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Abstract In this contribution, a method will be presented to
derive an envelope model for vibratory gyroscopes captur-
ing the essential ”slow” dynamics (envelope) of the system.
The methodology will be exemplarily carried out for a ca-
pacitive gyroscope with electrostatic actuators and sensors.
The resulting envelope model can be utilized for both tran-
sient and steady state simulations with the advantage of a
significantly increased simulation speed. Especially for the
sensor design and optimization, where usually very complex
mathematical models are used, efficient steady state simula-
tions are of certain interest. Another great advantage of this
approach is that the steady state solutions in terms of the en-
velope model are constant. Thus, for the controller design,
a linearization of the nonlinear envelope model around the
steady state solution yields a linear time-invariant system al-
lowing for the application of the powerful methods known
from linear control theory.

1 Introduction

Vibratory micro electromechanical gyroscopes are typically
driven by a primary oscillator. This primary oscillation is
usually excited close to the resonance frequency in order to
achieve maximum amplitudes. Similar to many electronic
circuits, in particular in information technology, the wanted
signal is modulated in a high-frequency carrier signal. Thus,
the rate of change of the wanted signals is several orders
of magnitude slower than the carrier frequency. In the case
of the vibratory micro electromechanical gyroscopes under
consideration an external angular rate causes a secondary os-
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cillation with an amplitude proportional to the angular rate
component about the sensitive axis exploiting the Coriolis
effect. The output signal of the sensor (i.e., the angular rate)
is obtained by an appropriate demodulation of the secondary
oscillation signal. In order to provide a linear sensor behav-
ior with maximum sensitivity the frequency and amplitude
of the primary oscillation have to be controlled. Therefore,
control circuits are used with a functionality similar to those
of phase-locked loop and automatic gain-control circuits.
Furthermore, micro electromechanical sensors are subject
to large quadrature errors due to limitations in the fabrica-
tion process. These quadrature errors typically are due to
a mechanical unbalance which causes a coupling between
the primary and secondary oscillation even without an ap-
plied external angular rate. This quadrature signal can be
usually separated from the angular rate signal after the de-
modulation of the secondary oscillation. In order to avoid
a drift of the output signal, e.g., over the temperature, due
to demodulation errors the mechanical unbalance has to be
actively compensated. Therefore, an additional actuationof
the secondary oscillator has to be provided such that a con-
troller can be implemented to suppress the unwanted quadra-
ture signal. In this context, many articles dealing with the
control of vibratory gyroscopes can be found in the litera-
ture, see, e.g., Bernstein et al (1993), Bhave et al (2003),
Günthner et al (2005), Kuisma et al (1997), Loveday and
Rogers (2002), Maenaka et al (1996), Sassen et al (2000).
In addition to the above mentioned control tasks necessary
for the basic operation of micro electromechanical gyro-
scopes, force-feedback control and frequency control of the
secondary resonance frequency are often used to further en-
hance the sensor performance. All of the mentioned con-
trol loops have in common that the relevant closed-loop dy-
namics lie within the frequency range of the envelope of the
signal rather than in the frequency range of the carrier sig-
nal itself. In particular from a system analysis and controller
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design point of view, this motivates to derive a more com-
prehensive mathematical model which solely captures the
essential ”slow” dynamics (envelope) of the system. In this
context see also Kanso et al (2004).

In this contribution, the method for the derivation of an
envelope model introduced by Egretzberger and Kugi (2009)
will be picked up and expanded to include a simplified model
suitable for the systematic controller design. The method-
ology will be exemplarily carried out for a capacitive mi-
cro electromechanical gyroscope. This paper is organized
as follows. In Sect. 2 the specific capacitive gyroscope is
discussed, which will serve as a practical example for the
theory being presented. A mathematical model for the gyro-
scope under consideration is given as a starting point for the
derivation of an envelope model in Sect. 3. Subsequently,
Sect. 4 and Sect. 5 are focused on the application of the en-
velope model in terms of calculating the steady state and
transient response to an angular rate or mechanical unbal-
ance. In order to provide a suitable model for a systematic
controller design on the basis of the ”slow” system dynam-
ics, however, it is reasonable to make some more efforts in
order reduction and further simplification of the envelope
model. Therefore, Sect. 6 is concerned with the derivation of
a simplified two modes envelope model. Finally, the work-
ing principle and the typical control tasks of vibratory gy-
roscopes are discussed by means of the simplified envelope
model. The work is concluded by a short summary.

