. The compressor is then designed such that
it compensates the overall quadratic and cubic phase
components to achieve a “Fourier-limited” (unchirped)
pulse. For simplicity it is assumed that the input pulse
exhibits hardly any quadratic or cubic phase compo-
nents and that stretcher and compressor compensate
each other in a perfect way, i.e.

ϕC,2 = −ϕS,2, ϕC,3 = −ϕS,3 . (5)

2.2 Regenerative Amplifier

The central part of a CPA system is the RA, which com-
prises a (usually) continuously pumped gain medium lo-

gain medium

PC

En
in,RA(t) E

n,k
in,RA(t) E

n,k
out,RA(t) En

out,RA(t)

k = 1, . . . , NRC cycles

ηRC

Fig. 2. Simplified layout of a unidirectional RA. The n-th
chirped input pulse Enin,RA(t) is inserted into the ring cavity,
amplified by passing the gain medium for NRC times, and
finally extracted by switching the polarization via a Pockels
cell (PC). All losses are considered to be concentrated into
the efficiency coefficient ηRC.

cated inside an optical resonator. Depending on the ex-
act specifications, the optical resonator may be designed
such that the pulse is injected into the gain medium bidi-
rectionally or unidirectionally. In the following, we will
restrict ourselves to unidirectional RAs since the bidi-
rectional case can be treated similarly with slight mod-
ifications. According to Fig. 2, the n-th chirped pulse
Enin,RA(t) leaving the pulse stretcher and filter is injected
into the ring cavity and amplified by the gain medium.

The k-th cycle of the n-th pulse is denoted by En,kin,RA(t)

prior to amplification andEn,kout,RA(t) after amplification.

After NRC cycles, the amplified pulse Enout,RA(t) is ex-
tracted and passed on to the pulse compressor. Until the
next pulse arrives, the depleted population inversion is
slowly regenerated (see Fig. 3 at the top). For simplifi-
cation, losses of all optical components are combined in
the efficiency coefficient ηRC acting on the recirculated
pulse as shown in Fig. 2.

A mathematical model describing the amplification pro-
cess needs to take into account the coupling of the doped
ions inside the gain medium with the laser pulse and the
continuous pumping light field. Additionally, the prop-
agation of ultra-short and high-energy pulses in dense
media is subject to nonlinear and dispersive effects that
have to be taken into account. Due to the high energy and
broad spectrum of the amplified pulses, the field-matter
interaction while traveling through the gain medium is
quite complex and results in fast dynamics of the ex-
cited ions. The effect of the several orders of magnitude
weaker pumping field is negligible for the comparatively
short period it takes the pulse to propagate through the
gain medium. In contrast, during the regeneration time
or in between cycles where no pulse is present in the gain
medium, the pumping field’s interaction with the ions is
essential although quite simple and rather slow. Thus,
it is advisable to split both domains and use separate
pulse and pump models. Since the temporal pulse length
is significantly smaller than its round-trip time within
the cavity this is easily possible in a temporally consec-
utive fashion as shown in Fig. 3. To keep the following
presentation short and compact, we will not explicitly
specify space or time dependence of any variables unless
it is required for the understanding.

3

Post-print version of the article: A. Deutschmann, P. Malevich, A. Baltuska, and A. Kugi, �Modeling and iterative pulse-shape control of

optical chirped pulse ampli�ers�, Automatica, vol. 98, pp. 150�158, 2018, issn: 0005-1098. doi: 10.1016/j.automatica.2018.09.002

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

http://dx.doi.org/10.1016/j.automatica.2018.09.002


pulse n pulse n + 1

k cycles regenerating

t

pulse
model

pump
model

Fig. 3. Time sequence of a pulse amplification process. Red
indicates times where the pulse is traveling through the gain
medium while during blue time intervals the gain medium is
exposed to the pumping laser only. The whole amplification
process can thus be described by an alternating chain of
pulse and pump models.

