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An envelope model to describe the sensor dynamics of
vibratory gyroscopes

Markus Egretzberger and Andreas Kugi

Automation and Control Institute, Vienna University of Technology, Austria

ABSTRACT

In this contribution, a method will be introduced to derive an envelope model for vibratory gyroscopes capturing
the essential ”slow” dynamics (envelope) of the system. The methodology will be exemplarily carried out for a
capacitive gyroscope with electrostatic actuators and sensors. The resulting envelope model can be utilized for
transient simulations with the advantage of a significantly increased simulation speed as well as for steady state
simulations. Especially for the sensor design and optimization, where usually very complex mathematical models
are used, efficient steady state simulations are of certain interest. Another great advantage of this approach is
that the steady state solutions in terms of the envelope model are constant. Thus, for the controller design,
a linearization of the nonlinear envelope model around the steady state solution yields a linear time-invariant
system allowing for the application of the powerful methods known from linear control theory.

Keywords: MEMS gyroscopes, resonance structures, capacitive sensors and actuators, envelope model

1. INTRODUCTION

Vibratory micro electromechanical gyroscopes are typically driven by a primary oscillator. This primary oscilla-
tion is usually excited close to the resonance frequency in order to achieve maximum amplitudes. Similar to many
electronic circuits, in particular in information technology, the wanted signal is modulated in a high-frequency
carrier signal. Thus, the rate of change of the wanted signals is several orders of magnitude slower than the
carrier frequency. In the case of the vibratory micro electromechanical gyroscopes under consideration an exter-
nal angular rate causes a secondary oscillation with an amplitude proportional to the angular rate component
about the sensitive axis exploiting the Coriolis effect. The output signal of the sensor (i.e., the angular rate) is
obtained by an appropriate demodulation of the secondary oscillation signal. In order to provide a linear sensor
behavior with maximum sensitivity the frequency and amplitude of the primary oscillation have to be controlled.
Therefore, control circuits are used with a functionality similar to those of phase-locked loop and automatic
gain-control circuits. Furthermore, micro electromechanical sensors are subject to large quadrature errors due to
limitations in the fabrication process. These quadrature errors typically are due to a mechanical unbalance which
causes a coupling between the primary and secondary oscillation even without an applied external angular rate.
This quadrature signal can be separated from the angular rate signal after the demodulation of the secondary
oscillation. In order to avoid a drift of the output signal, e.g., over the temperature, due to demodulation errors
the mechanical unbalance has to be actively compensated. Therefore, an additional actuation of the secondary
oscillator has to be provided such that a controller can be implemented to suppress the unwanted quadrature
signal. In this context, many articles dealing with the control of vibratory gyroscopes can be found in the lit-
erature, see, e.g., Ref. 1–7. In addition to the above mentioned control tasks necessary for the basic operation
of micro electromechanical gyroscopes, force-feedback control and frequency control of the secondary resonance
frequency are often used to further enhance the sensor performance. All of the mentioned control loops have in
common that the relevant closed-loop dynamics lie within the frequency range of the envelope of the signal rather
than in the frequency range of the carrier signal itself. In particular in view of system analysis and controller
design, this motivates to derive a more comprehensive mathematical model which solely captures the essential
”slow” dynamics (envelope) of the system.
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In this contribution, a method will be introduced to derive an envelope model for vibratory gyroscopes. The
methodology will be exemplarily carried out for a capacitive micro electromechanical gyroscope. This paper
is organized as follows. In Sec. 2 the specific capacitive gyroscope is discussed, which will serve as a practical
example for the theory being presented. A mathematical model for the gyroscope under consideration is given as
a starting point for the derivation of an envelope model in Sec. 3. In view of the sensor design and optimization,
where usually very complex mathematical models (e.g., FEM models) are used, efficient steady state simulations
are of certain interest. Therefore, Sec. 4 is focused on the calculation of the steady state response based on
the envelope model. A typical example that will be illustrated is the problem of dimensioning the capacitive
actuators for the compensation of the mechanical unbalance of the gyroscope. Additionally, the aim is to trim the
resonance frequency of the secondary oscillation to a desired predefined value. For this, a procedure is presented
for the calculation of the unbalance compensated and frequency trimmed steady state. Finally, Sec. 5 gives a
short summary and an outlook to further research activities.

