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Flatness-based Torque Control of Saturated
Surface-Mounted Permanent Magnet Synchronous

Machines
David Faustner, Student Member, IEEE, Wolfgang Kemmetmüller, Member, IEEE,

and Andreas Kugi, Member, IEEE

Abstract—Modern permanent magnet synchronous machines
(PMSMs) may also be operated in regimes where significant
magnetic saturation occurs. Classical fundamental wave models
do not incorporate magnetic saturation in a systematic way.
Mostly only heuristic extensions can be found in literature.
Control schemes based on such dq0-models are thus often unable
to achieve the given control demands. This paper proposes a
flatness-based torque control strategy for a saturated surface-
mounted permanent magnet synchronous machine. Different to
existing works, magnetic saturation is considered in a thorough
and physically consistent way. Based on a calibrated magnetic
equivalent circuit model of the PMSM, a simplified model suitable
for the flatness-based controller design is derived. The proposed
two-degrees-of-freedom control scheme inherently accounts for
the mutual coupling of the phase windings. Furthermore, the
time-varying controller gains are obtained by pole placement
technique. In contrast to the majority of controllers used for
PMSM control, the proposed control scheme is formulated
in the stator-fixed reference frame and hence no coordinate
transformation is necessary. The flatness-based torque controller
is implemented on an experimental test-bench. An accelerated
run-up of the PMSM with about four times the rated torque is
performed to highlight the feasibility of the proposed approach.
Finally, the flatness-based torque controller is compared with a
common vector control implementation based on a dq0-model of
the motor.

Index Terms—Electric motor, permanent magnet motor, mag-
netic saturation, magnetic equivalent circuit, flatness-based con-
trol, torque control, optimization, experimental validation.

I. INTRODUCTION

ELECTRIC drive systems composed of permanent mag-
net synchronous machines (PMSMs) are often used in

various technical applications, e.g., industrial machine tools,
traction drives or automotive applications. This is mainly due
to their high performance and high energy efficiency. Model-
based controller designs for PMSMs are primarily based on
fundamental wave models. The main assumptions in these
models are sinusoidally distributed flux linkages of the stator
windings, a magnetic linear behavior of the iron core material
(i.e. no saturation effects) and negligible iron losses (including
both eddy current and hysteresis losses). Application of the
Blondel-Park transformation directly yields the well-known
dq0-model. In this model, the electromagnetic quantities are
independent of the rotor angle and hence lower bandwidths are
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sufficient for the current controllers. Several control strategies
have been developed based on classical dq0-models, where
the most common is known as field-oriented control (FOC),
see, e.g., [1] and [2]. Field-oriented control, also referred to
as vector control, typically combines a dynamic decoupling
scheme with two proportional-integral (PI) controllers to con-
trol the motor currents along desired reference trajectories.
More advanced control strategies comprise feedback lineariza-
tion control [3]–[6], backstepping methods [7]–[9], passivity-
based control [10]–[12], sliding-mode approaches [13]–[15]
and model-predictive control [16]–[18]. Another frequently
used method, which is not based on the dq0-transformation,
is known as direct-torque control (DTC), see, e.g., [19]–[21].

Although control systems based on fundamental wave mod-
els have been successfully implemented in a variety of appli-
cations, there seems to be a paradigm shift in recent years.
Traditionally, motors were designed in such a way that the use
of fundamental wave models is justified by the construction. In
recent years, the emphasis has been set on strategies to reduce
the overall costs, for example by motor designs which are
more suitable to machine production. Amongst others, such
measures comprise the replacement of integer-slot windings
by fractional-slot concentrated windings and the application
of simpler rotor structures, e.g., rotors with internal-mounted
magnets (IPMSM). Besides manufacturing aspects, PMSMs
are often designed to generate a maximum torque for a
thermal-limited short-time operation in the overload range.
Therein, almost all PMSMs suffer from significant magnetic
saturation. The aforementioned aspects can result in inhomo-
geneous air gap geometries, non-sinusoidal flux linkages and
iron saturation. As a consequence, the assumptions of the fun-
damental wave model are more or less violated for many actual
motor designs. Therefore, suitable mathematical models that
accurately describe these motors are required. Furthermore,
advanced (model-based) control strategies are strived for to
guarantee high control performance in all operating points of
the machine.