2 A capacitive gyroscope

The micro electromechanical device that will be considered
within this paper is a gyroscope consisting of a plane sym-
metric silicon structure operating with an in-plane primary
mode, excited by capacitive comb actuators, and an out-of-
plane secondary mode with capacitive parallel plate sensors.
Most capacitive gyroscopes found in the literature are driven
by electrostatic comb actuators bringing about the advantage
of a high actuation force and little required space. They are
found in linear oscillating as well as in rotating designs, see,
e.g., Alper and Akin (2001), Bhave et al (2003), Braxmaier
et al (2003), Piyabongkarn et al (2005), Seshia et al (2002)
and Juneau et al (1997), respectively. For the same reason
the read-out of the secondary oscillation is preferably also
realized by means of comb sensors. Obviously, comb sen-
sors require the secondary mode to be also an in-plane os-
cillation as it is the case for the designs presented by Alper
and Akin (2001), Braxmaier et al (2003), Piyabongkarn et al
(2005), Seshia et al (2002). If the secondary mode is an
out-of-plane oscillation, parallel plate capacitors are utilized
such that the movable electrode is part of the oscillating
structure and the appropriate fixed electrode is mounted on
the housing of the device, see, e.g., Günthner (2006).

Within the scope of this work several geometric designs
deduced from the capacitive gyroscope presented by Günth-
ner (2006) have been studied. The increasing complexity of
the sensor design and the large variety of design modifica-
tions have given rise to the development of a software tool
for the automatic generation of an analytical mathematical
model for this type of capacitive gyroscopes. This software
tool is capable of reading slightly refined geometric design
data provided by CAD tools and converts the geometric in-
formation of the structure into functional elements necessary
for the mathematical modeling of the gyroscope. A data in-
terface is provided for a program package developed for the
commercial computer algebra program MAPLE, which al-
lows for the analytical modeling of the gyroscope and the
subsequent export of a suitable model for the numeric simu-
lation environment MATLAB /SIMULINK . The software tool
is described in more detail by Mair et al (2009) and will be
utilized in the present work for the derivation of the mathe-
matical model.

At this point, let us restrict ourselves to one specific de-
sign which is an enhanced version of the gyroscope pre-
sented by G̈unthner (2006). This design is capable of both
compensating the mechanical unbalance and tuning the
eigenfrequency of the secondary mode. In this section, the
working principle of the capacitive gyroscope will be ex-
plained and subsequently the appropriate mathematical
model is derived.

2.1 Principle of operation

The capacitive gyroscope under consideration as depicted in
Fig. 1 is an etched, plane silicon structure possessing two
axes of symmetry. It consists of a rectangular fixed frame,
which is rigidly mounted on the housing of the device, and
two movable frames, one on the left and one on the right half
of the sensor, which are flexibly connected to the fixed frame
via elastic beams, the so-called drive beams. Moreover, two
paddles are flexibly connected to each movable frame via
torsion beams.

The comb actuators and comb sensors comprise elec-
trodes residing on the fixed frame and their movable coun-
terparts which are rigidly attached to the movable frames.
The comb actuators allow for a harmonic excitation of the
movable frames and the paddles in an anti-symmetric in-
plane oscillation (primary mode). If an external angular rate
is applied to the system the Coriolis force is coupling to
the velocity of the movable frames and paddles causing an
out-of-plane motion of these rigid body elements (secondary
mode). The comb sensors provide the feedback signal for the
amplitude control of the primary mode while the secondary
mode is detected by means of four parallel plate capacitors
with a fixed electrode placed on the housing above each
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Fig. 1 Schematic representation of the capacitive gyroscope (a) primary mode and (b) secondary mode.

paddle. Furthermore, there are additional capacitive paral-
lel plate actuators, each of which consisting of several fixed
electrodes placed above the movable frame and the paddles.
The mechanical unbalance which is coupling the primary
and the secondary mode is due to a distortion of the rectan-
gular shaped cross sections of the beam elements, in particu-
lar at the drive meanders. In the mathematical model derived
below this effect will be accounted for by means of beam el-
ements with rhomboid cross sections characterized by the
so-called side wall angleξ , see Merz et al (2007). All elec-
trostatic actuators are assumed to be voltage controlled with
a desired input voltage, see, e.g., Seeger and Boser (2003).
The electrostatic sensors are realized by means of so-called
charge amplifier circuits to convert the capacitance change
into a proportional output voltage. These circuits are com-
plemented by appropriate differential amplifiers in order to
obtain applicable output signals for the detection of the pri-
mary and secondary mode.