2. A CAPACITIVE GYROSCOPE

The micro electromechanical device that will be considered within this paper is a gyroscope consisting of a plane
symmetric silicon structure operating with an in-plane primary mode, excited by capacitive comb actuators, and
an out-of-plane secondary mode with capacitive parallel plate sensors. Most capacitive gyroscopes found in the
literature are driven by electrostatic comb actuators bringing about the advantage of a high actuation force and
little required space. They are found in linear oscillating as well as in rotating designs, see e.g., Ref. 6, 8–11
and Ref. 12, respectively. For the same reason the read-out of the secondary oscillation is preferably realized
by means of comb sensors. In practice comb sensors can only be realized if the secondary mode is also an
in-plane oscillation as it is the case for the designs presented in Ref. 8–11. If the secondary mode is an out-of-
plane oscillation, parallel plate capacitors are utilized such that the movable electrode is part of the oscillating
structure and the appropriate fixed electrode is mounted on the housing of the device, see e.g., Ref. 12. In
Ref. 13 a capacitive gyroscope was developed with a linear oscillating primary mode driven by comb actuators
in combination with a secondary mode that is oscillating out-of-plane.

Within the scope of this work several geometric designs deduced from the capacitive gyroscope presented
in Ref. 13 have been studied. The increasing complexity of the sensor design and the large variety of design
modifications have given rise to the development of a software tool for the automatic generation of an analytical
mathematical model for this type of capacitive gyroscopes. This software tool is capable of reading slightly
refined geometric design data provided by CAD tools and converts the geometric information of the structure
into functional elements necessary for the physical modeling of the gyroscope. A data interface is provided
for a program package developed for the commercial computer algebra program Maple, which allows for the
analytical modeling of the gyroscope and the subsequent export of a suitable model for the numeric simulation
environment Matlab/Simulink. The software tool is described in more detail in Ref. 14 and will be utilized
in the present work for the derivation of the mathematical model.

At this point, let us restrict ourselves to one specific design which is an enhanced version of the gyroscope
presented in Ref. 13. This design is capable of both compensating the mechanical unbalance and tuning the
eigenfrequency of the secondary mode. In this section, the working principle of the capacitive gyroscope will be
explained and subsequently the appropriate mathematical model is derived.

2.1 Principle of operation

The capacitive gyroscope under consideration as depicted in Fig. 1 is an etched, plane silicon structure possessing
two axes of symmetry. It consists of a rectangular fixed frame, which is rigidly mounted on the housing of the
device, and two movable frames, one on the left and one on the right half of the sensor, which are flexibly
connected to the fixed frame via elastic beams, the so-called drive beams. Moreover, two paddles are flexibly
connected to each movable frame via torsion beams.

The comb actuators and comb sensors comprise electrodes residing on the fixed frame and their movable
counterparts which are rigidly attached to the movable frames. The comb actuators allow for a harmonic
excitation of the movable frames and the paddles in an anti-symmetric in-plane oscillation (primary mode). If
an external angular rate is applied to the system the Coriolis force is coupling to the velocity of the movable
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Figure 1. Schematic representation of the capacitive gyroscope (a) primary mode and (b) secondary mode.

frames and paddles causing an out-of-plane motion of these rigid body elements (secondary mode). The comb
sensors provide the feedback signal for the amplitude control of the primary mode while the secondary mode is
detected by means of four parallel plate capacitors with a fixed electrode placed above each paddle. Furthermore,
there are additional capacitive parallel plate actuators, each of which consisting of several fixed electrodes placed
above the movable frame and the paddles. The mechanical unbalance which is coupling between the primary
and secondary mode is due to a distortion of the rectangular shaped cross sections of the beam elements, in
particular at the drive meanders. In the mathematical model derived below this effect will be accounted for by
means of beam elements with rhomboid cross sections characterized by the so-called side wall angle Γ, see Ref. 15.
All electrostatic actuators are assumed to be voltage controlled with a desired input voltage, see e.g., Ref. 16.
The electrostatic sensors are realized by means of a so-called charge amplifier circuit to convert the capacitance
change into a proportional output voltage. These circuits are complemented by appropriate differential amplifiers
in order to provide applicable output signals for the detection of the primary and secondary mode.

