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Abstract: The performance of regenerative amplifiers at high repetition rates is
often limited by the occurrence of bifurcations induced by a destabilization of the
pulse-to-pulse dynamics. While bifurcations can be suppressed by increasing the seed
energy using dedicated pre-amplifiers, the availability of adjustable filters and control
electronics in modern pulse amplifiers allows to exploit feedback strategies to cope
with these instabilities. In this paper, we present a theoretical and experimental
analysis of active feedback methods to stabilize otherwise unstable operational regimes
of regenerative amplifiers. To this end, the dynamics of regenerative amplifiers are
investigated starting from a general space-dependent description to obtain a generalization
of existing models from the literature. Suitable feedback strategies are then developed
utilizing measurements of the output pulse energies or the transmitted pump light,
respectively. The effectiveness of the proposed approach is highlighted by experimental
results for a Yb:CaF2-based regenerative amplifier.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction
Regenerative amplifiers (RAs) are a widely used tool for the generation of high-intensity
laser pulses. Combined with chirped pulse amplification techniques to reduce the B-
integral and avoid amplifier optical damage, RAs are used to create ultra-fast high
energy pulses with a wide range of potential applications such as strong field physics
[1], coherent control [2], and ablation-based material processing [3] including various
medical applications. Although high repetition rates are considered beneficial for several
applications [4], RAs are known to become unstable quite easily for a range of repetition
rates around the inverse life time of the laser medium’s upper lasing energy level [5].
When operated within the unstable region, the sequence of output pulses either converges
to a periodic orbit whereby the limit set exhibits so-called period-doubling bifurcations
or remains aperiodic in the case of deterministic chaos. While it is always possible to find
stable operating points at a desired repetition rate, the operating points with highest
power output and highest energy efficiency are typically located in the vicinity of the
unstable region.
As a result, this topic has been of significant scientific interest since the first ex-

perimental results were documented in [6]. A numerical study using a simple rate
equation model in [4] highlights the coupling mechanism of subsequent pulses that
leads to period-doubling bifurcations and ultimately deterministic chaos. By using
analytic solutions of the rate equation model under quite restrictive assumptions, a
detailed parameter study of the underlying problem in [7] and [8] finally shows that the
bifurcations can be suppressed by increasing the seed energy. Although this requires
a dedicated pre-amplifier, it has become the standard approach today. Recently, there

Pre-print version of the article: A. Deutschmann, T. Flöry, K. Schrom, V. Stummer, A. Baltuška, and A. Kugi, “Bifurcation suppression
in regenerative amplifiers by active feedback methods”, Optics Express, vol. 27, no. 26, 2019. doi: 10.1364/OE.380404
The content of this pre-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1364/OE.380404


gain
medium

PC
Iseed(t) Inin(t) In,k

in
(t) In,k

out(t) Inout(t)

k = 1, . . . , NRT round-trips

ηRC

ηn

AOM ηout

Fig. 1. Schematic overview of a RA with adjustable input loss factor ηnAOM.

have been attempts to avoid the bifurcation regime by saturating the gain medium and
thus operating the amplifier beyond the unstable region [9]. Since this may result in
extremely high transient pulse energies, it requires a careful design of the RA to avoid
pulses above the damage threshold of the optics in the cavity. Alternatively, operation
at a specifically chosen limit cycle and picking the desired pulses from the amplified
pulse train afterwards is suggested in [10].

By increasing the seed energy in a saturating amplifier as proposed in [8], one effectively
reduces the total gain, which is clearly beneficial for the amplifier’s stability properties
as it is also known from electronic amplifiers. However, circuit engineers developed
another highly successful and far-reaching strategy to cope with emerging instabilities
in high-gain amplifiers: feedback. In fact, [4] already points to the possibility of active
stabilization techniques. Since many amplifiers already utilize controllable input filters
to compensate for effects such as gain narrowing or nonlinear phase distortions [11–15], it
seems natural to investigate strategies to stabilize the amplifier’s dynamics by modulating
the energy of the seed pulses. While simple feedback schemes are commonly employed in
CW lasers or Q-switched lasers to statically compensate for external disturbances, the
authors are not aware of any applications of feedback to actively modify the dynamics
of RAs.
In this paper, we present active feedback methods to stabilize otherwise unstable

operational regimes of RAs and thus suppress bifurcations of the uncontrolled amplifier.
To this end, we will start with a general space-dependent mathematical model of
regenerative amplifiers and show that a detailed description of the amplifier’s pulse-
to-pulse dynamics for different levels of (continuous) pumping can be systematically
derived based on mild assumptions only. The resulting discrete-time dynamic model
can be considered a generalization of the model used in [7]. Using this description, two
feedback approaches will be developed that utilize measurements of the output pulse
energy or the residual pumping beam, respectively. Finally, the validity of the proposed
feedback strategy is highlighted by experimental results.

