
This document contains a post-print version of the paper

Stochastic Iterative Learning Control for Lumped- and
Distributed-Parameter Systems: A Wiener-Filtering Approach

authored by A. Deutschmann-Olek, G. Stadler, and A. Kugi

and published in IEEE Transactions on Automatic Control.

The content of this post-print version is identical to the published paper but without the publisher’s final layout or
copy editing. Please, scroll down for the article.

Cite this article as:
A. Deutschmann-Olek, G. Stadler, and A. Kugi, “Stochastic Iterative Learning Control for Lumped- and Distributed-
Parameter Systems: AWiener-Filtering Approach,” IEEE Transactions on Automatic Control, vol. 66, no. 8, pp. 3856–
3862, 2020. doi: 10.1109/TAC.2020.3028839

BibTex entry:
@ARTICLE{acinpaper,
author = {Deutschmann-Olek, A. and Stadler, G. and Kugi, A.},
title = {{S}tochastic {I}terative {L}earning {C}ontrol for {L}umped- and {D}istributed-{P}arameter {S}

ystems: A {W}iener-{F}iltering {A}pproach},
journal = {{IEEE} Transactions on Automatic Control},
year = {2020},
volume = {66},
number = {8},
pages = {3856--3862},
doi = {10.1109/TAC.2020.3028839}

}

Link to original paper:
http://dx.doi.org/10.1109/TAC.2020.3028839

Read more ACIN papers or get this document:
http://www.acin.tuwien.ac.at/literature

Contact:
Automation and Control Institute (ACIN) Internet: www.acin.tuwien.ac.at
TU Wien E-mail: office@acin.tuwien.ac.at
Gusshausstrasse 27-29/E376 Phone: +43 1 58801 37601
1040 Vienna, Austria Fax: +43 1 58801 37699

Copyright notice:
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/TAC.2020.3028839
http://dx.doi.org/10.1109/TAC.2020.3028839
http://www.acin.tuwien.ac.at/literature
www.acin.tuwien.ac.at
mailto:office@acin.tuwien.ac.at


IEEE TRANSACTIONS ON AUTOMATIC CONTROL 1

Stochastic Iterative Learning Control for
Lumped- and Distributed-Parameter Systems:

A Wiener-Filtering Approach
Andreas Deutschmann-Olek, Georg Stadler, Andreas Kugi

Abstract—This paper presents a stochastically optimal iterative
learning control (ILC) approach by designing a general integral
learning operator which minimizes the expected mean-squares
output error. The proposed learning law generalizes existing
optimal PD-type learning laws and the resulting optimal learning
operator turns out to be the solution of the non-causal Wiener-
Hopf equation. The proposed solution can be interpreted as a
systematic dual to traditional norm-optimal ILC schemes with
superior asymptotic properties under stochastic perturbations.
While the fully optimal solution is inherently iteration-varying, a
simpler sub-optimal learning operator with less computational
effort is introduced. Moreover, a numerically very efficient
strategy based on the fast Fourier transform (FFT) is presented
to obtain numerical solutions of the learning operator. By
avoiding the need of spectral factorizations or solutions to Riccati
equations, this approach is directly applicable to a certain class
of distributed-parameter systems. Finally, the Wiener-filter-based
ILC algorithm is demonstrated on finite- and infinite-dimensional
example problems.

Index Terms—Iterative learning control, distributed-parameter
systems, non-causal Wiener-filter.

I. INTRODUCTION

All types of ILC algorithms try to perform some kind of
approximate inversion of the input-output behaviour of the
system. Since this inversion has to be performed online based
on measurements, it is inherently constrained by the presence
of stochastic quantities such as process disturbances and mea-
surement noise. The systematic treatment of iterative learning
within a stochastic framework has received some attention
from the scientific community, with most contributions being
reviewed in [1]. Within such a stochastic framework, the usual
approach is to find optimal solutions in a minimum mean-
square-error (MMSE) sense. The majority of these contribu-
tions utilize some kind of P-type or D-type learning scheme
with stochastically optimal learning gains most notably due
to Saab (e.g., [2], [3], [4], [5]). All these contributions focus
on a minimum level of model knowledge and are particularly
well-suited for poorly known systems. In contrast, the desire
to improve the convergence speed has led to the development
of model-based (or inversion-based) ILC methods such as [6]
which systematically exploit knowledge of the system in the
form of a model. In particular, different versions of norm-
optimal ILC schemes have been thoroughly studied in recent
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years by using the framework of so-called lifted systems (e.g.,
[7], [8]) in a discrete-time setting, in a general Hilbert space
setting [9], [10], or by using frequency-domain methods [11].
While offering superior convergence properties [8], the effects
of measurement noise or process disturbances are usually
not explicitly treated or only seen as a side issue in these
contributions, with the exception of [12] using pre-filtered
variants of inversion-based ILC for SISO plants.