2.2.1 Pulse propagation in gain media (pulse model)

The propagation of light within media is determined by
Maxwell’s equations. To obtain a simplified description
for pulses propagating along the z-direction in the pres-
ence of dispersive and nonlinear effects, the standard
approach is to use the complex envelope representation
and approximate the dispersion relation with a second
order Taylor expansion (see, e.g., [22, pp. 991] or [19,
Sec. 3.2]). By using a retarded time frame traveling with
the pulse center at the group velocity vg, one obtains the
polarization driven version of the nonlinear Schrödinger
equation (NLSE) (see [1,27])

i
∂E

∂z
+
k2

2

∂2E

∂t2
− 1

2
ω0ε0n0n2|E|2E =

ω2
0

2c20ε0k0
Pat, (6)

with the refractive indices n0, n2, the dispersion coeffi-
cient k2, the polarization induced by the dopant Pat, the
permittivity of free space ε0, and the vacuum speed of
light c0.

While equation (6) is describing the propagation of the
electric field, a model for the atomic polarization of the
dopant Pat is missing. This could be achieved by in-
voking the density operator formalism and the resulting
von-Neumann equation. In this paper, we apply the in-
tuitive and standard approach for laser systems to de-
scribe the system dynamics in terms of population den-
sities and polarizations [23]. Without loss of generality,
a Holmium-doped yttrium aluminum garnet (Ho:YAG)
gain medium - a promising candidate for mid-infrared
laser systems [15] - is chosen for the following demon-
stration purposes. Taking existing measurement results
on the structure of Ho:YAG’s ground and first excited
state manifold [2, Fig. 1], a simplified energy level dia-
gram can be established as shown in Fig. 4. Thus, the
simplified model assumes that there is one ground state
E0 and one upper state E5 with four intermediate states

E0

E1

E2

E3

E4

E5

γ40
γ04

γ30
γ03

γ20
γ02

γ10
γ01

γ50

γ54 γ53 γ52 γ51

σ
P
I
P

~ω
P

(N
0
−

N
5
)

Fig. 4. Simplified energy level diagram for Ho:YAG with five
resonant transitions in red and eleven radiative and non-ra-
diative relaxation transitions in blue (see [2, Fig. 1]). For re-
laxation transitions, double arrows indicate downward and
upward relaxation.

E1 to E4 where each level is populated by the associ-
ated population density N0 to N5. Each of the interme-
diate states is connected to the upper state by a resonant
transition that lies within the frequency spectrum of our
laser pulse while the resonant transition between the
ground and the upper state is used for pumping. Thus,
assuming homogeneously broadened line shapes, the po-
larization at every point z due to the resonant transition
j ↔ 5, j ∈ {1, . . . , 4} with the population densities Nj
and N5 is given by the resonant dipole equation [23]

∂2Pj
∂t2

+ ∆ωj
∂Pj
∂t

+ ω2
jPj = κj(Nj −N5)E , (7)

with the transition’s resonant frequency ωj , its spectral

width ∆ωj , κj =
ωjε0c0∆ωjσj

ω0
, and the transition cross

section σj . Applying the envelope representation to (7)
and using the SVEA yields

∂Pj
∂t

= −
ω2
j +iω0∆ωj−ω2

0

∆ωj + i2ω0
Pj+

κj
∆ωj + i2ω0

(Nj−N5)E .

(8)
The atomic polarization is then the sum of all four con-
tributions, i.e. Pat = P1 + P2 + P3 + P4. The time in
which the pulse is traveling through the gain medium is
significantly smaller than any dynamics of the pumping
or non-radiative relaxation processes. Therefore, both
can be neglected when describing the evolution of the
population densities. Since the total number of the pop-
ulation is given by the dopant density, i.e.

∑
Nj = N0 +N1 + . . .+N5 = Ntot, (9)

it is sufficient to describe the densities of five energy
levels. Thus, an energy conservation argument (see [23,
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Cha. 24]) gives the atomic rate equations

∂Nj
∂t

= +
1

2~
Im {E∗Pj} , j = 1, . . . , 4 (10a)

∂N5

∂t
= − 1

2~
Im {E∗(P1 + P2 + P3 + P4)} , (10b)

with the reduced Planck constant ~ and the complex
conjugate electric field intensity E∗.