2. Dynamics of regenerative amplifiers
In case the spectral properties of the pulse amplification process can be neglected, instead
of using the rather complex Maxwell-Bloch equations, the laser light is usually treated as
a transport process of monochromatic photons conveying no additional phase information
described by the intensity I known as Frantz-Nodvik model [16]. For simplicity, we will
focus on the case of a RA using a ring cavity design as shown in Fig. 1, although the
proposed approach can be directly transferred to linear cavities. Thus, identical seed
pulses Iseed(t) from a source with repetition rate frep pass some kind of modulation
device that allows to adjust the amount of additional spectrally homogeneous damping for
each individual seed pulse. Using an acousto-optic modulator (AOM) with an adjustable
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loss factor ηnAOM, the resulting input pulse Inin(t) is given by

Inin(t) = ηnAOMIseed(t). (1)

It is assumed that further injection losses are already included in Iseed(t) and thus
0 ≤ ηnAOM ≤ 1. The resulting pulse Inin(t) is then injected into the resonator cavity
with concentrated losses ηRC, whereby the k-th round-trip of the n-th input and output
pulse is denoted by In,kin (t) and In,kout (t), respectively. The final amplified pulse after NRT
round-trips is then released by switching the Pockel’s cell (PC) and all losses due to the
pulse extraction are again subsumed in ηout, i.e.,

Inout(t) = ηoutI
n,NRT
out (t). (2)

To describe the amplification and regeneration process, we assume that the gain
medium is operated in a so-called end-pumped configuration, i.e. that the continuous
pumping beam is fed through the crystal axially aligned with the laser beam and
in the same direction of propagation. Additionally, we assume that the transversal
intensity profile of the pulses and the pumping beam is homogeneous over a diameter
d and zero outside. Aligning the propagation direction with the z-axis and assuming
a homogeneously broadened quasi-three-level medium with the population inversion
∆N = N2 −N1 of the lasing transition, the interaction of the pulse I and the pumping
beam IP during each round trip can be described by [17]

∂I

∂t
+ v

∂I

∂z
= σv(f1 + f2)∆N I (3a)

∂IP
∂t
+ vP

∂IP
∂z
= −σPvP

(f0f2 − f3f1)Ndop − (f0 + f3)∆N
f1 + f2

IP (3b)

∂∆N

∂t
= −γ21f2(f1Ndop + ∆N ) − σI

~ω
(f1 + f2)∆N (3c)

+
σPIP
~ωP

(
(f0f2 − f3f1)Ndop − (f0 + f3)∆N

)
,

with the relative occupancy factors fi of the i-th energy level, the remaining relaxation
rate of excited populations γ21, the density of the dopant Ndop and the associated group
velocities v, vP, the transition cross-sections σ, σP and the angular frequencies ω, ωP,
respectively. Note that the simpler results for the case of a four-level material can be
retrieved by setting f0 = f2 = 1 and f1 = f3 = 0.

2.1. Amplification during a single pass
For a single pass of the laser pulse through the laser material, the influence of the
comparatively weak pumping beam and the relaxation of the excited populations via γ21
can be neglected due to the extremely short time scales. Applying these assumptions
to (3) and transforming the equations onto a time frame t 7→ t− z/v travelling with the
pulse, one obtains

∂I

∂z
= σ(f1 + f2)∆N I (4a)

∂∆N

∂t
= −σI

~ω
(f1 + f2)∆N, (4b)

with a generic input pulse at the left boundary I (0, t) = Iin(t) and the initial density of
the population inversion ∆N (z, 0) = ∆Nin(z). The desired output pulse at the opposite
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boundary z = L is given by Iout(t) = I (L, t) where L denotes the length of the laser
medium. The remaining population inversion after the pulse has completely passed
through the laser medium is denoted by ∆Nout(z). By introducing the time-varying gain
G(t) and the normalized fluence H (t)