2.2 Mathematical model

As described in Subsec. 2.1 the micro electromechanical device is composed of several individual elements, i.e.,
the movable mechanical structure consisting of rigid elements (movable frame, paddle), elastic elements (beam
structures) and the electrostatic actuators (comb and parallel plate capacitors). In a more general form, the
capacitive gyroscope can be considered as a multi-body system made up of rigid and elastic bodies with external
forces applied by the capacitive actuators. The equations of motion can be derived by means of Lagrange’s
formalism utilizing the software tool presented in Ref. 14. The resulting model is a system of non-linear ordinary
differential equations of the form

M (z) z̈+C (z, ż,Ω) ż+ f
(
z,u,Ω, Ω̇,Γ

)
= 0 (1a)

with the output
y = h (z) , (1b)

the vector of the generalized displacements z, the externally applied angular rate Ω and the vector of the input
voltages u and output voltages y. Note that M (z) is the positive definite inertia matrix, C (z, ż,Ω) is the Coriolis
matrix and the side wall angle Γ represents the mechanical unbalance of the gyroscope. Since the displacements
z are small the autonomous mechanical system with Ω = 0 and u = 0 can be linearized around the equilibrium
point z = ż = 0 and the eigenmodes and eigenvectors of the (decoupled) mechanical structure with Γ = 0 can
be calculated. The state transformation z = Tq with the regular matrix T containing the eigenvectors of the
linearized system substituted in (1) yields a modal model which allows for a systematic order reduction. So far
the system has been considered as a conservative system, i.e., without dissipative terms. Within the scope of this
contribution a modal damping model will be used by adding the dissipative term −Dq̇ with a diagonal matrix D.
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Due to the specific design of the gyroscope some further simplification can be made. The structure is optimized
to yield a maximum Coriolis effect while at the same time suppressing the inertia and centrifugal terms due to
the external angular rate. In view of these assumptions all non-linear terms of the mechanical subsystem are
neglected except for the Coriolis terms stemming from the external angular rate. Then the transformed (modal)
system can be written in the form

d

dt

[
q
v

]
=

[
0 I

−K̃ (Γ) −D̃ (Ω)

] [
q
v

]
−
[

0

f̃ (q,u)

]
(2a)

with the output
y = h̃ (q) , (2b)

the vectors of the states q,v ∈ Rn, the vector of the input voltages u ∈ Rm and the output voltages y ∈ Rp.
Thereby, K̃ (Γ) denotes the stiffness matrix of the mechanical system, the matrix D̃ (Ω) contains the dissipative
terms and the Coriolis terms due to the external angular rate Ω and the vector f̃ (q,u) comprises the non-linear
electromechanical coupling terms due to the capacitive actuation.

In the case of the capacitive gyroscope from Fig. 1 the input vector u consists of m input voltages, namely the
drive voltage uD at the comb actuators and m− 1 different compensation voltages applied to the parallel plate
actuators for suppressing the unbalance due to the side wall angle Γ, for force feedback control and for tuning
the eigenfrequency of the secondary mode. The exact number of compensation voltages is not specified at this
stage, since it varies for each specific design under consideration. For the further calculations a numerical model
reduced to n = 8 modes will be used. Thereby, the fundamental modes of the gyroscope, i.e., the primary and
secondary mode, coincide with the second and third eigenmode q2 and q3 of the eight modes model, respectively.
The primary and secondary eigenfrequencies are denoted as ωP and ωS and the modal damping is described by
the quality factors QP and QS . Finally, the output vector y = [ yP , yS ]

T
consists of the primary and secondary

detection voltages yP and yS provided by the capacitive comb sensors and parallel plate sensors, respectively.

3. ENVELOPE MODEL

Now the system (2) is excited with the harmonic drive voltage uD with the aim to operate at the eigenfrequency
of the primary mode. In many cases the relevant dynamics lie within the frequency range of the envelope of the
signal rather than in the frequency range of the harmonically oscillating signals itself. This leads to the idea of
developing a model that is described by the Fourier coefficients of the appropriate harmonic signals, see, e.g.,
Ref. 17.

Starting from the general mathematical model (2) a Fourier transformation q = QTw, v = VTw, u = UTw
and y = YTw is performed with the Fourier coefficient matrices Q,V ∈ R2r+1×n, U ∈ R2r+1×m and Y ∈
R2r+1×p of the form

Q =




Q1,0 · · · Qn,0

Q1,S Qn,S

Q1,C Qn,C

...
. . .

...
Q1,rS Qn,rS

Q1,rC · · · Qn,rC



, V =




V1,0 · · · Vn,0

V1,S Vn,S

V1,C Vn,C

...
. . .