Recently, the control of distributed-parameter systems
(DPSs) has become increasingly relevant not only in control
theory [13], [14], [15] but also in applications such as large-
scale manipulators (e.g., [16]), flexible structures and adaptive
optics [17], chemical reactors [18] or pulse shaping in laser
applications [19], [20], just to name a few. The existing
literature on ILC for DPSs relies either on model-free ILC
versions like D-type and PD-type ILC (e.g., [21], [22], [19]),
or on non-constructive concepts as shown in [23]. Applications
of model-based ILC schemes for DPSs are rather scarce
and typically employ the classical early-lumping approach,
where the full system dynamics is approximated by a finite-
dimensional model first and the ILC design is then performed
for the resulting system of ordinary differential equations
(ODEs), e.g., as in [17]. This has the advantage that the well-
established control theory of finite-dimensional systems can
be applied but usually leads to high-dimensional system rep-
resentations to keep the approximation accuracy at a sufficient
level, particularly for weakly damped or purely dispersive
dynamics [20]. Considering the full system structure during
the design process by employing a late-lumping approach is
clearly beneficial, as long as the computational effort of the
resulting learning law is kept at a reasonable level.

Drawing from these directions, we systematically investi-
gate MMSE-optimal solutions to the iterative learning problem
in a stochastic setting applicable to lumped- and distributed-
parameter systems. Following this idea ultimately leads to
non-causal Wiener-filters introduced in [24] for the SISO
case that are commonly used in image processing and image
restoration, see, e.g., [25], or deconvolution applications as in
[26]. The resulting learning law is a generalization of existing
stochastically optimal P-type and D-type laws [4], [2], [27]
and can be interpreted as a systematic dual to traditional norm-
optimal ILC designs that shares their convergence properties
but achieves superior asymptotic behaviour under stochastic
perturbations. Although Wiener-filtering methods are applica-
ble to general linear systems, we restrict ourselves to time-
invariant systems for simplicity. Since the resulting non-causal
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Wiener-Hopf equation can be easily solved regardless of the
distributed nature of the system in this case, the proposed
learning law directly extends to DPSs in a late-lumping sense.

The structure of this paper is as follows: after the problem
setting is stated in Section II, a stochastical MMSE optimal
learning operator is derived in Section III. The resulting
Wiener-filter-based learning operator requires knowledge of
the stochastic properties of the input error, which can either
be calculated to yield the fully optimal result or roughly
estimated by a-priori knowledge to achieve a sub-optimal
result. Both approaches are analyzed in Section IV and a
simple and efficient numerical solution procedure is presented
in Section V. The resulting algorithms are finally evaluated
in simulation scenarios for finite- and infinite-dimensional
systems in Section VI.

Nomenclature

In the following, we will make use of the bilateral Laplace
transform

f(s) = B {f(t)} =

∫ ∞

−∞
f(t) exp(−st)dt (1)

for all s inside the region of convergence (ROC). If the
imaginary axis is included in the ROC, the bilateral Laplace
transform is linked to the Fourier transform by f(s)|s=jω =
F {f(t)}. For two vector-valued stochastic signals ak(t) and
bl(t) with the iteration indices k and l, their cross-correlation
function is given by Rakbl(τ) = E

{
ak(t+ τ)(bl(t))T

}

where E{·} denotes the expectation operator. The corre-
sponding power spectral density (PSD) reads as Sakbl(s) =
B {Rakbl(τ)}. In case k = l, the common index is written as
superscript, i.e., Rk

ab(τ) = Rakbk(τ) and Skab(s) = Sakbk(s).

II. PROBLEM STATEMENT

Within an ILC framework, we consider a class of L2-stable
continuous-time linear systems, whose k-th iteration can be
formally described by the input-output relation

yk(t) = Guk(t) + wk(t) (2)

with the system operator G : L2(R;Rl) → L2(R;Rm), the
input uk(t) ∈ Rl, and the output yk(t) ∈ Rm whereby t ∈ R.
The system description (2) in particular includes infinite-
dimensional dynamics exhibited by distributed-parameter sys-
tems (DPSs) with finite-dimensional input and output quanti-
ties, which is the case in most practically relevant systems. The
ideal behavior of the plant G is perturbed by the exogenous
disturbance wk(t) ∈ Rm which is assumed to be a zero-
mean wide-sense stationary (WSS) stochastic process. In the
time-invariant case, the system operator G : L2(R;Rl) →
L2(R;Rm) can be written as

Gu(t) =

∫ ∞

−∞
G(t− τ)u(τ)dτ (3)

with the corresponding impulse response matrix G(t).

Remark 1. Frequency-domain methods at least tacitly assume
an infinite-time horizon which can be truncated suitably, see
[6], [28], while retaining stability assertions.

For a given desired output trajectory yd(t) ∈ L2(R;Rm),
which is the solution of the unperturbed system yd(t) =
Guud(t) with the unknown desired input ud(t), we want to
iteratively track this desired output trajectory by means of a
general linear learning law of the form

uk+1(t) = uk(t) + Lkηk(t) (4a)

with the output error ηk(t) = yd(t) − yk(t) for the it-
eration k. The corresponding linear learning operator Lk :
L2(R;Rm)→ L2(R;Rl) is given by

Lkηk(t) =

∫ ∞

−∞
Lk(t− τ)ηk(τ)dτ (4b)

with the learning kernel Lk(t). Thus, our goal is to find an
optimal learning operator such that the system output asymp-
totically converges to the desired output, i.e., yk(t)→ yd(t).
Since the system output is a stochastic quantity, we aim at
doing this in a stochastically optimal way, i.e. uk+1(t) should
be determined such that it minimizes the expected value of
the mean-square output error E

{(
ηk+1(t)

)T
ηk+1(t)

}
.