G(t) = exp
(
σ(f1 + f2)

∫ L

0
∆N (z, t)dz

)
(5a)

Hin/out(t) =
σ(f1 + f2)

~ω

∫ t

0
Iin/out(ξ)dξ, (5b)

equation (4) can be solved analytically [16,17] to obtain the simple results

ln
(

1− 1
G(0)

1− 1
G(t)

)
= Hin(t) and ln

(
G(0) − 1
G(t) − 1

)
= Hout(t). (6)

Using the remaining gain Gout after the pulse has passed and the total normalized
fluence of the input and output pulses Hin/out, these relations can be written as

Gout = fdep(Gin, Hin) =
Gin

Gin − (Gin − 1) exp (−Hin)
(7a)

Hout = fgain(Gin, Hin) = ln [Gin exp(Hin) −Gin + 1] (7b)

linking the initial gain Gin = G(0) = exp
(
σ(f1 + f2)

∫ L
0 ∆Nin(z)dz

)
and the total input

fluence Hin with the remaining gain Gout and the corresponding total fluence Hout of
the amplified pulse.

2.2. Gain restoration due to pumping
Now that a simple expression for the pulse amplification and the resulting saturation of
the available gain has been found, a compatible description of the gain restoration due
to the pumping process of duration ∆t = 1/frep shall be derived. Since no laser pulse is
present during the regeneration periods (i.e., I (z, t) = 0), the full set of equations (3)
can be rewritten as

1
vP

∂IP
∂t
= −∂IP

∂z
− σP

(f0f2 − f3f1)Ndop − (f0 + f3)∆N
f1 + f2

IP (8a)

∂∆N

∂t
= −γ21f2(f1Ndop + ∆N ) +

σPIP
~ωP

(
(f0f2 − f3f1)Ndop − (f0 + f3)∆N

)
, (8b)

with the initial condition ∆N (z, 0) = ∆Nin(z) using some arbitrary initial population
inversion ∆Nin(z) and the boundary condition IP(0, t) = I0(t). Here, I0(t) denotes the
intensity of the pumping beam that is linked to the optical pump power Ppump(t) by
I0(t) = Ppump (t)

AB
with the beam’s cross sectional area AB . Additionally, the transport

equation (8a) would require an initial condition for the intensity distribution IP(z, 0).
Since the pump power Ppump(t) and thus I0(t) varies slowly compared to the group ve-
locity vP, i.e., 1

I0 (t)
∂I0 (t)
∂t �

vP
L , the transport equation (8a) can be considered stationary

as any perturbation to its steady state propagates through the laser rod extremely fast.
Thus, applying singular perturbation theory (i.e., vP →∞), one obtains

∂IP
∂z
= −σP

(f0f2 − f3f1)Ndop − (f0 + f3)∆N
f1 + f2

IP (9a)

∂∆N

∂t
= −γ21f2(f1Ndop + ∆N ) +

σPIP
~ωP

(
(f0f2 − f3f1)Ndop − (f0 + f3)∆N

)
. (9b)

Pre-print version of the article: A. Deutschmann, T. Flöry, K. Schrom, V. Stummer, A. Baltuška, and A. Kugi, “Bifurcation suppression
in regenerative amplifiers by active feedback methods”, Optics Express, vol. 27, no. 26, 2019. doi: 10.1364/OE.380404
The content of this pre-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1364/OE.380404


Proceeding as in the previous section by solving (9) and reformulating the result in terms
of G(t) according to (5a) using κ1 =

f0f2−f1f3
f1+f2

and κ2 =
f0+f3
f1+f2

yields

d
dtG(t) =− γ21f2 [σf1(f1 + f2)NdopL + ln(G(t))]G(t) (10)

+ σ
Ppump(t)
AB

(f1 + f2)2

~ωP

[
1− exp

(
−σP(κ1NdopL)

)
G(t)

κ2σP
(f1+f2 )σ

]
G(t),

with the initial condition G(0) = exp
(
σ(f1 + f2)

∫ L
0 ∆Nin(z)dz

)
= Gin. Thus, the gain

after the regeneration period is given by Gout = G(∆t). For convenience, we introduce
the nomenclature

Gout = fpump(Gin, Ppump(t)) (11)

analogous to the previous section to describe the connection between Gin and Gout as a
solution to (10) for a given Ppump(t).