2.2 Mathematical model

As described in Subsect. 2.1 the micro electromechanical
device is composed of several components, i.e., the mov-
able mechanical structure consisting of rigid elements (mov-
able frame, paddle), elastic elements (beam structures) and
the electrostatic actuators (comb and parallel plate capaci-
tors). In a more general form, the capacitive gyroscope can
be considered as a multi-body system made up of rigid and
elastic bodies with external forces applied by the capacitive
actuators. The equations of motion can be derived by means
of Lagrange’s formalism, e.g. by utilizing the software tool
presented by Mair et al (2009). The resulting model is a sys-
tem of non-linear ordinary differential equations of the form

M (z) z̈+C(z, ż,Ω) ż+ f
(
z,u,Ω ,Ω̇ ,ξ

)
= 0 (1a)

with the output

y = h(z) , (1b)

the vector of the generalized displacementsz, the externally
applied angular rateΩ and the vector of input voltagesu
and output voltagesy. Note thatM (z) is the positive defi-
nite inertia matrix,C(z, ż,Ω) is the Coriolis matrix and the
side wall angleξ represents the mechanical unbalance of
the gyroscope. Since the displacementsz are small the au-
tonomous mechanical system withΩ = 0 andu = 0 can
be linearized around the equilibrium pointz= ż= 0 and the
eigenmodes and eigenvectors of the (decoupled) mechanical
structure withξ = 0 can be calculated. The state transforma-
tion z= Tq with the regular matrixT containing the eigen-
vectors of the linearized autonomous system substituted in
Eq. 1 yields a modal model which allows for a systematic
order reduction. So far the system has been considered as a
conservative system, i.e., without dissipative terms. Within
the scope of this contribution a modal damping model will
be used by adding the dissipative term−Dq̇ with a diago-
nal matrixD. Due to the specific design of the gyroscope
some further simplifications can be made. The structure is
optimized to yield a maximum Coriolis effect while at the
same time suppressing the inertia and centrifugal terms due
to the external angular rate. In view of these assumptions all
non-linear terms of the mechanical subsystem are neglected
except for the Coriolis terms stemming from the external an-
gular rateΩ . Then, the transformed (modal) system can be
written in the form

d
dt

[
q
v

]
=

[
0 I

−K̃ (ξ ) −D̃(Ω)

][
q
v

]
−
[

0
f̃ (q,u)

]
(2a)

with the output

y = h̃(q) , (2b)

the vectors of the statesq,v ∈ Rn, the vector of the input
voltagesu ∈ Rm and the output voltagesy ∈ Rp. Thereby,
K̃ (ξ ) denotes the stiffness matrix of the mechanical system
depending on the side wall angleξ , the matrixD̃(Ω) con-
tains the dissipative terms and the Coriolis terms due to the
external angular rateΩ and the vector̃f (q,u) comprises the
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non-linear electromechanical coupling terms due to the ca-
pacitive actuation.

In the case of the capacitive gyroscope from Fig. 1 the
input vectoru consists ofm input voltages, namely the drive
voltageuD at the comb actuators and the compensation volt-
agesuC, j, j = 1, . . . ,m− 1 applied to the parallel plate ac-
tuators for suppressing the mechanical unbalance due to the
side wall angleξ and for tuning the eigenfrequency of the
secondary mode. The exact number of compensation volt-
ages is not specified at this stage, since it varies for each
specific design under consideration. For the subsequent cal-
culations a numerical model reduced ton = 8 modes will be
used. Thereby, the fundamental modes of the gyroscope, i.e.,
the primary and secondary mode, coincide with the second
and third eigenmodeq2 andq3 of the eight modes model, re-
spectively. Finally, the output vectory = [yP, yS ]

T consists
of the primary and secondary detection voltagesyP andyS

provided by the capacitive comb sensors and parallel plate
sensors, respectively. The corresponding charge amplifieris
supplied by the read-out voltageuRO which will be consid-
ered as a constant parameter.

3 Envelope model

Now, the system Eq. 2 is excited by the harmonic drive volt-
ageuD in order to operate the system at the eigenfrequency
of the primary mode. In many cases the relevant dynamics
lie within the frequency range of the envelope of the signal
rather than in the frequency range of the harmonically os-
cillating signal itself. This leads to the idea of developing a
model that is described by the Fourier coefficients of the ap-
propriate harmonic signals, see, e.g., Caliskan et al (1996).

Starting from the general mathematical model Eq. 2 a
Fourier transformationq = QTw, v = VTw, u = UTw and
y = YTw is performed with the Fourier coefficient matrices
Q,V ∈R2r+1×n, U ∈R2r+1×m andY ∈R2r+1×p of the form

Q =




Q1,0 · · · Qn,0

Q1,S Qn,S

Q1,C Qn,C
...

. ..
...

Q1,rS Qn,rS

Q1,rC · · ·Qn,rC



, V =




V1,0 · · · Vn,0

V1,S Vn,S

V1,C Vn,C
...