...
V1,rS Vn,rS

V1,rC · · · Vn,rC



, U =




U1,0 · · · Um,0

U1,S Um,S

U1,C Um,C

...
. . .

...
U1,rS Um,rS

U1,rC · · · Um,rC



, Y =




Y1,0 · · · Yp,0

Y1,S Yp,S

Y1,C Yp,C

...
. . .

...
Y1,rS Yp,rS

Y1,rC · · · Yp,rC




(3)
and the Fourier basis vector w ∈ R2r+1 of the form

w =
[
1, sin (ϕ) , cos (ϕ) , . . . , sin (rϕ) , cos (rϕ)

]T
.

with the phase ϕ. The Fourier basis vector w satisfies the differential equation ẇ = Ωw with the phase velocity
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matrix

Ω =




0 0 0 · · · 0 0
0 0 ω 0 0
0 −ω 0 0 0
...

. . .
...

0 0 0 0 rω
0 0 0 · · · −rω 0




and the phase velocity ω = ϕ̇ of the fundamental oscillation. If it is assumed that the non-linear terms in (2) can
be written in the form f̃ (q,u) = F̃T (Q,U)w and h̃ (q) = H̃T (Q)w, the above Fourier transform substituted
in (2) yields the matrix-valued differential equations

d

dt

[
QT

VT

]
=

[
0 I

−K̃ (Γ) −D̃ (Ω)

] [
QT

VT

]
−
[

0

F̃T (Q,U)

]
−
[

QT

VT

]
Ω (4a)

with the output
YT = H̃T (Q) . (4b)

Since in general the Fourier transform of the non-linear terms cannot be calculated analytically the discrete
Fourier transform will be utilized similarly to the approach proposed in Ref. 18 for the computation of circuit
waveform envelopes. For this, a discretization of one period T = 2π/ω of the fundamental oscillation with N
equidistant time steps is performed. If the discretized state vectors qk and input vectors uk for the time steps
k = 1, . . . , N are merged into a matrix q̂ = [ q̂1, . . . , q̂N ]

T
and û = [ û1, . . . , ûN ]

T
, respectively, the inverse

discrete Fourier transform with real coefficients directly relates q̂ and û with Q and U in the form

q̂ =
1

N
ΛQ , û =

1

N
ΛU

with the transformation matrix

Λ =




1 0 1 . . . 0 1
...

. . .
...

1 sin
(
2π k−1

N

)
cos

(
2π k−1

N

)
. . . sin

(
2πr k−1

N

)
cos

(
2πr k−1

N

)
...

. . .
...

1 sin
(
2πN−1

N

)
cos

(
2πN−1

N

)
. . . sin

(
2πrN−1

N

)
cos

(
2πrN−1

N

)




.

IfN > 2r, i.e. the sampling theorem is satisfied, the transformation matrixΛ has 2r+1 linearly independent rows.
Now the non-linear terms in (2) can be calculated for every time step k = 1, . . . , N in the form f̂k = f̃ (q̂k, ûk) and
ĥk = h̃ (q̂k). Again the vectors fk and hk are merged into a matrix f̂ = [ f̂1, . . . , f̂N ]T and ĥ = [ ĥ1, . . . , ĥN ]T,
respectively. Then the inverse discrete Fourier transform with real coefficients

F̂ = ΛT f̂ , Ĥ = ΛT ĥ

finally yields an approximation for the Fourier transform of the non-linear terms F̃ (Q,U) ≃ F̂ and H̃ (Q) ≃ Ĥ.

4. CALCULATION OF THE STEADY STATE RESPONSE

Now a typical objective is to calculate the steady state response of the system (2) due to a harmonic excitation
by the input uS = UT

S w. In terms of the corresponding envelope model (4) this is equivalent to the problem
of finding the equilibrium QS , VS of the system (4) for the constant input US . Thus, the steady state can be
calculated by setting the time derivatives at the left hand side of (4a) equal to zero, i.e. solving the matrix-valued
algebraic equations

0 = VT
S −QT

SΩ , 0 = −K̃ (Γ) QT
S − D̃ (Ω) VT

S − F̃ (QS ,US)−VT
S Ω . (5)
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In the following this procedure is applied to several tasks in the optimization and design process of the capacitive
gyroscope. The system is excited by the harmonic drive voltage uD = UD,0+UD,C cos (ωt) at the eigenfrequency
of the primary mode ω = ωP . Furthermore, let us assume that two voltages UT,0 and UC,0 are applied to suitably
designed parallel plate actuators in order to serve as control inputs for the tuning of the eigenfrequency of the
secondary mode and the unbalance control, respectively. The dimension of the Fourier basis is chosen as r = 1
and thus the Fourier coefficient matrix of the input voltages according to (3) can then be written in the form

US =




UD,0 UT,0 ± UC,0 . . . UT,0 ± UC,0

0 0 . . . 0

UD,C 0 . . . 0


 .