2.3. Discrete-time dynamical model
Using the solution of a single pass through the laser medium according to (7) and
considering the losses in the cavity, one can write the effect of a single round-trip
according to Fig. 1 as


G

n,k+1

Hn,k+1
in


 =


 fdep(Gn,k, Hn,k

in )

ηRCfgain(Gn,k, Hn,k
in )


 = fSP




G

n,k

Hn,k
in




 , (12)

whereby Gn,k denotes the gain before the n-th pulse passes the laser medium for the
k-th time. Therefore, the effect of NRT successive round-trips is given by the iterated
function fMP = f (NRT)

SP = fSP ◦ . . . ◦ fSP. Since the pump power is usually changing slowly
compared to the repetition rate of the pulse source, it can be assumed that the pump
power remains approximately constant for the time between two consecutive pulses, i.e.,
Ppump(t) ≈ pn for t ∈ [tn, tn+1) with tn+1 = tn + ∆t. As a result, the initial gain of the
(n + 1)-st pulse is given by

Gn+1,1 = fpump



[
1 0

]
fMP




G

n,1

Hn
in




 , pn


 . (13)

Choosing the input variable un = Hn
in, the output variable yn = Hn

out and the state
variable xn = Gn,1, the pulse-to-pulse dynamics of the RA can be written as a nonlinear
discrete-time dynamic system

xn+1 = fpump



[
1 0

]
fMP




x

n

un




 , pn


 = f (xn, un, pn) (14a)

yn =
ηout
ηRC

[
0 1

]
fMP




x

n

un




 = h(xn, un), (14b)

with the dynamic map f and the output map h. The corresponding initial condition x0

is given by the initial population inversion ∆N0(z) according to (5a). By integration of
(1), the input variable can be expressed as a function of the adjustable loss of the AOM
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as un = ηnAOMHseed. Since 0 ≤ ηnAOM ≤ 1, it follows that the system is subject to the
input constraint

0 ≤ un ≤ u, (15)
with u = Hseed. As a result, the pulse-to-pulse dynamics of RAs governed by the quite
general space-dependent model of the gain medium (3) can still be captured by a simple
scalar discrete-time dynamic system analogous to [7].

Apart from short transient operations during start-up or when switching to a different
operating point, RAs are mainly run in steady-state operation. For a given constant
input us and a stationary pump power ps, the resulting steady state xs is given by the
nonlinear equation

xs = f (xs, us, ps), (16)
with the corresponding steady-state output

ys = h(xs, us). (17)

Because of the one-dimensional state variable, the solution of the fixed-point equation
(16) as well as the dynamics of the RA can be illustrated graphically as shown in Fig. 2
for different pump powers and round-trip numbers using the parameter values given
in Table 1 and a 10 nJ seed pulse. As one would expect, the qualitative behavior of

Table 1. Parameter values for the simulation scenarios.
Symbol Value Unit Symbol Value Unit

λ 1030 × 10−9 m λP 980 × 10−9 m
AB 50.27 × 10−6 m2 γ21 416.66 s−1

σ 8.0 × 10−25 m2 σP 9.0 × 10−25 m2

f0 0.9736 1 f1 0.0264 1
f2 0.9217 1 f3 0.0783 1
Ndop 3.8 × 1026 m−3 L 6 × 10−3 m
Wseed 10 × 10−9 J ηRC 0.8 1
ηout 0.9 1 frep 1 × 103 Hz

the dynamic map f is similar to the simpler model with neglected cavity losses in [7].
However, the neglected cavity losses influence the observed dynamics quite significantly
for high values of x and are particularly relevant for the output map h, where the energy
of the output pulses starts to decrease for high values of x as the net gain during the last
round-trips in a highly saturated gain medium becomes less than one. As we will see in
Section 3, this entails limitations on the control strategy. As noted above, the maxima
of the steady-state output power P sout = ~ωAB

σ(f1+f2) frepy
s and the steady-state efficiency

ηeff = P sout/Ppump are usually inside or at the border of the unstable region, i.e., all xs
with |∂f∂x (xs, us)| ≥ 1, as illustrated in Fig. 3.