In literature, to the best of the authors’ knowledge, no
systematic model-based approach for the design of appropriate
control strategies has been presented that inherently incorpo-
rates spatial distributions of the flux linkages and magnetic
saturation in a thorough and physically consistent way. Almost
all presented works concerning the non-ideal behavior of
modern PMSMs rely, more or less, on heuristic extensions
of the fundamental wave model. Several works have been
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published on how to reduce torque and speed ripples caused
by the non-sinusoidal flux distributions, in particular at low
rotor speeds, see, e.g., [22]–[27]. Most of these works are
based on harmonic extensions of the fundamental wave of
the flux linkages, either calibrated with offline measurements,
finite-element (FE) results or online estimation strategies.
Magnetic saturation, however, is neglected in these works. A
common approach to include magnetic saturation is to vary
the electromagnetic quantities (i.e. the inductances and the
permanent magnet fluxes) of the fundamental wave model with
respect to the load (i.e. currents), see, e.g., [28]–[33]. Again,
these models are calibrated numerically or experimentally. A
consequence of this approach is that the exact physical mean-
ing of the derived model quantities is to a certain extent lost.
To be consistent with physical principles, advanced control
strategies based on comprehensive mathematical models seem
to be promising to exploit the overall motor performance in
the whole operating range.

This paper presents a flatness-based torque control strat-
egy for a surface-mounted permanent magnet synchronous
machine (SMPMSM). The operating range includes overload
operation where significant magnetic saturation is present.
Starting with a calibrated magnetic equivalent circuit model
(MEC) in Section II, a simplified model is derived in Sec-
tion III in view of the demands of the controller design.
The proposed two-degrees-of-freedom torque control strategy
developed in Section IV is composed of a flatness-based
feedforward controller and a time-variant feedback error con-
troller. The controller is implemented on a test bench using
an industrial electric drive system and is compared with a
common vector control implementation. The corresponding
results are presented in Section V.

II. MODELING OF PMSM

The PMSM under consideration is equipped with a rotor
comprising 10 surface-mounted neodymium-iron-boron (Nd-
FeB) magnets (number of pole pairs p = 5), which are
alternately magnetized. Fig. 1 shows a cross-sectional view
of the PMSM. The stator teeth are equipped with individual
stator coils (number of windings Nc = 70), where three
consecutive coils are connected in series to form single phase
windings (labeled a, b and c). The three phase windings are
wye-connected and the neutral point is inaccessible (isolated
neutral). Such winding diagrams are usually called fractional-
slot concentrated windings.

Besides numerically expensive methods like FE, the system-
atic incorporation of complex geometries and magnetic satura-
tion into electric machine models still represents a challenging
task. In this context, MEC modeling serves as a promising
and powerful tool to account for these challenges with a
manageable modeling complexity. Although MEC modeling
is frequently used in the design of electric machines, it has
not been exploited for the controller design. The basic idea of
MEC modeling is the representation of the electromagnetic
behavior in form of a network composed of concentrated
elements, namely magnetic conductances (permeances) and
magnetomotive force (mmf) sources. The permeances cover

phase aphase c

phase b

statorrotor

magnets

Fig. 1. Cross-sectional view of the PMSM under consideration.

the specific geometry and material behavior, whereas the mmf
sources represent the stator coils and rotor magnets.

In [34], a framework for MEC modeling of a PMSM with
internal-mounted magnets was proposed that allows for the
calculation of the model equations by means of graph theory,
with a systematic choice of a minimal set of state variables and
the systematic incorporation of the electrical interconnection
of the stator coils. Because the suggested framework is not
limited to a specific motor design, this procedure was also
applied to the surface-mounted PMSM considered in this
paper. Subsequently, the main results are briefly summarized
to introduce the set of equations used. For details, the reader
is referred to [35].