If no external angular rate Ω is applied to the gyroscope and no mechanical unbalance is present the primary
mode is fully decoupled from the residual system. In this case the primary mode turns out to behave like a
weakly damped second order system that is harmonically excited close to the resonance frequency, thus yielding
a large Fourier coefficient Q2,S while the Fourier coefficient Q2,C is vanishing. This effect is exploited within the
control design of the primary mode in order to achieve the maximum sensitivity. In general, however, the system
responds in steady state to a constant external angular rate Ω and/or a constant side wall angle Γ in the form

QS =



Q1,0 Q2,0 Q3,0 Q4,0 0 0 Q7,0 Q8,0

0 Q2,S Q3,S 0 0 0 Q7,S 0

0 Q2,C Q3,C 0 0 0 Q7,C 0


 , YS =




YP,0 YS,0

YP,S YS,S

YP,C YS,C


 .

The only harmonically excited modes are the 2nd and 3rd eigenmodes (primary and secondary mode) as well as
the 7th eigenmode. All other modes are either not or only stationary excited. The only relevant output signals
are the harmonic components as due to the high-pass characteristics of the charge amplifiers the dc-components
YP,0 and YS,0 are suppressed in the stationary output signal.

Now, in the following subsection the normal operation of the gyroscope shall be investigated in terms of
the response to an external angular rate Ω and a mechanical unbalance due to a side wall angle Γ. For the
subsequent numerical calculations a discretization of N = 10 for the approximation of the Fourier transforms of
the non-linear terms is chosen.

4.1 Normal mode of operation

Let us consider a specific actuation of the parallel plate actuators with the constant voltages UT,0 = 9V and
UC,0 = 0V. Now the steady state response of the gyroscope is calculated (a) due to an external angular rate
Ω and (b) due to a side wall angle Γ. Figure 2 illustrates the corresponding Fourier coefficients of the output
signal YS,S and YS,C normalized to the response at Ω = 100 ◦/s. Thereby, the range of the side wall angle Γ in
Fig. 2(b) is chosen such that the normalized steady state response of the coefficient YS,S for ±Γ100 is ∓1. Now
it can be seen from Fig. 2(a) and 2(b) that within the plotted range the coefficients YS,C and YS,S are varying
linearly with the angular rate and the side wall angle, respectively. The associated phasor diagram of the two
coefficients YS,C and YS,S , see Fig. 2(c), reveals a phase shift of −90◦ between the output signal due to the
angular rate and the output signal due to the side wall angle. This gives rise to the definition of the so-called

normalized unbalance Γ̃ = αΓ such that the magnitude
√

Y 2
S,S + Y 2

S,C of the output signal yS due to an external

angular rate of 1 ◦/s and due to a normalized unbalance of 1 ◦/s are equivalent. Furthermore, it can be observed
that the unwanted unbalance signal can be separated from the angular rate signal by a proper demodulation of
the output voltage yS with two orthogonal reference signals. For a detailed treatise on the unbalance effects of
micro electromechanical gyroscopes, see, e.g., Ref. 7.

The next subsection is concerned with the behavior of the gyroscope due to a mechanical unbalance Γ̃ and
certain applied voltages UT,0 and UC,0 for the tuning of the eigenfrequency of the secondary mode and the
unbalance control. For this, let us assume that no external angular rate Ω is applied to the gyroscope.
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Figure 2. Steady state response of the system in terms of the Fourier coefficients YS,S and YS,C normalized to the response
at Ω = 100 ◦/s (a) due to an external angular rate Ω and (b) due to a side wall angle Γ with the appropriate phasor
diagram (c).