III. A WIENER-FILTERING APPROACH

In view of (2) and the unperturbed system, the output error
of the iteration k is given by

ηk(t) = Gνk(t)−wk(t) (5)

using the input error νk(t) = ud(t) − uk(t). Due to the
learning law (4), the evolution of the input error is described
by

νk+1(t) = νk(t)−Lkηk(t). (6)

Thus, the output error of the iteration k + 1 yields

ηk+1(t) =
(
I − GLk

)
ηk(t) + wk(t)−wk+1(t) (7)

using the identity operator I . The problem of learning in a
stochastically optimal sense can be written as the optimization
problem

min
Lk

E
{(

ηk+1(t)
)T

ηk+1(t)
}
. (8)

Due to the error dynamics (5), the stochastic quantities ηk

and wk appearing on the right-hand side of (7) are correlated.
Plugging (5) into (7), one obtains

ηk+1(t) =
(
G − GLkG

)
νk(t) + GLkwk(t)−wk+1(t).

(9)

Before deriving the optimal solution, we assume that
A1 the input error νk is uncorrelated with the exogenous

disturbance of the current and the following iteration,
i.e. E

{
νk(t+ τ)(wi(t))T

}
= 0 for i ∈ {k, k + 1}.

Remark 2. Assumption A1 essentially truncates the depth of
stochastic reasoning. This means that any implicit correlation
of the current input error νk(t) and the exogenous distur-
bances wi(t) with i ∈ {k, k+ 1} due to possible correlations
between different instances of the exogenous disturbance in
the past, i.e. E

{
wi(t+ τ)(wj(t))T

}
6= 0 with i, j < k and
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i 6= j are neglected. If one assumes that the disturbances are
uncorrelated as we will do later, Assumption A1 is equivalent
to E

{
ν0(t+ τ)(wi(t))T

}
= 0, which is common in the

literature on stochastic ILC, see, [4], [3].

Since the system dynamics (2) is linear and assumed to be
time-invariant for simplicity and the stochastic quantities wk

are WSS, the optimization problem (8) can be treated in the
Laplace domain (cf. [29]) by applying the bilateral Laplace
transform, which yields

min
Lk

E
{(

ηk+1(t)
)T

ηk+1(t)
}

= min
Lk

Tr
{
Rk+1
ηη (0)

}

= min
Lk(s)

1

j2π
Tr
{∫ j∞

−j∞
Sk+1
ηη (s)ds

}
, (10)

where Tr {·} denotes the trace operator. For the following
derivation, the Laplace variable s is omitted for brevity. Due
to (9) and the assumptions A1, the PSD of the output error in
iteration (k + 1) is given by

Sk+1
ηη =

(
G−GLkG

)
Skνν

(
G−GLkG

)H

+ GLk Skww (Lk)HGH + Sk+1
ww

−GLk Swkwk+1 − Swk+1wk (Lk)HGH (11)

with the Hermitian conjugate (·)H. Employing the calculus of
variations, the optimization problem (10) can be solved analyt-
ically by considering the first-order optimality condition, i.e.
for the optimal learning kernel Lk(s) the Gâteaux derivative
has to vanish

δE
{(

ηk+1(t)
)T

ηk+1(t)
}

= 0. (12)

Following the typical variational approach, we substitute
Lk(s) → Lk(s) + εΓ(s) into (11), whereby εΓ(s) is a
small variation of the optimal learning operator Lk(s). The
optimality criterion (12) finally yields

0 = Tr

{∫ j∞

−j∞
GΓ

[
−GSkνν

(
G−GLkG

)H

+ Skww(Lk)HGH − Swkwk+1

]
ds

∫ j∞

−j∞

[
−
(
G−GLkG

)
SkννG

H+

+ GLkSkww − Swk+1wk

]
ΓHGHds

}
.

Since we allow a potentially non-causal solution, Γ(s) can
vary freely. Using that Tr

(
M + MH

)
= 2 Tr (Re {M}) for

any square matrix M and invoking the fundamental lemma
of calculus of variations, the optimal learning operator has to
fulfill

GLk
[
GSkννG

H + Skww
]

= GSkννG
H + Swk+1wk . (13)

If the system is square, i.e., m = l, and if G(s) is invertible,
(13) can be solved for Lk(s) explicitly which yields

Lk =
(
SkννG

H + G−1Swk+1wk

) [
GSkννG

H + Skww
]−1

.
(14)