The permeance network proposed in [35] consists of mmf
sources of the stator coils and rotor magnets, magnetically
nonlinear iron permeances of the stator teeth and yoke,
magnetically linear leakage permeances in the slot-opening
areas between adjacent teeth as well as rotor angle dependent
magnetically linear air gap permeances covering the magnetic
coupling between the stator and the rotor. The systematic
derivation of the network is based on graph theory, where
a suitable tree has to be defined, which covers all nodes of
the network without forming meshes. Additionally, all mmf
sources have to be included in the spanning tree, cf. [35].
Elements outside the tree form the co-tree. The fluxes of the
tree φt are grouped into coil fluxes φtc ∈ R9×1, fluxes of
the permanent magnets φtm ∈ R18×1 and permeance fluxes
φtg ∈ R18×1. The co-tree only contains permeance fluxes
φc ∈ R27×1. The same partitioning is performed for the mmfs,
i.e. utc ∈ R9×1, utm ∈ R18×1, utg ∈ R18×1 and uc ∈ R27×1.
The mmfs of the coils are expressed as utc = NcVc ītc,
with the winding matrix Nc = diag(Nc) and the independent
electric phase currents ītc = [ia, ib]

T , fulfilling ia+ib+ic = 0
due to the isolated neutral point. The non-square intercon-
nection matrix Vc represents the electrical interconnection of
the individual stator coils and also determines the vector of
independent electric voltages v̄tc = [vac, vbc]

T in the form

iTtcvtc =
(
ītc
)T

(Vc)
T
vtc =

(
ītc
)T

v̄tc, (1)
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with the independent electric line-to-line voltages vac = va −
vc and vbc = vb − vc. The (constant) mmfs of the magnets
are determined by the coercive field strength and the magnet
height. The magnetic interconnection of the elements of the
permeance network can be systematically described with the
incidence matrix D ∈ R45×27, which, for convenience, is
factorized in the form DT = [DT

c ,D
T
m,D

T
g ] and composed

of elements {−1, 1, 0}. Please note that the incidence matrix
D defines the fundamental relationship

[
φt
uc

]
=

[
D 0
0 −DT

] [
φc
ut

]
(2)

of the network, with the magnetic fluxes φTt = [φTtc,φ
T
tm,φ

T
tg]

and the mmfs uTt = [uTtc,u
T
tm,u

T
tg] of the tree elements

and the magnetic fluxes φc and the mmfs uc of the co-tree
elements.

The constitutive equations, i.e. the relationships between the
mmfs and the fluxes of the permeances of the tree and co-tree,
are given by

[
φtg
φc

]
=

[
Gt 0
0 Gc

] [
utg
uc

]
, (3)

where the elements of the diagonal permeance matrices of the
tree Gt ∈ R18×18 and co-tree Gc ∈ R27×27 depend either
on uc or ut due to saturation (iron permeances), on the rotor
angle ϕ (radial airgap permeances) or are constant (leakage
permeances).

Substitution of (3) into (2), consideration of the introduced
partitioning of the mmfs and fluxes of the tree and co-tree
as well as a straightforward rearrangement directly results in
the machine model with current input of the PMSM, which
describes the influence of the electric currents and the rotor
angle ϕ on the mmfs and magnetic fluxes in form of a set of
nonlinear algebraic equations



I 0 DcGcD

T
g

0 I DmGcD
T
g

0 0 Gt + DgGcD
T
g





φtc
φtm
utg


 =

−DGc

(
DT
c utc + DT

mutm
)
.

(4)

Therein, the unknown variables are the coil fluxes φtc, the
fluxes of the permanent magnets φtm and the mmfs utg of
the permeances of the tree. The inputs on the right-hand side
of (4) are the mmfs of the coils utc and the (constant) mmfs
of the magnets utm. If the electric currents ītc are known for
a given rotor angle ϕ, (4) can be numerically solved for utg
and the fluxes can be simply calculated from linear equations.