.. .
...

V1,rS Vn,rS

V1,rC · · ·Vn,rC



,

U =




U1,0 · · · Um,0

U1,S Um,S

U1,C Um,C
...

. ..
...

U1,rS Um,rS

U1,rC · · ·Um,rC



, Y =




Y1,0 · · · Yp,0

Y1,S Yp,S

Y1,C Yp,C
...

.. .
...

Y1,rS Yp,rS

Y1,rC · · ·Yp,rC




(3)

and the Fourier basis vectorw ∈ R2r+1

w =
[

1, sin(ϕ) , cos(ϕ) , . . . , sin(rϕ) , cos(rϕ)
]T

,

with the phaseϕ. The Fourier basis vectorw satisfies the
differential equatioṅw=ΩΩΩ w with the phase velocity matrix

ΩΩΩ =




0 0 0 · · · 0 0
0 0 ω 0 0
0 −ω 0 0 0
...

...
...

0 0 0 0 rω
0 0 0 · · · −rω 0




and the phase velocityω = ϕ̇ of the fundamental oscillation.
If it is assumed that the non-linear terms in Eq. 2 can be writ-
ten in the form̃f (q,u) = F̃T (Q,U)w andh̃(q) = H̃T (Q)w,
the above Fourier transform substituted in Eq. 2 yields the
matrix-valued differential equations

d
dt

[
QT

VT

]
=

[
0 I

−K̃ (ξ ) −D̃(Ω)

][
QT

VT

]

−
[

0
F̃T (Q,U)

]
−
[

QT

VT

]
ΩΩΩ (4a)

with the output

YT = H̃T (Q) . (4b)

Since in general the Fourier transform of the non-linear terms
cannot be calculated analytically the discrete Fourier trans-
form will be utilized similarly to the approach proposed by
Feldman and Roychowdhury (1996) for the computation of
circuit waveform envelopes. For this, a discretization of one
periodT =2π/ω of the fundamental oscillation withN equi-
distant time steps is performed. If the discretized state vec-
torsqk and input vectorsuk for the time stepsk = 1, . . . ,N
are merged into a matrix

q̂ = [ q̂1, . . . , q̂N ]T and û = [ û1, . . . , ûN ]T ,

respectively, the inverse discrete Fourier transform withreal
coefficients directly relateŝq andû with Q andU in the form

q̂ =
1
N

ΛΛΛ Q , û =
1
N

ΛΛΛ U

with the transformation matrix

ΛΛΛ =




1 0 1 . . . 0 1
...

...
...

1 sin(ak) cos(ak) . . . sin(r ak) cos(r ak)
...

. . .
...

1 sin(aN) cos(aN) . . . sin(r aN) cos(r aN)




,

ak = 2π (k−1)/N , k = 2, . . . ,N .

If N > 2r, i.e., the sampling theorem is satisfied, the trans-
formation matrixΛΛΛ has 2r + 1 linearly independent rows.
Now the non-linear terms in Eq. 2 can be calculated for ev-
ery time stepk = 1, . . . ,N in the form f̂k = f̃ (q̂k, ûk) and
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ĥk = h̃(q̂k). Again, the vectorsfk andhk are merged into a
matrix f̂ = [ f̂1, . . . , f̂N ]T andĥ= [ ĥ1, . . . , ĥN ]T, respectively.
Then, the discrete Fourier transform with real coefficients

F̂ = ΛΛΛ T f̂ , Ĥ = ΛΛΛ T ĥ

finally yields an approximation for the Fourier transform of
the non-linear terms̃F(Q,U)' F̂ andH̃ (Q)' Ĥ.

4 Calculation of the steady state response

Now a typical question is to calculate the steady state re-
sponse of the system Eq. 2 due to a harmonic excitation by
the inputuS = UT

S w. In terms of the corresponding envelope
model of Eq. 4 this is equivalent to the problem of finding
the equilibriumQS, VS of the system Eq. 4 for the constant
input US. Thus, the steady state can be calculated by setting
the time derivatives at the left hand side of Eq. 4a equal to
zero, i.e., solving the matrix-valued algebraic equations

0= VT
S −QT

S ΩΩΩ ,

0=−K̃ (ξ ) QT
S − D̃(Ω) VT

S − F̃T (QS,US)−VT
S ΩΩΩ .