This type of learning operator takes preemptive actions ac-
cording to known correlations of the external disturbances

given by Swk+1wk . In practice, a detailed description of the
correlation properties of the disturbance w is hardly known
and the constraint that G(s) is invertible drastically limits
the scope of the approach. However, there is a more severe
implication: The stability of a learning law can be analysed
in the frequency domain using the well known (deterministic)
stability criterion [30], [31]

sup
ω
ρ̄ {I−G(jω)L(jω)} < 1 (15)

where ρ denotes the eigenvalue with the largest absolute value,
i.e. the spectral radius. Plugging the general learning operator
(14) into (15), one can easily see that its spectral radius is
not necessarily less than one for arbitrary Swk+1wk . The fact
that the learning operator (14) does not necessarily fulfill
the stability condition (15) does not imply that the output
error PSD may not converge to some finite limit S∞ηη(s) =
limk→∞ Skηη(s) in the nominal case. However, imperfect
knowledge of the stochastic properties can destabilize the
learning law (14) which is problematic for robustness reasons.
Thus, we neglect correlations of the stochastic disturbances in
the following by assuming that

A2 different instances of the disturbance are uncorrelated,
i.e. E

{
wi(t+ τ)(wj(t))T

}
= 0 for i 6= j

to obtain the iteration-varying learning operator

Lk(s) = Skνν(s)GH(s)
[
G(s)Skνν(s)GH(s) + Skww(s)

]−1
.

(16)
The type of solution (16) for uncorrelated disturbances is in
fact well known in the context of linear filtering problems [26].
By transforming the optimal filter Lk(s) back into the time
domain, one obtains the non-causal Wiener-Hopf equation

∫ ∞

−∞
Lk(ξ)Rk

ηη(τ − ξ)dξ = Rk
νη(τ) (17)

with the auto-correlation function Rk
ηη(τ) =

B−1{G(s)Skνν(s)GH(s) + Skww(s)} of the output error and
the cross-correlation function Rk

νη(τ) = B−1{Skνν(s)GH(s)}
between input error and output error. Thus, the proposed
approach can be understood as the systematic dual to
traditional norm-optimal ILC methods, as one is effectively
using a non-causal Wiener-filter to estimate the input deviation
that optimally explains the measured output error.

IV. CHOOSING THE INPUT ERROR PSD Skνν(s)

A common problem of Wiener-filter-based approaches is
that the optimal solution (16) requires knowledge of the input
error PSD Skνν(s), which is typically handled using a-priori
knowledge of the problem. In the case of ILC, however, the
iterative structure of the learning problem can be exploited to
obtain an estimate of the current PSD. In the following, we
will present two approaches: first, by assuming a fixed input
error PSD, a stochastically sub-optimal but iteration-invariant
learning operator is obtained. Second, a forward prediction of
the current input error PSD yields an optimal but iteration-
varying learning operator.

For the following analysis, we assume that the stochastic
properties of wk are independent of the iteration index k, i.e.,
Skww(s) = Sww(s) for all k.
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A. A sub-optimal iteration-invariant learning law

As highlighted above, the stochastically optimal learning
operator (16) depends on the expected input error, i.e., the
input error PSD Skνν(s), which is generally unknown. Since
iteration-varying learning laws usually increase the effort of
implementation, one may prefer to accept the sub-optimal
performance of an iteration-invariant learning law by using
a fixed input error PSD Skνν(s) = Sνν(s) according to a-
priori knowledge. This yields the iteration-invariant learning
operator

L(s) = Sνν(s)GH(s)
[
G(s)Sνν(s)GH(s) + Sww(s)

]−1
.

(18)
The following theorem ensures under mild conditions that the
resulting iteration is stable.

Theorem 1. If the given PSD of the disturbance Sww(s) and
the chosen input error PSD Sνν(s) are positive definite and
the system transfer matrix G(s) does not exhibit transmission
zeros on the imaginary axis s = jω, i.e. if G(jω)u 6= 0
for any u 6= 0 and all frequencies ω, the learning operator
(18) yields a stable learning iteration that converges to a
positive definite asymptotic ouput error PSD S∞ηη(s) given by
the solution of

(I−G(s)L(s)) S∞ηη(s) (I−G(s)L(s))
H − S∞ηη(s)

+GL(s)Sww(s) + Sww(s)LH(s)GH(s) = 0. (19)

Proof. Omitting the Laplace variable s for simplicity, the
definition of the sub-optimal learning operator (18) yields

I−GL = I−GSννG
H
[
GSννG

H + Sww
]−1

= Sww
[
GSννG

H + Sww
]−1

.

Since Sww is positive definite by assumption, there exists a
square root S

1/2
ww that is positive definite and therefore

I−GL = S
1/2
ww [Ψ + I]

−1
S−

1/2
ww ,

with Ψ = S
−1/2
ww GSννG

HS
−1/2
ww . As G does not exhibit

transmission zeros, Ψ is positive definite and it follows that

sup
ω
ρ̄ (I−GL) = sup

ω
ρ̄
(

(Ψ + I)
−1
)

= sup
ω

(
ρ (Ψ + I)

)−1
< 1

where ρ denotes the smallest eigenvalue. Thus, the sub-optimal
learning law satisfies the deterministic stability condition (15).
Additionally, the iteration of the output error PSD (cf. (7))

Sk+1
ηη = (I−GL) Skηη (I−GL)

H
+ GLSww + SwwLHGH

converges to a unique asymptotic output error PSD S∞ηη given
by the discrete Lyapunov-type equation (19).