3. Feedback stabilization of unstable operating regions
Building on the derived model above, we want to stabilize the dynamics of the RA by
modulating the seed pulses based on some measured quantity of the amplifier. While
using measurements of the output pulses yn is probably the most obvious quantity, a
simpler alternative is to use the transmitted pump light instead.

Since the pump power is usually not changed dynamically, but only adjusted to reach
a desired operating point, we will utilize a so-called gain scheduling approach [18] in the
following. Thereby, one determines a family of feedback laws for an arbitrary pump power
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Fig. 2. Graphical illustration of the fixed-point equation (16) to obtain the steady
state xs (top) and the corresponding output equation for a given steady-state input
us (bottom) for different stationary pump powers ps and numbers of round-trips
NRT. On the left: Variable pump power ps ∈ {0 W, 12.5 W, 25 W . . . , 75 W} and
NRT = 25. On the right: Variable round-trips NRT ∈ {15, 20, 25, 30, 40, 50, 60}
and ps = 25 W. The common case NRT = 25 and ps = 25 W is highlighted in
green.
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ps and switches between them during operation according to the current pump power.
To simplify the design of a suitable feedback law, we linearize the system dynamics in
the vicinity of an arbitrary operating point (xs(ps), us), which is a solution of (16), to
obtain a family of linear systems

∆xn+1 = Φ(ps) ∆xn + Γ(ps) ∆un (18a)
∆yn = C(ps) ∆xn +D(ps) ∆un, (18b)

with ∆un = un − us, ∆xn = xn − xs(ps), and ∆yn = yn − ys(ps) as well as

Φ(p) =
∂f

∂x
(xs(p), us, p), Γ(p) =

∂f

∂u
(xs(p), us, p), (19a)

C(p) =
∂h

∂x
(xs(p), us), D(p) =

∂h

∂u
(xs(p), us), (19b)

according to the Appendix. The choice of the steady-state input us is only restricted
by the input constraint (15). While values close to us = u/2 allow large control signals,
lower input energies destabilize the natural behavior of the RA which is why steady-state
inputs in the upper half of the possible range are typically preferred.

3.1. Feedback stabilization using pump light measurements
Like incoming laser pulses are amplified due to the population inversion in the laser
medium, so is the light of the pumping beam absorbed. As a result, one can see
fluctuations in the transmitted pump light due to the extraction and regeneration of the
population inversion. Solving (9a) by separation of variables yields

IP(L, t)
I0

=

[
G(t)
Gmax

] σP (f0+f3 )
σ(f1+f2 )2

, (20)

with G(t) according to (5a) and Gmax = exp
(
σ(f1 + f2) κ1

κ2
LNdop

)
denoting the gain at

which the medium is transparent to the pumping beam. Since the state xn is defined as
the gain at time tn just before the first round-trip of a pulse, one obtains

xn = Gmax

[
IP(L, tn)

I0

] σ(f1+f2 )2
σP (f0+f3 )

. (21)

Thus, by measuring the transmitted light IP(L, tn) we can directly infer the value of
the system’s state xn. Together with the linearized behavior (18), the measured state
according to (21) can then be used to design a state feedback law (see, e.g., [19])

un = g(xn, pn) = us + ς
(
kFB(pn)(xn − xs(pn))

)
, (22)

with the feedback gain kFB(pn) and a strictly monotonous sigmoid function ς with
ς (0) = 0 and dς

du (0) = 1 to respect the input constraints (15). For example, when
choosing us = u/2 for a maximum of control headroom, i.e., setting the AOM at a
steady-state level of ηsAOM = 1/2, one can use

ς (ξ) = (1− ε)us tanh
(

ξ

(1− ε)us

)
(23)

to obtain a smooth feedback law (22) where ε serves as a parameter to adjust the
(relative) clearance towards both input constraints. Inserting the feedback law (22)
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Fig. 4. Stabilization of a RA for two operating points. On the left: the closed-loop
dynamics fCL(x, p) (solid) and its derivative ∂fCL

∂x (x, p) (dashed) compared to the
uncontrolled case. The shaded areas indicate regions where

∣∣∣∂fCL
∂x (x, p)

∣∣∣ ≥ 1. On

the right: the resulting sequence of output pulses Wn
out for x0 ≈ xs.

into the dynamic system (14), one obtains the dynamics of the closed-loop system
fCL(xn, pn) = f (xn, g(xn, pn), pn). Choosing the feedback gain as

kFB(p) =
Φdes(p) − Φ(p)