Based on co-energy considerations of the elements of the
permeance network and due to the fact that the chosen network
only exhibits a dependence on the rotor angle in the radial air
gap permeances, the developed electromagnetic torque can be
expressed as, see [34],

τ =
1

2
uTtg

∂Gt

∂ϕ
utg +

1

2
uTt D

∂Gc

∂ϕ
DTut. (5)

Modern electric drive systems are typically equipped with a
voltage source inverter (VSI) triggered by pulse-width mod-
ulation (PWM). Thus, the electric voltages at the machine
terminals serve as control inputs and the flux dynamics have

to be added to obtain a machine model with voltage input.
In [34] and [35], a comprehensive analysis and a systematic
elimination of magnetic and electric redundancies was carried
out to obtain a set of differential-algebraic equations (DAE)
of minimum dimension. Subsequently, a slightly different and
more descriptive approach is introduced to obtain a reduced set
of differential equations for the corresponding flux linkages.

Consider a wye-connected three-phase winding system.
Application of Faraday’s induction law directly yields

d

dt
ψabc = −Riabc + (vabc − vn) , (6)

with the flux linkages ψabc = [ψa, ψb, ψc]
T of the phase

windings, the phase currents iabc = [ia, ib, ic]
T , the phase

winding resistances R = diag (R), and the terminal and neu-
tral point voltages vabc = [va, vb, vc]

T and vn = [vn, vn, vn]T

with respect to the reference potential of the VSI. Due to the
isolated neutral point, only two phase currents are independent.
Hence, there is a redundancy in the voltage equation (6). This
redundancy can be systematically eliminated by the invertible
transformation matrix

Vv =




1 0 −1
0 1 −1
1 1 1


 . (7)

Left multiplying the voltage equation (6) with Vv yields

d

dt

[
ψa − ψc
ψb − ψc

]

︸ ︷︷ ︸
ψ̃
I
tc

= −
[
2R R
R 2R

]

︸ ︷︷ ︸
R̄

[
ia
ib

]

︸︷︷︸
ītc

+

[
va − vc
vb − vc

]

︸ ︷︷ ︸
v̄tc

(8a)

d

dt
(ψa + ψb + ψc) = −R(ia + ib + ic︸ ︷︷ ︸

=0

) + (v0 − 3vn), (8b)

with v0 = va + vb + vc. In (8b), the sum of the flux linkages
vanishes for an ideal symmetric three-phase machine without
leakage fluxes. In this case, the neutral point voltage vn is
determined by forcing the voltage term in (8b) to zero (i.e.
floating neutral). In a real machine, however, ψa + ψb + ψc
does not necessarily have to be zero. In any case, the set of
differential equations (8a) and (8b) are decoupled and neither
ψa + ψb + ψc nor v0 and vn have an influence on the torque.
Thus, (8b) is of no interest for the further derivations. Please
note that an equivalent formulation of (8a) can be obtained by
a more general analysis of Vc and D as given in [34] and
applied in [35]. The vector of independent flux linkages ψ̃

I

tc

and the resistance matrix R̄ in (8a) can be calculated in the
form

ψ̃
I

tc = −VT
c Ncφtc (9a)

R̄ = 1/3VT
c RVc. (9b)

In conclusion, the machine model with voltage input of
the PMSM is given by the DAE system (8a), (4) and (5).
If the DAE system (8a) and (4) is intended to be used for
dynamical simulations with the flux linkages as state variables
and the electric voltages as inputs, the independent electric
phase currents ītc = [ia, ib]

T have to be calculated from the
set of nonlinear algebraic equations (4) for given flux linkages.
In order to do so, the magnetic and electric redundancies
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still present in (4) have to be eliminated. A comprehensive
discussion on how this can be done systematically is given in
[34] and applied to the considered PMSM in [35]. However,
as it will be shown in the subsequent sections, this reduction is
not necessary for the design of a controller, if the independent
electric phase currents can be measured.