4.2 Unbalance control and frequency tuning

Consider a gyroscope with a normalized unbalance of Γ̃ = 250 ◦/s where the applied voltages UT,0 and UC,0

are varied. Figure 3(a) illustrates the characteristics of the Fourier coefficients YS,S and YS,C in steady state
over the range of the voltages UT,0 = 3V . . . 9V and UC,0 = −3V . . . 3V, respectively. Again the coefficients

YS,S and YS,C are normalized to the response due to Γ̃ = 100 ◦/s at UT,0 = 9V and UT,0 = 0, cf. Fig. 2.
Now a strongly non-linear characteristics of the coefficients YS,S and YS,C can be observed from Fig. 3(a). A
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(a) components of the output voltage YS,S and YS,C
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Figure 3. Characteristics of system quantities in the steady state over the voltages UT,0 and UC,0 (a) in terms of the
output components YS,S and YS,C normalized to the response due to Γ̃ = 100 ◦/s at UT,0 = 9V and UT,0 = 0, cf. Fig. 2,
and (b) in terms of the difference ∆f between the eigenfrequencies of the primary and the secondary mode.

closer look reveals that both coefficients YS,S and YS,C can be suppressed along one characteristic line of voltage
couples UT,0 and UC,0 marked in gray. The steady state obtained by applying the voltages UT,0 and UC,0 along
this characteristic gray line will be referred to as the unbalance compensated state. Another characteristic
line of voltage couples highlighted in black can be found where the component YS,S is identically zero and at
the same time the component YS,C is extremal w.r.t. UT,0. A different interpretation of this characteristic
line can be found if the eigenfrequencies of the linearized system are considered. Therefore, the system (4a)
is linearized around the equilibrium point QS , VS and US according to (5) and the eigenfrequencies of the
linearized decoupled system with Γ = 0 are calculated. Figure 3(b) illustrates the distribution of the difference
∆f between the eigenfrequencies of the primary and the secondary mode over the voltages UT,0 and UC,0. Again
the two characteristic lines of voltage couples are plotted in Fig. 3(b). Now it can be seen that the black line
exactly corresponds to a zero frequency difference between the primary and secondary mode, i.e. ∆f = 0.
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Consequentially, the steady state obtained by applying the voltages UT,0 and UC,0 along this characteristic black
line will be referred to as the matched-mode state. The sensitivity of the gyroscope due to the external angular
rate as well as the side wall angle is a maximum in this matched-mode state.

In the previous considerations it has been be shown how the unbalance and the eigenfrequencies of the
linearized system, in particular the secondary eigenfrequency, can be affected by the voltages UT,0 and UC,0.
Especially during the design process of capacitive gyroscopes, however, the inverse problem of calculating the
necessary voltages UT,0 and UC,0 in order to achieve an unbalance compensated steady state where the frequency
difference ∆f becomes a desired predefined value is of certain interest. Exemplarily, the solution for the inverse
problem has been carried out for the capacitive gyroscope under consideration yielding the necessary voltage
couples UT,0 and UC,0 for the unbalance compensated and frequency trimmed steady state. The corresponding

voltages UT,0 and UC,0 are plotted in Fig. 4 over the normalized unbalance Γ̃ for a range of the desired frequency
difference 2π∆f/ωP from −1.025% to 4.1%. Due to the quadratic input non-linearity of the capacitive actuators
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Figure 4. Necessary voltage couples UT,0 and UC,0 over the normalized unbalance Γ̃ for desired frequency differences ∆f .

the unbalance compensation and the frequency trimming are subject to physical constraints. The gray line in
Fig. 4 indicates the maximum and minimum possible normalized unbalance that can be compensated for the
desired frequency difference.

5. SUMMARY AND OUTLOOK

The presented work provides a novel approach for the modeling, simulation and optimization of oscillating micro
electromechanical devices in particular of vibratory MEMS gyroscopes. The methodology has been described
exemplarily for a capacitive gyroscope. The advantages of the proposed approach for the steady state analysis
have been outlined in detail. In this context, the normal mode of operation, i.e. the response to an external
angular rate as well as to the disturbance stemming from a mechanical unbalance, was considered. Finally, the
problem of systematically dimensioning the actuators for the compensation of the unbalance and the trimming
of the secondary resonance frequency has been illustrated.

Beyond the discussed steady state applications the envelope model can also serve as a numerical model for
transient simulations with the advantage of a drastically increased simulation speed. Furthermore, this modelling
approach allows for a systematic controller design on the basis of the ”slow” system dynamics provided by the
envelope model. For this purpose, however, it is reasonable to make some more efforts in order reduction and
further algebraic simplifications of the envelope model.
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