Summing up the results, the propagation of the k-th
round trip in the ring cavity of the n-th pulse can be
described by (6), (8) and (10) together with the initial
and boundary conditions

E(0, t) = En,kin,RA(t), Pj(z, 0) = 0, (11)

E(z, 0) =
∂E

∂t
(z, 0) = 0, Nj(z, 0) = Nn,k

j,pulse(z),

where Nn,k
j,pulse(z) denotes the population density of the

j-th energy level at the location z at the time when the
n-th pulse enters the gain medium for the k-th cycle.
The amplified pulse is given by

En,kout,RA(t) = E(L, t) (12)

where L is the length of the gain medium. The depleted
population density after the pulse has passed is formally

given by Nn,k
j,dep(z) = limt→∞Nn,k

j (z, t). Since the to-
tal pulse width is finite in all practical applications, the
remaining population density is also attained in finite
time. The well-posedness and regularity of the bound-
ary value problem of the NLSE alone has been recently
studied in [5]. For more details on the well-posedness of
general Maxwell-Bloch equations, we refer the interested
reader to [16].

2.2.2 Interaction with pumping field (pump model)

During times where the light pulse is not present in the
gain medium, the dynamics of the regeneration process is
determined by the pumping laser and the redistribution
of population densities due to non-radiative and radia-
tive relaxation processes. Using the directed relaxation
probability γij from i to j and describing the pump-
ing field only in terms of its field intensity IP yields the
atomic rate equations

∂N1

∂t
=−(γ10+γ12)N1+γ21N2+γ51N5+γ01N0

∂N2

∂t
=γ12N1−(γ20+γ21+γ23)N2+γ32N3+γ52N5+γ02N0

∂N3

∂t
=γ23N2−(γ30+γ32+γ34)N3+γ43N4+γ53N5+γ03N0

∂N4

∂t
=γ34N3−(γ40 + γ43)N4+γ54N5+γ04N0 (13)

∂N5

∂t
=−(γ50+γ51+γ52+γ53+γ54)N5+

σPIP
~ωP

(N0−N5),

with the pumping field’s cross section σP and its angular
frequency ωP. The population of the ground stateN0 can
be eliminated by (9). Using the Frantz-Nodvik approach
[6][23, Cha. 10] for a continuous pumping process and
assuming a steady-state solution of the field intensity
results in

∂IP
∂z

= σP(N5 −N0)IP, (14)

with the initial and boundary conditions IP(0, t) = I0
andNj(z, 0) = Nn,k

j,pump(z) whereNn,k
j,pump(z) denotes the

population of the j-th level at the beginning of the k-th
cycle of the n-th pulse. The final regenerated population
density is given at the time it takes the pulse to com-

plete the round trip, i.e. Nn,k
j,reg(z) = Nj(tend, z) whereby

tend = (LRC−L)/c0, with the length of the ring cavityLRC.

2.2.3 Coupling of pulse and pump model

From a functional point of view, the pulse model is taking

the input pulse En,kin,RA(t) and the corresponding initial

population distributionNn,k
j,pulse(z) and computes an am-

plified pulse En,kout,RA(t) (that is assumed to be bounded

and of finite energy again) and a remaining population

distribution Nn,k
j,dep(z). The pump model on the other

hand is taking this remaining population distribution
(and the given incident pumping intensity I0) and inte-

grates the rate equation (13) to obtainNn,k
j,reg.Taking into

account the concentrated losses of the cavity according
to Fig. 2, the coupling conditions are given by

Nn,k
j,pump(z) = Nn,k

j,dep(z) (15a)

En,k+1
in,RA (t) = ηRCE

n,k
out,RA(t) (15b)

Nn,k+1
j,pulse(z) = Nn,k

j,reg(z). (15c)

Thus, the propagation of the n-th laser pulse can be de-
scribed by an alternating application of pulse and pump
model with the coupling conditions above until the out-
put pulse is finally given by