(5)

In the following it is assumed that the system is excited
by the harmonic drive voltageuD = UD,0 +UD,C cos(ωt)
at the eigenfrequency of the primary modeω = ω2. Fur-
thermore, let us assume that a constant voltageuC, j =UT,0,
j = 1, . . . ,m−1 is applied to the parallel plate actuators. The
dimension of the Fourier basis is chosen asr = 1 and thus
the Fourier coefficient matrix of the input voltages according
to Eq. 3 can then be written in the form

US =




UD,0 UT,0 . . . UT,0

0 0 . . . 0

UD,C 0 . . . 0


 .

If no external angular rateΩ is applied to the gyroscope
and no mechanical unbalance is present, i.e.ξ = 0, the pri-
mary mode is fully decoupled from the residual system. In
this case the primary mode turns out to behave like a weakly
damped second order system that is harmonically excited
close to the resonance frequency, thus yielding a large
Fourier coefficientQ2,S while the Fourier coefficientQ2,C

is vanishing. This effect is exploited within the control de-
sign of the primary mode in order to achieve the maximum
sensitivity. In general, however, in steady state the system
responds to a constant external angular rateΩ and/or a con-
stant side wall angleξ in the form

QS =




Q1,0 Q2,0 Q3,0 Q4,0 0 0 Q7,0 Q8,0

0 Q2,S Q3,S 0 0 0 Q7,S 0

0 Q2,C Q3,C 0 0 0Q7,C 0


 ,

YS =




YP,0 YS,0

YP,S YS,S

YP,C YS,C


 .

The only harmonically excited modes are the 2nd and 3rd
eigenmodes (primary and secondary mode) as well as the
7th eigenmode. All other modes are either not or only sta-
tionarily excited. The only relevant output signals are the
harmonic components as due to the high-pass characteris-
tics of the charge amplifiers the dc-componentsYP,0 andYS,0

are suppressed in the stationary output signal.
In the following the normal operation of the gyroscope

shall be investigated in terms of the response to an exter-
nal angular rateΩ and to a mechanical unbalance due to
a side wall angleξ . For the subsequent numerical calcula-
tions a discretization ofN = 10 for the approximation of the
Fourier transforms of the non-linear terms is chosen. The
parallel plate actuators are supplied by the constant voltage
UT,0 = 9V. Now, the steady state response of the gyroscope
is calculated (a) due to an external angular rateΩ and (b)
due to a side wall angleξ . Figure 2 illustrates the corre-
sponding Fourier coefficients of the output signalYS,S and
YS,C normalized to the response atΩ = 100◦/s. Thereby,
the range of the side wall angleξ in Fig. 2(b) is chosen such
that the normalized steady state response of the coefficient
YS,S for ±ξ100 is ∓1. Now it can be seen from Fig. 2(a) and
2(b) that within the plotted range the coefficientsYS,C and
YS,S are varying linearly with the angular rate and the side
wall angle, respectively. The associated phasor diagram of
the two coefficientsYS,C andYS,S, see Fig. 2(c), reveals a
phase shift of−90◦ between the output signal due to the an-
gular rateΩ and the output signal due to the side wall angle
ξ . This gives rise to the definition of the mechanical unbal-

anceΓM =Γ ′
M ξ such that the magnitudeYS,A =

√
Y 2

S,S +Y 2
S,C

of the output signalyS due to an external angular rate of 1◦/s
and due to a mechanical unbalance of 1◦/s are equivalent.
Furthermore, it can be observed that the unwanted unbal-
ance signal can be separated from the angular rate signal by
a proper demodulation of the output voltageyS with two or-
thogonal reference signals. For a detailed treatise on the un-
balance effects of micro electromechanical gyroscopes, see,
e.g., G̈unthner et al (2005). A typical steady state application
for the envelope model is the dimensioning of the capacitive
actuators for the unbalance compensation and the trimming
of the secondary resonance frequency as it has been pub-
lished by Egretzberger and Kugi (2009).

5 Simulation of the transient response

The verification of the dynamic behavior of the capacitive
gyroscope requires transient numerical simulations. For this
purpose, the mathematical model Eq. 2 and the correspond-
ing envelope model Eq. 4 are implemented in the simulation
environment SIMULINK .

Let us consider a capacitive gyroscope without unbal-
ance in the normal mode of operation as described in Sect. 4
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Fig. 2 Steady state response of the system in terms of the Fourier coefficientsYS,S andYS,C normalized to the response atΩ = 100◦/s (a) due to
an external angular rateΩ and (b) due to a side wall angleξ with the appropriate phasor diagram (c).

again with the constant voltageUT,0 = 9V applied to the par-
allel plate actuators. Starting from the initial conditiongiven
by the steady state forΩ = 0◦/s the transient response to an
angular rate step of 100◦/s is simulated.