Remark 3. The limitation of transmission zeros is always
violated at ω → ∞ for strictly proper systems. This is
a necessary consequence of the optimality principle of the
Wiener-filter, since for systems with low-pass characteristics
it should be avoided to learn high frequencies. This is hardly
a problem in practice as one is typically interested in a

limited frequency range as considered in [23]. Alternatively,
the system operator can be modified such that it includes a
small feedthrough term as suggested in [6].

The learning operator (18) is structurally similar to feedfor-
ward norm-optimal ILC. Contrary to the presented approach,
norm-optimal schemes are typically set up in a finite-horizon
framework. Applying a limit argument as used in [32], [11] for
comparison, one obtains a frequency-domain representation of
feedforward norm-optimal learning laws as

L(s) =
[
R + GH(s)QG(s)

]−1
GH(s)Q, (20)

where Q is the weighting matrix of the output error and R is
the weighting matrix of the input difference uk+1(t)− uk(t)
(see, e.g., [9], [8]). For the special case Sνν(s) = σνI and
Sww(s) = σwI, one can easily show that (18) is equivalent
to (20) for R = σRI and Q = σQI with σνσR = σwσQ

1. In
other words: if all components of the stochastic perturbations
are uncorrelated, white, and of equal noise power and if
no information about the input signal is available, Wiener-
filter-based learning laws and norm-optimal learning laws are
equivalent. Both implement a kind of (Tikhonov-) regularized
inversion of the system operator G. This idea is directly
addressed in [6] by using a pseudo-inverse learning law that
can be written as

L(s) =
[
αI + GH(s)G(s)

]−1
GH(s). (21)

As one can see from (21) and (20), norm-optimal schemes
introduce regularization by penalizing variations of the input
and thus reduce the effective speed of learning - which is
somewhat artificial. In contrast, the Wiener-filter-based learn-
ing operator (18) is regularizing according to the expected
PSD of the perturbations Sww(s). This is exactly what one
would expect: learning is avoided when the stochastic pertur-
bations are strong compared to the expected signal components
G(s)Sνν(s)GH(s).

From a practical point of view, the Wiener-filtering-based
approach has two significant benefits: first, one is not bothered
with tuning unphysical weighting matrices but rather guided
by experimentally accessible quantities. Second, the spectral
shaping due to the choice of Sνν(s) is often appreciated
to easily restrict learning to certain frequency ranges or to
systematically account for a varying fidelity of the process
model G(s) along the whole frequency range.

B. An optimal iteration-varying learning law

Due to the learning process, the measured output error
ηk(t) is increasingly dominated by stochastic disturbances.
Therefore, a stochastically optimal learning law will reduce its
learning behaviour with increasing iterations (see [4]). Such a
behaviour is intrinsic to the general solution (16) due to the
decreasing input error PSD Skνν(s). Since

νk+1(t) =
(
I −LkG

)
νk(t)−Lkwk(t), (22)

1Notice the interchanged dimensions of the matrices, i.e. R, Sνν(s) ∈
Rl×l and Q, Φ(s) ∈ Rm×m.
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cf. (5) and (6), one can calculate the evolution of the expected
input error PSD in the form

Sk+1
νν (s) =

(
I− Lk(s)G(s)

)
Skνν(s)

(
I− Lk(s)G(s)

)H

+ Lk(s)Sww(s)(Lk(s))H. (23)

Thus, only an initial PSD S0
νν(s) is required and the following

PSDs can be updated according to the equation above. Using
the proposed learning operator (16) under the assumption of
iteration-independent stochastic properties of wk, i.e.

Lk(s) = Skνν(s)GH(s)
[
G(s)Skνν(s)GH(s) + Sww(s)

]−1
,

(24a)
and plugging it into the forward iteration (23) results in

Sk+1
νν (s) =

(
I− Lk(s)G(s)

)
Skνν(s). (24b)

Due to the dependence of the learning operator on Skνν ,
(24b) is a nonlinear iteration. In the following theorem, we
show that the learning operator (24a) with (24b) is stable and
additionally that uk(t) → ud(t) in a stochastical sense, i.e.
that limk→∞ Skνν = 0.

Theorem 2. If Sww(s) and the initial input error PSD S0
νν(s)

are positive definite and the system’s transfer matrix G(s)
does not exhibit transmission zeros on the imaginary axis (see
Theorem 1), the learning operator (24a) together with (24b)
yields a stable learning law that ensures convergence to the
optimal error PSDs

S∞νν(s) = 0, S∞ηη(s) = Sww(s). (25)

Proof. The resulting nonlinear iteration (24) is structurally
very similar to [4] for a stochastic discrete-time D-type law
and the following proof proceeds along its lines although the
involved quantities have considerably different meaning. First,
one can show by induction that Skνν(s) is positive definite and
that

sup
ω
ρ̄
(
I− Lk(s)G(s)

)
< 1 (26)

for all k ∈ N. Assume that Skνν(s) is positive def-
inite. Due to the structure of (23), Sk+1