Enout,RC(t) = En,NRC

out,RC(t) (16)

and the remaining populations byNn
j,out(z)=Nn,NRC

j,dep (z).
During the following main regeneration phase until the
(n + 1)-st pulse arrives, one can simply integrate the
pump model for the remaining time

treg = 1/frep − 1/c0NRC [LRC + (c0−vg)/vgL] (17)

given by the repetition frequency frep, the number of
round trips NRC, the physical dimensions L and LRC,
and the group velocity vg to obtain the initial population

densities for the following pulse, i.e. Nn+1,1
j,pulse(z).
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2.2.4 Validity and properties of the CPA model

In order to establish the validity of the proposed CPA
model, we want to compare it to actual measurement
data from a Ho:YAG system given in [15]. Without go-
ing into the details of the parameter identification, ex-
tracting suitable parameters - especially for the relax-
ation probabilities γij - can be quite challenging. As
shown in Fig. 5, the amplifier gain of the CPA system
is adequately reproduced by the proposed mathemati-
cal model. Some resonant transitions other than the four
considered seem to play only a minor role. In particular
the gain for higher frequencies with wavelengths lower
then 2090 nm suggests that some levels above the upper
state E5 are populated (see [2]) and contribute slightly
to the overall gain. The effects of this additional gain
can be seen in Fig. 6: while the saturation behavior it-
self in terms of the output energy of Eout(t) is nicely re-
produced, a constant (multiplicative) error remains for
various numbers of cycles NRC in the ring cavity.

The proposed mathematical model for CPAs combines a
number of interesting and challenging properties: First of
all, the pulse propagation is governed by the antagonistic
effects of dispersion and self-steepening due to the NLSE
(6). CPA systems naturally exhibit a high-gain behavior

with a strongly inhomogeneous gain characteristic (see
Fig. 5) that is saturating due to the finite energy stored
in the upper energy state. Since the gain characteristic
involves several atomic transitions, this saturation effect
is acting in a spectrally inhomogeneous fashion. The re-
generation period is typically not sufficient to fully re-
cover the depleted population inversion. As a result, the
gain of the current pulse depends on the amount of en-
ergy extracted by the previous pulses. While this is the
root cause for the saturation behavior in Fig. 6, the re-
sulting inter-pulse coupling can be quite significant and
- depending on the chosen parameter values - lead to an
unstable or even chaotic behavior [4,10] of the CPA.

3 Control Strategy

Before starting with the control design itself, we restate
the control objective, which is to adapt the adjustable in-
put filterGnF(ω) such that a desired output pulse Edout(t)
is achieved. Since the filter is subject to the constraints
(4), one is only able to generate pulses that can be sus-
tained by the CPA system.

Due to the linearity of both stretcher and filter, one can
separate the spectral filter and place it in front of the
remaining system with the virtual input pulse Env,in(t).

Assuming that the input pulse Ein(t) is spectrally broad
enough, a suitable transfer function of the filter can be
easily written as

GnF(ω) =
Ênv,in(ω)

Êin(ω)
. (18)

The constraint of the spectral filter (4) thus results in
an admissible set of virtual input pulses given by

|Ênv,in(ω)| ≤ |Êin(ω)| (19)

for all ω ∈ R. This reformulates the control task as a
problem of iteratively adjusting Env,in(t) due to output
measurements.

Using ILC to determine suitable pulses Env,in(t) seems

natural in this reformulated setting. In [20], a PD-type
ILC law was used to apply pulse-shape control for a
single-pass laser amplifier described by a simple Frantz-
Nodvik model with uniform gain. Additionally, the ini-
tial population inversion is completely restored for each
pulse, i.e different pulses are not coupled and the system
behaves identical for each iteration. Even in this simpli-
fied scenario, PD-type ILC laws show a rather slow con-
vergence. Considering the extremely high and variable
amounts of gain exhibited by the more general CPA sys-
tem considered in this article, one would expect painfully
slow rates of convergence at best. In extensive simulation
scenarios we could not manage to find a convergent PD-
type law, which is mainly due to the dispersive effects of
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the NLSE. An inversion-based scheme seems more suit-
able for this particular task, but the complex nonlinear
and infinite-dimensional behavior of the system limits
the usability (as well as availability) of exact inversion
methods. However, the main nonlinearity affecting the
input-output behavior is introduced by the depletion of
the population distributions (due to (8) and (10)). Such
saturation effects are typically handled quite well by ILC
schemes, wherefore an approximate inversion-based ap-
proach by using a reduced, linear model seems tractable.