Γ(p)
, (24)

the resulting linearized dynamics of the closed-loop system yields ∆xn+1 = Φdes(pn)∆xn.
Thus, the RA under feedback control is locally asymptotically stable at each operating
point if |Φdes(p)| is chosen smaller than one. As one can see in Fig. 4, the feedback law
(22) locally modifies the dynamics of the RA such that the operating point due to the
chosen pump power p is asymptotically stable (left-hand side). This is confirmed by
numerical simulations using the full mathematical model (3) (right-hand side) illustrating
the temporal evolution of the output pulse’s energy Wn

out =
~AB

σ(f1+f2) y
n for an initial state

x0 close to the steady state xs. Since the primary objective is to stabilize the RA, one
only wants to change its natural dynamics if necessary, i.e., when |Φ(p)| ≥ 1. Including
some safety margin, we choose

Φdes(p) =

{
Φ(p) if Φ(p) > −0.9
−0.9 otherwise.

(25)

A simulation scenario for the given feedback law will be presented in Section 3.3.
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3.2. Feedback stabilization using output energy measurements
While approaching the stabilization task by measuring the transmitted pump light
is a simple and elegant method, such measurements are not always available, as for
broadband pumping sources such as flash lamps or arc lamps. Additionally, if the energy
of the amplified pulses are significantly below the capabilities of the gain medium, the
fluctuation in the transmitted pumping beam may be too small to be measured reliably.
In such cases, one can still follow the straightforward way to stabilize the regenerative
amplifier using measurements of the pulse energy. Doing so will require to either infer
the current state from output measurements by using state observers [19] or by applying
some kind of output feedback. In the following, we will proceed along the latter path as
it comes up with an easily implementable and computationally inexpensive control law
by transforming (14) into a description based on input and output quantities only. In
the vicinity of any x with ∂h

∂x (x, u) , 0 there exists an inverse map h−1(y, u) such that
h(h−1(y, u), u) = y for all u. Using this inverse map, the state dynamics (14) can be
rewritten as

yn+1 = h
(
f
(
h−1(yn, un), un, pn

)
, un+1) = f1(yn, un, un+1, pn). (26)

Introducing the new state variable zn = [yn, un]T and the new input νn = un+1 yields
the dynamically extended system model

zn+1 =


f1(zn1 , z

n
2 , ν

n, pn)

νn


 = f (zn, νn, pn). (27)

Using ∆zn = [∆yn,∆un]T and ∆νn = νn − νs, one can linearize the extended system
model at the steady state zs similar to (18), which yields

∆zn+1 =


Φ CΓ − ΦD

0 0


 zn +


D

1


∆νn = Φ zn + Γ∆νn, (28)

with Φ, Γ, C, and D according to (33). The linearized system’s dependence on p was
omitted for brevity. Proceeding as in the previous subsection, a feedback law

νn = νs + ς
(
kTFB(pn)∆zn

)
(29)

can be used to stabilize the plant. The feedback gain kTFB(p) = [kFB,1(p), kFB,2(p)] can
be determined using standard methods for linear systems such as pole placement or
solving a discrete-time algebraic Riccati equation (DARE) as part of a linear quadratic
regulator (LQR) problem [19]. Such solution strategies are possible for all p except for
singular p̃ where C = ∂h

∂x (xs(p̃), us) vanishes (see Fig. 2). This is quite intuitive since one
is not able to infer the system state xn from output measurements in the vicinity of such
points. While the singular points for p̃ = 0 and p̃→∞ are irrelevant from a practical
perspective, the singularity at the operating point with maximum output energy is more
troublesome. Additionally, while a stabilizing solution kFB exists in the vicinity of p̃, the
required feedback gains are usually very high which can be problematic to implement in
the presence of measurement uncertainties and noise. As a result, feedback laws based
on output measurements such as (29) are not suited to operate RAs in the vicinity of
their maximum power output.