νν (s) is nec-
essarily positive semi-definite. To analyze the eigen-
values of I − Lk(s)G(s), we use the identity I −
Lk(s)G(s) =

[
I + Skνν(s)GH(s) (Sww(s))

−1
G(s)

]−1
. The

matrix GH(s) (Sww(s))
−1

G(s) is positive definite due to the
assumptions made. Although the product of positive definite
matrices is not necessarily positive definite again, it is still true
that the eigenvalues of the product are greater than zero, i.e.
ρ
(
Skνν(s)GH(s)(Sww(s))−1G(s)

)
> 0. Thus I−Lk(s)G(s)

has full rank and (26) hold true by the same line of reasoning
as in Theorem 1. Moreover, one can show that the eigenvectors
of I − Lk(s)G(s) remain invariant for all k when using the
forward iteration of the input error PSD according to (24b),
i.e., each eigenvector of I−Lk(s)G(s) is also an eigenvector
of I − Lm(s)G(s) for m 6= k. The full-rank property of
I−Lk(s)G(s) implies that Sk+1

νν (s) is indeed positive definite
again which - since S0

νν(s) is positive definite - finishes the
induction.

While all eigenvalues of I − Lk(s)G(s) are necessarily
less than one, they approach one as Lk(s) tends to zero
for k → ∞. Thus, the limit of Skνν(s) has to be analyzed
more carefully. Since all eigenvalues are inside the unit circle
and their corresponding eigenvectors remain unchanged, there
exists a norm irrespective of k such that

∥∥I− Lk(s)G(s)
∥∥ < 1

and we thus know that
∥∥Sk+1

νν (s)
∥∥ <

∥∥Skνν(s)
∥∥ for all k using

the same norm.
Together with the lower bound ‖Skνν(s)‖ > 0 it is clear that

there exists a limit ‖S∞νν(s)‖, and the following shows that this
limit equals zero by contradiction. Assuming that S∞νν(s) 6= 0
implies that all eigenvalues of I − Lk(s)G(s) are inside the
unit circle in the limit. In this case

lim
k→∞

sup
ω

‖Sk+1
νν (s)‖
‖Skνν(s)‖ < 1 (27)

and thus ‖S∞νν(s)‖ = 0, which contradicts the assumption.
Thus, it follows that Skνν(s) converges indeed to zero for k →
∞ and that the input error converges to zero in mean. As a
consequence, the learning kernel Lk(s) also converges to zero.
In view of (11), the output error PSD then converges to the
minimal asymptotic error given in (25).

V. NUMERICAL IMPLEMENTATION OF THE LEARNING LAW

Solutions of the non-causal Wiener-Hopf equation (17) can
be obtained with standard methods for integral equations
like straightforward discretization or using a finite number of
basis functions. In the LTI case, however, both the learning
operator and the plant have comparatively simple descriptions
in the Laplace domain compared to the time domain. In the
following, we want to use this fact to find numerical solutions
of the learning kernel L(t).

Based on the assumption that the system (2) is L2-stable,
there exists some ε > 0 such that the region of convergence
(ROC) of G(s) includes all s with Re {s} > −ε (cf. [33]).
Conversely, for the adjoint system GH(s) it holds that the
stable ROC (cf. backward integration) includes all s with
Re {s} < ε. Hence, the imaginary axis jω is included in the
ROC associated with the learning operator L(s). As a result,
the learning kernel L(t) can be obtained by the inverse Fourier
transform

L(t) = F−1 {L(jω)} , (28)

which is equivalent to forward integration of the stable part
and backward integration of the unstable part (see [34]).

The continuous Fourier transform is often approximately
computed using the discrete Fourier transform (DFT) on a
discrete grid. Since a discretization of t or ω determines a
discretization of the other quantity, a spectrally broad operator
L(jω) usually requires a high number of sampling points
although L(t) is (almost) zero at most sampling points.

A simple solution to this problem building on a so-called
“fractional Fourier transform” is given in [35]. Assuming that
L(jω) is zero outside the finite interval [−ωS/2, ωS/2], the
relation (28) can be approximately solved for t ∈ [−tS/2, tS/2]
on the discrete grid tn = (n−N/2)β and ωm = (m−N/2)γ
with 0 ≤ m,n < N by

L(tn) =
1

2π

∫ ωS/2

−ωS/2

L(jω)ejωtndω (29)
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≈ γ

2π
e−jπ(n−

N/2)Nδ
N−1∑

m=0

L(jωm)e−j2πδm(n−N/2)

=
γ

2π
e−jπ(n−

N/2)NδGn
{
L(jωm)e−jπmNδ,−δ

}

where β = tS/N , γ = ωS/N and δ = βγ/(2π). The
operator Gn denotes the n-th element of the “fractional Fourier
transform” evaluated by means of the DFT as given in [35,
eq. (14)-(18)]2. Using fast Fourier transform (FFT) algorithms,
this procedure can be computed very efficiently.