Figure 3 illustrates the corresponding transient response
of the gyroscope in terms of the normalized ”fast” output
signalyS and the corresponding ”envelope”, i.e., the magni-
tudeYS,A. A decaying oscillation with a frequency equivalent
to the difference between the primary and secondary eigen-
frequency can be observed in the transient response of the
envelopeYS,A in Figure 3(a). The close-up view in Figure
3(b), however, reveals thatYS,A additionally contains a small
high frequent periodic component which does not contribute
to the actual envelope of the original output signalyS. The
elimination of this unwanted high frequency component will
be part of the further model simplifications in the following
section.

6 Simplified envelope model

Depending on the geometric design of the gyroscope a num-
ber of simplifications can be made by applying certain suit-
able assumptions. If small displacements are assumed for
the specific sensor design as depicted in Fig. 1 and the cou-
pling from the primary and secondary mode to the resid-
ual modes is neglected the system of Eq. 2 can be reduced
to a two-modes model comprising the 2nd and 3rd eigen-
modes, i.e.,q = [q2, q3 ]

T. The mechanical stiffness matrix
K̃ (ξ ) = K̃M (ξ ) and the damping and Coriolis matrixD̃(Ω)

can then be written in the form

K̃M =

[
k2,M ξ k23,M

ξ k32,M k3,M

]
, D̃ =

[
d2 Ω c23

−Ω c32 d3

]
.

Furthermore, assuming slowly varying input voltagesuC, j,
j = 1, . . . ,m− 1 and a harmonically oscillating drive volt-
age uD = UD,0 +UD,C cos(ωt), the non-linear input term
f̃ can be written in the form̃f (q,u) = K̃C

(
uC, j

)
q+ b̃u2

D.
In general the input voltagesuC, j influence both the cross
coupling between the primary and secondary mode as well

as the secondary resonance frequency. However, in many
cases it is possible to find suitable input quantitiesŨT,0 and
ŨC,0 such that the compensation inputŨC,0 allows for tuning
the cross coupling between the primary and the secondary
mode while the trimming input̃UT,0 is solely influencing
the secondary resonance frequency. Then, the electrostatic
stiffness matrix can be written in the form, see, e.g., Ayazi
et al (2008),

K̃C =

[
0 0

k32,C
(
ŨC,0

)
k3,T

(
ŨT,0

)
+ k3,RO u2

RO

]
.

Furthermore, the input vector takes the formb̃ = [b2, 0]T

and the non-linear output term̃h reads as̃h(q) = C̃q with
the matrixC̃ = diag(c2,c3). Now, the simplified two-modes
model is given by

d
dt

[
q
v

]
=

[
0 I

−K̃M − K̃C − D̃

]

︸ ︷︷ ︸
Ã
(
Ω ,ξ ,ŨT,0,ŨC,0

)

[
q
v

]
−
[

0
b̃

]
u2

D (6a)

with the output

y = C̃q . (6b)

For the corresponding envelope model of the system Eq. 6
the dimension of the Fourier basis is chosen asr = 1 and
the coupling from the 0-subsystem (dc-component) to the
S-C-subsystem (sine and cosine component) is neglected. If
the states, i.e., the Fourier coefficients of the primary and
secondary mode, are merged to the vector

xE =
[

Q2,S, Q2,C, Q3,S, Q3,C, V2,S, V2,C, V3,S, V3,C
]T

together with the input and output vectors

uE =
[

0, ŨD,C
]T

, ŨD,C = 2UD,0UD,C ,

yE =
[

YP,S, YP,C, YS,S, YS,C
]T

the corresponding envelope model of Eq. 6 can be rewritten
in the form

ẋE = AE
(
Ω ,ξ ,ŨT,0,ŨC,0

)
xE +BE uE (7a)

yE = CE xE (7b)
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Fig. 3 Transient response of the system to an input step of the angular rateΩ in terms of the upper half wave of the normalized outputyS and the
corresponding envelopeYS,A, (a) in a time-frame showing the relevant transient effect and (b) in a close-up view.

with the dynamic matrix

AE =




0 ω 0 0 1 0 0 0
−ω 0 0 0 0 1 0 0
0 0 0 ω 0 0 1 0
0 0 −ω 0 0 0 0 1

−k2 0 −k23 0 −d2 ω −Ωc23 0
0 −k2 0 −k23 −ω −d2 0 −Ωc23

−k32 0 −k3 0 Ωc32 0 −d3 ω
0 −k32 0 −k3 0 Ωc32 −ω −d3




and the input and output matricesBE = [0, BE,2 ]
T andCE =

[CE,1, 0] with the block matricesBE,2 =−diag(b2,b2,0,0)
and CE,1 = diag(c2,c2,c3,c3), respectively. Thereby, the
stiffness parameters are given in the form

k2 = k2,M , k3 = k3,M + k3,T
(
ŨT,0

)
+ k3,RO u2

RO ,

k23 = ξ k23,M , k32 = ξ k32,M + k32,C
(
ŨC,0

)
.