Remark 2 By applying ILC methods, we are tacitly ne-
glecting the coupling of subsequent pulses and limit our
focus solely on the pulse-shaping task while treating the
coupling as a minor variation of the system behavior.
This is fine for weakly coupled pulses where the CPA is op-
erated in a stable regime. In general, however, this anal-
ysis falls short of capturing the full picture and a more
elaborated approach is deemed necessary.

3.1 Reduced linear input-output behavior

The main idea to obtain a simplified input-output behav-
ior is to neglect the complex population dynamics and
calculate the pulse evolution by an approximate linear
model. Equivalently, one can linearize the pulse evolu-
tion model (6) and (8) around E(z, t) = Pj(z, t) = 0 and
a stationary solution N0

j (z) of the pump model (13) and
(14). Henceforth, we make the following assumptions:

Assumption 1 The influence of the nonlinear polariza-
tion due to the Kerr effect (i.e., the term proportional to
|E|2E in (6)) can be neglected.

This assumption is typically fulfilled since CPA systems
use the stretcher/compressor arrangement to avoid the
intensity regime where strong Kerr effects take place.

Assumption 2 The population densities remain at the
stationary, unsaturated level N0

j (z) for all NRC cycles
and all pulses.

As long as the overall pulse energy inside the cavity
remains comparatively low (below 100 µJ for the given
system), the amplifier is not saturating and the steady-
state population remains close to its stationary level, i.e.
N ss
j (z) ≈ N0

j (z). This is clearly not the case for opera-
tion scenarios with high energy pulses close to the capa-
bilities of the CPA system. As a consequence, Assump-
tion 2 will be relaxed in Section 3.3 using an adaptive
design.

Remark 3 Note the difference between stationary (un-
saturated) populations as stationary solutions to (14),
i.e. when there is no depletion due to amplified pulses,
and steady-state populations, i.e. the depleted population
density for a fixed input pulse Ev,in where the population

loss due to the amplification process is exactly compen-
sated by the regeneration process.

Utilizing both assumptions, one ends up with a simpli-
fied linear pulse model

i
∂E

∂z
= −k2

2

∂2E

∂t2
+

ω2
0

2c20ε0k0
(P1 + P2 + P3 + P4)

(20a)

∂Pj
∂t

= −
ω2
j + iω0∆ωj − ω2

0

∆ωj + i2ω0
Pj −

κj
∆ωj + i2ω0

∆N0
5jE,

(20b)

where ∆N0
5j = N0

5 −N0
j is given by the stationary solu-

tion of (13), (14) and (9), which can be written in vector
notation as

0 = Γ1(IP(z))N0(z) + Γ2(IP(z))Ntot (21a)

∂IP(z)

∂z
= σP

([
1 1 1 1 2

]
N0(z)−Ntot

)
IP(z), (21b)

where N0(z) = [N0
1 (z), . . . , N0

5 (z)]T. Applying the
Fourier-transform to (20b) yields the spectral descrip-
tion of the susceptibility of the j-th transition

P̂j(z, ω) =
−κj(N0

5 (z)−N0
j (z))

iω(∆ωj + 2iω0) + ω2
j + iω0∆ωj − ω2

0

Ê(z, ω)

= χj(ω; ∆N0
5j(z)) Ê(z, ω). (22)

With (22), the remaining equation (20a) can be
solved analytically using (11) and (12) which gives

the transfer function of a single pass Ên,kout,RA(ω) =

Gsp(ω; ∆N0)Ên,kin,RA(ω) where

Gsp

(
ω; ∆N0

)
=exp

[
−i
∫ L

0

k2

2
ω2dz

]

×exp

[
−i
∫ L

0

ω2
0

2c20ε0k0

∑4

j=1
χj
(
ω; ∆N0

5j(z)
)

dz

]
(23)