However, one is still able to pass through such singular points by limiting the resulting
feedback gains in its vicinity and defining a region around p̃ within which one interpolates
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between the values at the boundary in some sense. Assigning the nearest boundary
values and using an LQR formulation as pointed out above, one obtains a feedback gain
kTFB(p) illustrated in Fig. 5. Writing the control law with original variables, the output
feedback law reads as

un+1 = us + ς


kTFB(pn)


y

n − ys(pn)

un − us




 . (30)

The feedback law (30) is a dynamic system itself, whereby its linearized dynamics are
determined by kFB,2. With this in mind, it is interesting to note that the LQR-based
solution can result in control laws that are unstable on their own (i.e., |kFB,2| > 1, as
in Fig. 5 for p approximately between 60 W and 74 W) but nevertheless yield a stable
closed-loop dynamics when interconnected with the RA.

3.3. Simulation scenarios
The performance of the two feedback laws presented above shall be illustrated with
simulation scenarios using the full mathematical model (3). To cover most of the
interesting operational regimes of a regenerative amplifier, the optical pump power
Ppump(t) (and thus pn) is chosen to start from a weakly pumped state at 12.5 W and
increases linearly up to 87.5 W during the first 80 ms. After having passed the unstable
regime completely, the amplifier is held at this highly pumped state for 40 ms, after
which the pump power is decreased rapidly to 32.5 W within 15 ms and held there for
the remaining time.

Fig. 6 shows simulation scenarios for both feedback laws in comparison to the uncon-
trolled open-loop case. In the uncontrolled case, small perturbations build up shortly
after the amplifier enters the unstable regime while both feedback laws are able to
successfully stabilize the amplifier and follow the desired steady-state output energies
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W s
out. The comparatively slow increase in the pump power at the beginning elicits

only minor corrective action by both feedback laws. However, the rapid decrease in
pump power is fast enough to operate the output feedback law (30) close to its limits as
indicated by the large input corrections necessary to keep the deviations of the output
energy Wn

out close to the desired values. The availability of direct state measurements
renders the feedback law (22) more robust to errors introduced by the gain scheduling
approach. However, notice that the output feedback law (30) manages to keep the
amplifier stable while passing through the singular pumping power p̃ where the amplifier
produces the highest possible output energies.

4. Experimental results
To demonstrate the effectiveness of the proposed feedback strategy in practice, it is
applied to a Yb:CaF2-based regenerative amplifier utilizing a linear cavity design with
a double-pass pumping scheme which is seeded by 4 nJ pulses at frep = 1 kHz. By
choosing NRT = 102 (i.e., each pulse passes the gain medium 204 times due to the linear
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While the amplifier becomes unstable for pump powers above Ppump = 50 W, the
feedback law successfully stabilizes the output energies at the desired steady-state
level W s

out. The stabilized measurements include error bars to illustrate the
standard deviation of the pulse energies.

cavity), one obtains an amplifier that allows sustained unstable operation at low power
outputs without damaging the cavity optics by transient pulses. Due to the low energy
extraction at such operating points, the fluctuations of the transmitted pump light are
too small to be measured reliably. As a result, the feedback stabilization using pulse
energy measurements presented in Section 3.2 is the only viable option.

The energy of the individual output pulses Wn
out is measured using a photo diode and

observing the decay of the resulting voltage vph due to the parasitic resistances and
capacitors. Since the photo current produced by the diode is proportional to the optical
intensity, the jump height of the measured voltage signal is directly proportional to the
energy of the incident laser pulse. Online estimates of the jump height can be obtained
using polynomial or exponential least-squares approximations. In particular, least-
squares techniques building on a discrete-time formulation of the underlying RC network
compared favorable in terms of reliability and computational effort. As illustrated in
Fig. 7, simulation results of the mathematical model (14) calibrated to the given setup
(see, e.g., [20] for the relevant parameters of Yb:CaF2 crystals) agree very well with
measurements of Wout. In particular, the model accurately predicts the energies of the
ω-limit set Wω

out for unstable operating points above Ppump = 50 W.
Since the gain-scheduled feedback law (30) is only a scalar dynamic system, it can

be easily implemented on existing signal processing units. Notice that kFB(p) and
ys(p) can be calculated in advance for all p from the given system model and does not
need to be computed online. Choosing us = 0.7u and applying the feedback law to
the experimental setup, one is able to stabilize the regenerative amplifier and steer it
into otherwise unstable operational regions. Unlike in the open-loop case, the feedback
law suppresses the onset of bifurcations and keeps the output pulses Wn

out close to the
desired steady-state energy W s

out for a given pump power Ppump (see Fig. 7).
To illustrate the temporal effects of the feedback, we deactivate the feedback law by

setting un = us (i.e., ηnAOM = 0.7) while operating the amplifier at Ppump = 52.36 W.
Small perturbations start to build up immediately as shown in Fig. 8 (top) and the am-
plifier approaches the limit cycle Wω

out again (cf. to Fig. 7). Details of the corresponding
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measured photo diode voltage vph(t) are shown at the bottom of Fig. 8 for the case with
and without feedback, respectively.