Now, the complex quantitiesλ j = α j ± i ω j with

α j =−1
2

d j and ω j =
1
2

√
4k j −d2

j , j = 2,3 , (8)

denote the solutions of the relation

det
(
Ã
(
0,0,ŨT,0,0

)
−λ I

)
= 0 ,

i.e., the eigenvalues of the decoupled two modes systems Eq.
6 for a constant trimming input̃UT,0. Thereby,α j andω j are
the damping coefficient and the eigenfrequency of the eigen-
modeq j, respectively. The eigenvalues of the corresponding
simplified envelope system Eq. 7, however, are calculated as
the solutions forλE of the relation

det
(
AE

(
0,0,ŨT,0,0

)
−λE I

)
= 0

and can be written in the formλE, j = α j ± i ωE, j with

ωE, j = ω j ±ω , j = 2,3 . (9)

Hence, it can be concluded that the eigenvalues of the origi-
nal system (Eq. 6) and of the corresponding envelope model
(Eq. 7) have the identical damping coefficientsα j, while the
eigenfrequencies alter with the phase velocityω resulting in
”slow” eigenfrequenciesω j−ω and ”fast” eigenfrequencies
ω j +ω. Thus, the decoupled envelope model (Eq. 7) can be
separated into a ”fast” and a ”slow” subsystem by means of
the state transformationxE =VzE with the regular matrixV
in the so-called real Jordan form, see, e.g., Reid (1983),

żE = ÃE zE + B̃E uE , (10a)

yE = C̃E zE (10b)

with the matricesÃE = V−1AEV, B̃E = V−1BE andC̃E =

CEV. The decoupled system in Jordan form with the state
vectorzE = [zT

E,1, zT
E,2 ]

T possesses the dynamic matrix

ÃE
(
0,0,ŨT,0,0

)
=

[
ÃE,11 0

0 ÃE,22

]

composed of the block matrices

ÃE,11(22)=




α2 ω2
(+)− ω 0 0

−ω2
(−)
+ ω α2 0 0

0 0 α3 ω3
(+)− ω

0 0 −ω3
(−)
+ ω α3



.

Henceforth, the subsystem with the state vectorzE,1 and the
dynamic matrixÃE,11 will be referred to as the ”slow” sub-
system and the subsystem with the state vectorzE,2 and the
dynamic matrixÃE,22 as the ”fast” subsystem. Since it is de-
sired for the normal operation of the gyroscope to harmon-
ically excite the system close to its resonance frequencies
it can be assumed that there exist small parametersε j � 1
with the property

(ω j +ω)ε j = ω j −ω , j = 2,3 .

Thus, the fast subsystem can be eliminated by applying the
singular perturbation theory, see, e.g., Kokotovic et al (1986),
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with ε2 andε3 as the singular perturbation parameters yield-
ing zE,2 = 0 in the quasi-static case.

In general, however, the system given by Eq. 10 is cou-
pled by the side-wall angleξ , the compensation input̃UC,0

and the external angular rateΩ . Nevertheless, it can be as-
sumed that the gyroscopes under consideration are weakly
coupled systems and the quasi-static treatment of the fast
subsystem in the sense of the singular perturbation theory
is still justified. Then, the remaining slow subsystem can be
transformed back to the original coordinates by means of the
inverse state transformationzE,1=V−1

11 xR with V11 denoting
the upper left block matrix ofV. The inverse transformation
applied to the residual slow system finally yields the reduced
and simplified envelope model

ẋR = AR xR +BR uE , (11a)

yE = CR xR (11b)

with the reduced state vector

xR = [Q2,S, Q2,C, Q3,S, Q3,C ]
T ,

the dynamic matrix

AR = V11ÃE,11V−1
11

=




α2 ω −ω2 −1
2

ω3 Ω c23

ω2
−1

2
k23

ω2

−ω +ω2 α2
1
2

k23

ω2
−1

2
ω3 Ω c23

ω2

1
2

ω2 Ω c32

ω3
−1

2
k32

ω3
α3 ω −ω3

1
2

k32

ω3

1
2

ω2 Ω c32

ω3
−ω +ω3 α3




,

the input matrix

BR = V11B̃E,1 =




0 −1
2

b2

ω2

1
2

b2

ω2
0

0 0

0 0




and the output matrix

CR = CE,1V−1
11 = diag(c2,c2,c3,c3) .