This approach is particularly interesting for distributed-
parameter systems, where inversion- or model-based ILC
schemes have been discarded in many contributions (e.g.,
[22], [19]) due to their potential complexity. Using (29), one
can compute the desired learning kernel L(t) with arbitrary
precision regardless of the distributed nature. This is due to
the chosen input-output description of the system (2) and
(3) that is independent of the dimension of the state-space,
whether it is finite- or infinite-dimensional. Thus, one avoids
the computational tasks that typically arise in established state-
space approaches [36], [10] such as the solution of (operator)
Riccati equations and state-prediction equations that become
quite delicate and computationally very expensive for infinite-
dimensional systems. A variety of frequency-domain-based
ILC approaches requires the implementation of non-causal
learning operators (as (16) is). To implement such laws, the
causal and anti-causal part of the learning operator are usually
separated using spectral factorization techniques. Both parts
are then solved by forward- and backward integration of the
corresponding state-space representation due to non-causal sta-
ble inversion methods [37], [12], [6], which is quite demanding
for DPSs (cf. [38]). Combining the spectral equivalence to
stable inversion [34] with the numerical solution (29), one is
effectively avoiding the spectral factorization by directly com-
puting the learning kernel L(t) of the learning operator (4b)
rather than finding a representation of the learning operator in
form of two systems of (partial) differential equations.

VI. SIMULATION EXAMPLES

A. A sub-optimal ILC for the damped wave equation

First, we want to illustrate the proposed sub-optimal method
on a boundary-controlled DPS defined on a one-dimensional
spatial domain z ∈ [0, 1] given by the hyperbolic PDE

∂2x

∂t2
(z, t) + γ

∂x

∂t
(z, t) =

∂2

∂z2
x(z, t), (30)

with the initial conditions x(z, 0) = ∂x
∂t (z, 0) = 0, the

boundary conditions x(0, t) = u(t), ∂x∂z (1, t) = 0, and the
measured output y(t) = x(1, t) + n(t) corrupted by band-
limited measurement noise

Snn(s) =

{
σ2
n
π
ωn

|Im {s} | ≤ ωn
0 else,

(31)

with noise power σ2
n = 1× 10−3 and bandwidth ωn =

2.15× 103. Applying the bilateral Laplace transform to (30)

2The term “fractional Fourier transform” in [35] is denoting a special case
of the Z-transform and has fallen out of use since.

−4 −2 0 2 4

0

2

4

6

t

L
(t
)

Fig. 1. The (non-causal) learning kernel L(t) for the damped wave equation
(32) calculated using (29) with N = 512, tS = 8, and ωS = 100.

and solving the resulting spatial ODE using the boundary
conditions above yields the well-known transfer function

G(s) = cosh
(√

s(s+ γ)
)−1

, (32)

i.e. the input-output behaviour is governed by an infinite
number of poles. Following the sub-optimal approach pre-
sented in Section IV-A, we have to choose the input error
PSD Sνν(s) according to a priori knowledge. Assuming that
the input corrections are mainly below some frequency ωco,
one can shape the learning behavior spectrally by using
Sνν(s) = |1 + s/ωco|−6. Thus, a numerical solution of the
learning kernel L(t) considering the full infinite-dimensional
dynamics of (30), i.e., using a late-lumping approach, is given
by (29) with (18) and (32) as shown in Fig. 1 for γ = 0.1
and ωco = 10. Using the calculated learning kernel with (4b)
to track a desired output trajectory yd(t) = exp(−t2) sin(7t)
starting from u0(t) = 0, the output error converges close to
the lower bound given by the measurement noise after the
first iteration as shown in Fig. 2. Following a conventional
early-lumping approach, one could approximate the infinite-
dimensional dynamics of (30) by some finite-dimensional
dynamics of order NFD that can be treated with standard
norm-optimal or stable-inversion-based learning laws. Using
a pseudo-inverse-based learning law according to (21) with
NFD = 30 and α = σ2

n
π/ωn, the learning iteration di-

verges quickly due to model errors at higher frequencies.
The standard approach to increase the robustness to model
errors utilizes additional Q-filters (see, e.g., [8]) which yields
stable learning iterations at the cost of significantly increased
stationary errors as shown in Fig. 2 for a forth-order zero-phase
low-pass filter with cutoff frequency ωQ = 50. Applying the
Wiener-filtering-based ILC approach using the approximated
finite-dimensional dynamics for comparison nicely illustrates
its spectrally selective learning property. However, the pres-
ence of significant model errors due to the early-lumping
approach requires quite drastic choices of Sνν(s) to achieve
stable iterations without Q-filtering.

Remark 4. Using such a regularized inversion methods might
be an interesting option also for feedforward applications in
case of linear distributed-parameter systems, since flatness-
based techniques are significantly more involved using so-
called Weierstraß canonical products, may ultimately require
resummation techniques dealing with diverging series, and
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Fig. 2. Comparison of the convergence behavior of Wiener-filtering (WF) and
pseude-inverse (PInv) learning laws based on finite (NFD = 30) and infinite-
dimensional description during the design process. The cut-off frequencies of
the chosen input error PSD ωco or the additional Q-filter ωQ is given for
reference.

have known limitations for systems with clustering poles such
as Euler-Bernoulli beams with Kelvin-Voight damping [14].