5. Conclusions and outlook
This paper demonstrates that unstable operational regimes and the resulting bifurcations
of regenerative amplifiers can be suppressed by using feedback methods to actively
modify the energy of incoming seed pulses. Starting from a general space-dependent
mathematical description of the amplification and regeneration processes, it was shown
that the dynamic behavior of RAs can be captured by a scalar discrete-time dynamic
system under very mild assumptions only. Based on this dynamic model, two different
control strategies were proposed using either output energy or transmitted pump light
measurements. Both approaches are able to successfully stabilize RAs for general
operating points. As a result, the utilization of feedback methods allows the operation
of high-gain optical amplifiers without requiring multiple amplification stages to avoid
bifurcations.

Using measurements of the output pulses entails limitations close to the operating point
with maximum output energies as shown in Section 3.2. Nevertheless, it is possible to
steer the amplifier through this singular point by traversing its vicinity fast enough while
truncating the feedback gains. Those limitations do not apply to feedback approaches
based on pump light measurements as presented in Section 3.1. Simulation studies
furthermore show that such schemes are more robust due to the direct relation of the
measurement to the system’s state. However, the fluctuations of the transmitted pumping
beam might be too small to obtain reliable measurements if the energy extracted by the
amplification process is small compared to the stored energy. The choice between both
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feedback schemes thus strongly depends on the specific properties of the given amplifier.
To demonstrate the practical effectiveness of active feedback approaches, the output
feedback scheme was successfully applied to a Yb:CaF2-based RA.

Apart from stabilization purposes, altering the natural dynamics of RAs can be bene-
ficial for the suppression of disturbances and to ensure a fast decay of perturbations to
the steady state. Additionally, one could possibly apply similar feedback techniques to
instabilities arising from the cavity dynamics in mode-locked cavity-dumped lasers [21].
While both feedback schemes presented in this thesis can be easily implemented on exist-
ing signal processing units, they rely on a mathematical model that is calibrated for the
specific setup. Since the open-loop operation of unstable amplifiers close to their damage
threshold is quite problematic, the development of closed-loop identification methods
that can be performed online seems a promising direction for future investigations.

Appendix
Introducing the Jacobian of fSP with respect to x and u as

∇fSP
([

x

u

])
=
[
∂fSP
∂x

∂fSP
∂u

]
=

[
e−u(

(x−1)e−u−x
)2

x(x−1)e−u(
(x−1)e−u−x

)2

ηRC
eu−1

x(eu−1)+1 ηRC
xeu

x(eu−1)+1

]
, (31)

and the Jacobian of the iterated function fMP as

∇fMP

([
x

u

])
=∇fSP


f (NRT−1)

SP




x
u






×∇fSP


f (NRT−2)

SP




x
u






× . . .

×∇fSP


fSP




x
u






×∇fSP




x
u




 , (32)

one obtains a linearized description of (14) according to (18) with

Φ =
∂f

∂x
(xs, us) =

dfpump
dGin



[
1 0

]
fMP




x

s

us







[
1 0

]
∇fMP




x

s

us






1

0




Γ =
∂f

∂u
(xs, us) =

dfpump
dGin



[
1 0

]
fMP




x

s

us







[
1 0

]
∇fMP




x

s

us






0

1




C = ∂h
∂x

(xs, us) =
ηout
ηRC

[
0 1

]
∇fMP




x

s

us






1

0


 (33)

D = ∂h
∂u

(xs, us) =
ηout
ηRC

[
0 1

]
∇fMP




x

s

us






0

1


 ,

where the dependence on the pump power ps was omitted for clarity. Note that
fpump(Gin) denotes a solution of (10) with the initial condition G(0) = Gin. Since (10)
is solved numerically, the derivative dfpump

dGin
in (33) has to be approximated by some

difference quotient, which requires the solution of (10) for two (or more) initial values.
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