=exp

[
−iL

(
k2

2
ω2 +

ω2
0

2c20ε0k0

∑4

j=1
χj

(
ω; ∆N0

5j

))]
,

with ∆N0 =
[
∆N0

51, . . . ,∆N
0
54

]T
. Using (3), (15), (16),

and (18) finally yields the overall transfer function of the
reduced linear model

Ênout(ω) = ηSηCη
NRC−1
RC Gsp

(
ω; ∆N0

)NRC

Ênv,in(ω)

= G
(
ω; ∆N0

)
Ênv,in(ω), (24)

where the mean population inversion ∆N0 is a finite-
dimensional parameter vector defining the overall gain
of the CPA system - a fact that will be used later on.

7

Post-print version of the article: A. Deutschmann, P. Malevich, A. Baltuska, and A. Kugi, �Modeling and iterative pulse-shape control of

optical chirped pulse ampli�ers�, Automatica, vol. 98, pp. 150�158, 2018, issn: 0005-1098. doi: 10.1016/j.automatica.2018.09.002

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

http://dx.doi.org/10.1016/j.automatica.2018.09.002


3.2 Inversion-based ILC

We now want to track a desired output pulse Ed
out(t) ∈

L2(−∞,∞) ∩ L∞(−∞,∞) by means of the virtual in-
put Env,in(t), using the reduced input-output behavior
derived in the previous section, while being subject to
the input constraints (19). The handling of input con-
straints can be done easily by projecting onto the set of
feasible input signals (see, e.g., [8]). Thus, we consider a
general learning law in the frequency domain

Ên+1
v,in (ω) = T

[
Ênv,in(ω) + Ln(ω)

(
Êd

out(ω)− Ênout(ω)
)]

(25)
with the n-th linear learning operator Ln and the non-
linear truncation operator T given by

T
(
Ê(ω)

)
=

{
Ê(ω) if |Ê| ≤ |Êin|
|Êin(ω)| exp

(
i arg Ê(ω)

)
else.

(26)
To obtain a suitable learning operator, a (regularized)
inversion on an infinite time-horizon as shown in [7]
could be applied. Using a frequency domain approach,
the infinite-dimensional character of the reduced system
does not cause any problems. However, due to the spec-
trally narrow high gain nature of the system, inversion-
based learning laws yield particularly high learning gains
in spectral regions where no signal is present and learn-
ing should be avoided. In view of unmodeled dynamics
and in particular the neglected influence of the Kerr ef-
fect due to Assumption 1, it is inevitable to limit learn-
ing to those spectral regions where the input signal is
expected to be strong. Adding additional spectral shap-
ing to an inversion-based approach, the simple iteration-
invariant learning operator is given as

Ln(ω) = L(ω) =
1

G(ω; ∆N0)

|Êd
out(ω)|2

N + |Êd
out(ω)|2

, (27)

with the shaping parameter N ≥ 0 that separates spec-
tral ranges where learning is desirable from those where
learning should be avoided relative to |Êd

out(ω)|2. Since
programmable spectral filters are usually specified in the
frequency domain, the ILC law can be implemented di-
rectly as given in (25) together with (18).

3.3 Adaptive inversion-based ILC

The inversion-based learning operator presented above
suffers from two distinct problems: First, it uses the sta-
tionary mean population inversion ∆N0 due to Assump-
tion 2 and therefore considerably overestimates the gain
exhibited by the CPA system for high energy pulses.
While this reduces the speed of convergence significantly,
it can also impair the stability of the learning law, al-
though simulation studies suggest that this is only the

case for heavily saturating scenarios. Second, it requires
an accurate and validated model of the CPA system, in
particular of the gain medium, in order to obtain a good
learning gain. However, as part of the ILC strategy we
do know corresponding input and output measurements
which can be used to adaptively estimate the CPAs cur-
rent state. Thus, we relax Assumption 2 by replacing it
with

Assumption 3 The drop of the population densities
during a single pass of the laser pulse can be neglected
for the pulse propagation.