Typically, the amplitudes of the primary mode excited by the
input ŨD,C are several orders of magnitude larger than the
amplitudes of the secondary mode excited by the weak cou-
pling to the primary mode due to the angular rateΩ and/or
the side wall angleξ . Hence, it is reasonable to assume that
the coupling from the secondary to the primary mode is con-
siderably small. For the control of the primary mode it there-
fore suffices to consider the subsystem

d
dt

[
Q2,S

Q2,C

]
=

[
α2 ω −ω2

−ω +ω2 α2

][
Q2,S

Q2,C

]
−
[

β2

0

]
ŨD,C

(12a)

with the output
[

YP,S

YP,C

]
=

[
c2 0
0 c2

][
Q2,S

Q2,C

]
(12b)

and the input coefficient

β2 =
1
2

b2

ω2
.

For the control design it is advantageous at this stage to in-
troduce an output transformation to polar coordinates in the
form

YP,A =
√

Y 2
P,S +Y 2

P,C , YP,ϕ = arctan

(
YP,S

YP,C

)

with the amplitudeYP,A and the phaseYP,ϕ of the primary
output voltage. In steady state the amplitude and phase of
the primary output voltage read as

YP,A =
β2 c2ŨD,C√

α2
2 +(ω −ω2)

2
, YP,ϕ = arctan

(
α2

ω −ω2

)
.

The maximum amplitudeYP,A in steady state is observed
for the angular velocityω = ω2 where at the same time for
α2 < 0 the phase isYP,ϕ =−π/2. Hence, the first two tasks
concerning the control of the primary mode can be formu-
lated as follows. The output phaseYP,ϕ is controlled to−π/2
and the output amplitudeYP,A is controlled to a predefined
constant valueYP,des.

For the following let us assume that the primary mode is
ideally controlled withYP,A = YP,des andYP,ϕ =−π/2 yield-
ing the steady stateQ2,S = YP,des/c2 andQ2,C = 0. Now, the
idea of the mechanical unbalance introduced in Sect. 4 can
be picked up in the context of the simplified two modes en-
velope model. For this purpose, the mechanical unbalance
ΓM and the unbalance compensation parameterΓC are intro-
duced in the form

ΓM =
k32,M

ω2 c32
ξ , ΓC =

k32,C
(
ŨC,0

)

ω2 c32
. (13)

Substituting the ideally controlled steady state for the pri-
mary modeQ2,S = YP,des/c2, Q2,C = 0 andω = ω2 together
with the unbalance parameters from Eq. 13 yields the resid-
ual differential equations for the secondary mode in the form

d
dt

[
Q3,S

Q3,C

]
=

[
α3 ω2−ω3

−ω2+ω3 α3

][
Q3,S

Q3,C

]
+

[
β32Ω

β32(ΓM +ΓC)

]
(14a)

with the output
[

YS,S

YS,C

]
=

[
c3 0
0 c3

][
Q3,S

Q3,C

]
(14b)
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and the coupling parameter

β32 =
1
2

ω2

ω3

c32YP,des

c2
.

In order to separate the response due to the external angular
rate from the response due to the mechanical unbalance the
output transformation

[
ZS,R

ZS,Q

]
=

[
sin(φ) cos(φ)
cos(φ) −sin(φ)

][
YS,S

YS,C

]
,

φ = arctan

(
α3

ω2−ω3

) (15)

is performed. Then, the steady state of the system Eq. 14
with the subsequent output transformation from Eq. 15 yields
the Fourier coefficients of the transformed output signals

ZS,R =−SΩ , ZS,Q = S (ΓM +ΓC) (16)

with the sensitivity

S =
β32c3√

α2
3 +(ω2−ω3)

2
. (17)

Now, the system Eq. 14 is stationary decoupled and the com-
ponentsZS,R andZS,Q are denoted as the angular rate signal
and the quadrature signal, respectively. It can be seen from
Eq. 16 that the mechanical unbalance is exactly compen-
sated forΓC = −ΓM, which is achieved by controlling the
quadrature signalZS,Q to zero. The angular rate signalZS,R

serves as the measurement output of the gyroscope.

7 Summary

The presented work provides a novel approach for the mod-
eling, simulation and optimization of oscillating micro elec-
tromechanical devices in particular of vibratory MEMS gy-
roscopes. The methodology was exemplarily demonstrated
for a capacitive gyroscope. The advantages of the proposed
approach were outlined for steady state as well as transient
simulations. Moreover, special emphasis was laid on the
derivation of a simplified two modes envelope model. The
principle of operation and the essential control tasks of vi-
bratory gyroscopes were discussed on basis of this simpli-
fied envelope model.
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