B. Comparing the sub-optimal with the optimal ILC scheme

To illustrate the differences between the sub-optimal
(18) and optimal learning (24) approaches, we consider
a finite-dimensional MIMO system of the form (2) with
zeros in the right half-plane and disturbances Sww =
Gv(s)Svv(s)GH

v (s) + Snn using

G(s) =

[ s
s2+s+1

1
s2+s+1

s+10
s2+2s+4

1
s+1

]
, Gv(s) =

[
s

s2+s+1
3s2+15/2s+6
s3+3s2+6s+4

]
.

The measurement noise n is again assumed to be band-limited
white noise according to (31) with σ2

n = 1/100 and ωn = 321.7
is chosen to be at the Nyquist frequency of the simulation.
Similarly, the process disturbance v is given by

Svv(s) =

{
1/10 |Im {s} | ∈ [π, 2π]

0 else.

To specify the learning operators, we have to choose the initial
input error PSD S0

νν(s) for the optimal case (24) and the
fixed input error PSD Sνν(s) for the sub-optimal case (18),
respectively. Because these PSDs are usually unknown, they
are effectively tuning parameters that have to be chosen as part
of the design process. Since we expect the input to consist of
predominantly lower frequencies, we choose both to be

S0
νν(s) = Sνν(s) =

0.01

|1 + s|2 I.

Finally, the two Wiener-filter-based approaches are compared
to existing norm-optimal approaches. By choosing R = γI
and Q = βI, one can see from the analysis in Section IV-A
that the resulting norm-optimal learning law is equivalent to
the pseudo-inverse solution [6] given by the frequency-domain
representation (21) with a single remaining tuning parameter
α = γ/β.

In Fig. 3, the evolution of the L2-norms of the input and
output errors are shown for all three learning operators. As
expected, the optimal learning operator (24) settles around the
expected steady-state level given by the optimal asymptotic

0 20 40 60 80

100

101

‖η
k
(t
)‖

2 2

perturbations pseudo-inverse ILC
sub-optimal ILC optimal ILC

0 20 40 60 80

10−1

101

iteration k

‖ν
k
(t
)‖

2 2

α = 0.01 α = 0.1 α = 2

Fig. 3. Evolution of the input and output error’s L2-norms for three
different learning operators: pseudo-inverse (blue), sub-optimal (red) and
optimal (green). For clarity, the evolution of the output error is only depicted
for the case α = 1/10.

output error PSD S∞ηη in (25) indicated by the dashed line
in Fig. 3. Since the asymptotic error PSD of the sub-optimal
ILC (19) is quite close to the optimal value, both Wiener-
filter-based learning operators perform roughly equal while the
pseudo-inverse operator (using α = 1/10) is not able to achieve
a similarly low output error on average.

The reason for this can be seen in the bottom plot of Fig. 3:
lacking stochastic information, the pseudo-inverse operator is
hardly able to separate stochastic perturbations from signal
information and thus settles at a significantly higher steady-
state level of the input error compared to the Wiener-filter-
based operators that avoid learning stochastic perturbations (cf.
Fig. 4). Lowering the regularization parameter (i.e. increasing
Q w.r.t. R) to α = 1/100 deteriorates the performance, while
increasing it to α = 2 reduces the asymptotic input error at
the cost of slower convergence. Comparing the sub-optimal
learning operator with the optimal learning operator shows that
the input error of the sub-optimal approach reaches a steady-
state level, while the optimal learning operator asymptotically
approaches zero as predicted by the theory. However, the
convergence rate is usually quite slow. Depending on the exact
application scenario, one may choose to avoid the extra com-
putational effort of implementing an iteration-varying learning
law as its impact on the output error is quite limited, at least
in this example.

VII. CONCLUSIONS AND OUTLOOK

In this paper, a general linear learning law for continous-
time linear systems was developed that is stochastically op-
timal in a MMSE sense. The proposed learning operator is
a generalization of existing MMSE-optimal approaches and
represents a systematic dual to existing feedforward norm-
optimal approaches by using a kind of Wiener-filter to opti-
mally estimate the input correction of each iteration based on
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Fig. 4. The learned input signals after 80 iterations u80(t) using a pseudo-
inverse (blue), a sub-optimal (red) or an optimal (green) learning operator
compared to the exact inverse solution (black) for the desired output yd(t).

the observed measurement. Thus, the proposed learning law
combines the superior convergence speed of inversion-based
or norm-optimal approaches with the stochastic optimality
of various stochastic ILC schemes. Using the numerically
efficient FFT-based algorithm presented in Section V to de-
termine the learning operator given by the non-causal Wiener-
Hopf equation, one is able to avoid both spectral factorization
techniques and solutions to Riccati equations. Therefore, the
general approach is applicable to DPSs in a late-lumping sense
which have not been treated directly with model-based ILC
methods so far.
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[29] V. Kučera, “Transfer-function solution of the Kalman-Bucy filtering
problem,” Kybernetika, vol. 14, no. 2, pp. 110–122, 1978.

[30] N. Amann, D. H. Owens, E. Rogers, and A. Wahl, “An H∞ Approach
to Linear Iterative Learning Control Design,” Int. J. Adapt. Control,
vol. 10, pp. 767–781, 1996.
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