Using this assumption, one is still able to describe the
pulse evolution by the single pass gain function given
in (23) with some initial mean population inversion

denoted by ∆N1. For the following pass, the same
relation will hold, but with some unknown depleted
mean population inversion ∆N2. Proceeding this way,
one ends up with a total gain similar to (24) given by

G̃
(
ω; ∆N1, . . . ,∆NNRC

)
= η

∏NRC

k=1 Gsp

(
ω; ∆Nk

)
with

the unknown mean population inversions ∆Nk where
k = 1, . . . , NRC and η = ηSηCη

NRC−1
RC . Using the defini-

tion of χj in (22) one can rewrite the equation above as

G̃
(
ω; ∆N1, . . . ,∆NNRC

)
= G

(
ω; ∆N

)
(28)

where

∆N =
1

NRC

∑NRC

k=1
∆Nk (29)

denotes the averaged mean population inversions over
the number of round trips NRC. This shows that one
can still use the reduced linear model derived in Sec-
tion 3.1 when Assumption 2 is violated by replac-
ing the stationary, unsaturated population inversions

∆N0 with averaged mean population inversions ∆N
as long as Assumption 3 remains valid. This way, one
effectively parametrizes the total transfer function
of the reduced model by a finite set of parameters

∆N =
[
∆N51, . . . ,∆N54

]T
equal to the number of reso-

nant (lasing) transitions of the gain medium, i.e. in the
case of Ho:YAG by four parameters. Thus, the CPA’s
transfer function for the n-th pulse can be estimated
using the optimization problem

∆Nn
opt = min

∆N
Jn(∆N), (30)

with the objective function Jn(∆N) = ‖Ênout(·) −
G( · ; ∆N)Ênv,in(·)‖2 to find a suitable mean popula-

tion inversion ∆Nn
opt such that G(ω; ∆Nn

opt) optimally
reproduces the measured input-output behavior. The
adaptive learning operator, see (27), is then given by

Ln(ω) =
1

G(ω; ∆Nn
opt)

|Êd
out(ω)|2

N + |Êd
out(ω)|2

. (31)

8

Post-print version of the article: A. Deutschmann, P. Malevich, A. Baltuska, and A. Kugi, �Modeling and iterative pulse-shape control of

optical chirped pulse ampli�ers�, Automatica, vol. 98, pp. 150�158, 2018, issn: 0005-1098. doi: 10.1016/j.automatica.2018.09.002

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

http://dx.doi.org/10.1016/j.automatica.2018.09.002


5 10 15 20

10−6

10−4

10−2

100

pulse number n

W
n e
rr

in
m
J

100 µJ 1mJ 3mJ

Fig. 7. Evolution of the error energy Wn
err for adaptive (solid

line) and non-adaptive (dashed line) ILC strategies for a laser
pulse with 100 µJ, 1 mJ and 3 mJ, respectively. For the 3 mJ
pulse, the non-adaptive ILC strategy diverges eventually.

Since the pulse energy is equivalent to the squared L2-
norm, it is convenient to use the output error energy

Wn
err = AB/2Z0

∥∥Ed
out − Enout

∥∥2

2
to illustrate the conver-

gence behavior. In Fig. 7, the difference in convergence
speed is shown for laser pulses with a total energy of
100 µJ, 1 mJ and 3 mJ, respectively. The initial popula-
tion is chosen as a solution to (21), i.e. the CPA is fully
pumped. The 100 µJ pulse is too weak to significantly de-
plete the population levels, wherefore the adaptive and
the non-adaptive ILC strategy converge at roughly the
same rate. The 1 mJ pulse produces some saturation ef-
fects but still both ILC strategies converge to the desired
pulse, although with a significant difference in conver-
gence speed. For the heavily saturating 3 mJ pulse, the
non-adaptive ILC strategy accumulates phase errors due
to the increasingly erroneous reduced model and even-
tually diverges. The adaptive ILC strategy on the other
hand is producing the desired pulse perfectly.

The presented approach is a fast and simple way to con-
sistently estimate the observed transfer function based
on unknown population densities. Since the values of κj
in (8) are rarely known, this approach is ultimately able
to estimate the combined quantity κj∆N5j . Moreover,
it is easy to extend the optimization problem (30) such
that it includes the unknown quantities ωj and ∆ωj and

possibly an overall scaling factor η = ηSηCη
NRC−1
RC . Thus,

the proposed algorithm is able to handle arbitrary gain
media without the burden of identifying the complex
system dynamics. Only a given number of resonant las-
ing transitions is required which can be easily obtained
from suitable measurements.

4 Simulation results for the experimentally val-
idated model

To demonstrate the presented algorithm, we apply the
adaptive ILC scheme (25), (26), (31) and (30) to the ex-
perimentally validated mathematical model derived in
Section 2. As explained in Section 2.1, stretcher and com-

pressor where chosen such that they compensate each
other perfectly. As a result, the spectral filter GnF(ω) has
to compensate the quadratic phase due to the disper-
sion introduced by the NLSE (6). In practice, quadratic
and cubic phase components are usually handled by ad-
justing the stretcher’s phase coefficients ϕS,2 and ϕS,3

instead of using the spectral filter GnF(ω). To visualize
the fine details of the input filter’s phase shift, we elimi-
nated the quadratic and cubic phase components in the
following plots for illustration purposes. The initial pop-
ulation densities before the first pulse enters the CPA
system are assumed to be fully pumped and thus can
be obtained by solving (21). Finally, the CPA system is
seeded by (measured) 29.4 nJ pulses at a repetition rate
of frep = 1 kHz and the pulse stays inside the resonator
for NRC = 23 cycles.

The first simulation example shown in Fig. 8 considers a
desired 3 mJ Gaussian pulse using a pumping source with
35 W (i.e., a pumping intensity I0 of 6.96× 107 W m−2).
As the population inversion is depleting due to the ex-
tracted energy, the input energy is increased until the
input filter is limited by the constraints (4). As a result,
the desired pulse shape cannot be exactly reached and
the output error settles at a finite level. To exactly ob-
tain the desired 3 mJ pulse, one would need to increase
the pumping power. As mentioned above, the presented
method is able to produce arbitrarily shaped pulses as
long as the desired pulse is within the capabilities of both
amplifier and input filter. Fig. 9 shows the learned in-
put filter to obtain a superposition of three pulses with
a total energy of 1.5 mJ.

5 Conclusions and Outlook

In this paper, we presented an adaptive strategy to pro-
duce desired pulses with optical chirped pulse amplifiers.
The detailed nonlinear and infinite-dimensional model
derived and validated in Section 2 was reduced such that
its input-output behavior can be described by a trans-
fer function that is characterized by the mean popula-
tion densities of the gain medium. Introducing averaged
mean population densities, one is able to consistently es-
timate the current state of the amplifier by solving an op-
timization problem. The benefit of this approach is that
it can easily estimate not only the population densities
but also all unknown parameters essential for the input-
output behavior. This estimated transfer function can
then be used to apply an inversion-based ILC scheme.
Thus, one obtains an adaptive algorithm to track desired
output pulses, which is structurally simple, fast and does
not rely on parameters that are hard to identify. Apart
from physical constants and quantities easily measur-
able, one only needs to specify the number of resonant
transitions.

As CPAs exhibit a very complex and challenging sys-
tem dynamics, the presented approach can only be con-
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Fig. 8. Convergence behavior of a 3 mJ pulse at 35 W pumping power using N = 10−9.
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Fig. 9. Input filter G50
F (λ) and the resulting output pulse E50

out(t) for a desired superposition of three pulses using N = 10−8.

sidered a first step and there are several open questions
for future research. For example, the proposed approach
is correcting the reduced model’s errors due to neglect-
ing the population depletion by using an adaptive ILC
algorithm, existing model knowledge could be used to
implement a type of observer-based scheme to predict
effects of the population dynamics. Additionally, a rig-
orous stability analysis including the coupling of subse-
quent pulses is clearly desirable and could be used to
include feedback stabilization of otherwise unstable op-
erational regimes.
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