To demonstrate the quality of the model and thus the feasi-
bility of the modeling approach, some simulation and experi-
mental results are briefly recapitulated, see [35]. Thereby, the
nominal model was parameterized by geometric and material
data and calibrated by measurements. To validate the machine
model with current input (4) and (5), the PMSM was supplied
with direct current ia = −ib, ic = 0 A and driven by a
harmonic drive system at a constant rotational speed. The
speed was chosen sufficiently low, such that the influence of
the back electromotive force (back-emf) is negligible. The
rotor angle ϕ was measured by a high resolution encoder
and the torque τ was measured using a torque transducer.
Fig. 2(a) shows the torque as a function of the rotor angle
for ia = −ib = 5 A, ic = 0 A. A very good agreement
of both the shape and the amplitude of the simulated and
measured torque can be identified. As can be further seen
in Fig. 2, the main electromagnetic quantities including the
currents, the voltages, the flux linkages and the torque show a
periodicity of 72◦, which results from the number of pole pairs
(p = 5). Fig. 2(b) depicts the results for ia = −ib = 20 A,
ic = 0 A. This increased current leads to a significant influence
of magnetic saturation of the iron core, which can be seen
as the corresponding torque does not increase linearly with
the current (as would be the case for an unsaturated motor).
The proposed model still accurately resembles the measured
torque. To evaluate the influence of magnetic saturation on
the amplitude of the torque, this experiment was repeated
for different operating points. The resulting current-to-torque
characteristic is depicted in Fig. 3. The strong influence of
magnetic saturation can be recognized and it can be seen
that it is accurately reflected by the proposed mathematical
model (4) and (5). To validate the dynamical behavior of
the developed model, i.e. the effect of the electric voltages
on the electric currents, the induction law (8a) is considered.
In the first experiment, the PMSM was driven at rated speed
n = 3000 rpm by an external speed-controlled machine and
the back-emf was measured at open machine terminals (i.e.
ia = ib = ic = 0 A). The results of this open-circuit
experiment in Fig. 2(c) again show a high accuracy of the
proposed machine model. In the final experiment, a short-
circuited motor, i.e. va− vc = 0, vb− vc = 0 was considered,
where the PMSM was driven at a constant speed of n = 1600
rpm. The measurement results of the currents ia, ib and ic are
compared with the simulation results in Fig. 2(d). The very
good agreement in this experiment also proves the feasibility
of the chosen modeling approach. Looking at the results of
Fig. 2, it might seem that the quantities are purely sinusoidal.
A fast Fourier transform (FFT) analysis, however, exhibits the
presence of harmonics of order k = 5, 7, 11, 13, . . . with rapid
descending amplitudes.

The proposed machine model with voltage input of the
PMSM in form of the DAE system (8a), (4) and (5) accurately
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Fig. 2. Comparison of the developed model with measurements: torque as
a function of the rotor angle ϕ in (a) for ia = −ib = 5 A and in (b) for
ia = −ib = 20 A, induced voltages due to open-circuit operation in (c)
for n = 3000 rpm and the currents due to short-circuit operation in (d) for
n = 1600 rpm.
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Fig. 3. Comparison of the measured and simulated current-to-torque charac-
teristic for a current supply in the form ia = −ib, ic = 0 A.

reflects the motor behavior in the entire operating range. In
particular, the model inherently accounts for a non-sinusoidal
flux distribution and magnetic saturation in overload operation.
Based on this comprehensive machine model, a simplified
model of the PMSM suitable for flatness-based control design
will be derived in the next section.

III. OPTIMAL CURRENTS AND FLUX LINKAGES

In this paper, a flatness-based torque control strategy of
the PMSM in the entire operating range including overload
operation with significant magnetic saturation is discussed. A
classical torque control loop utilizing a torque transducer is
undesirable in most applications due to additional hardware
and cost. Thus, indirect torque control by proper current
control will be considered as an appropriate solution. In a first
step, optimal currents as functions of the rotor angle ϕ for a
desired torque are calculated by minimizing the Joule losses
of the motor. Using the set of nonlinear algebraic equations
for utg from (4), i.e.
(
Gt + DgGcD

T
g

)
utg = −DgGc

(
DT
c utc + DT

mutm
)

(10)

with utc = NcVc ītc, the nonlinear constrained optimization
problem reads as

min
ītc,utg

(̄itc)
T (̄itc)

s.t. eq. (10)

τd (ϕ)− τ (ϕ) = 0,

(11)

with the desired torque τd(ϕ), the calculated torque τ(ϕ) from
(5) and ītc = [ia, ib]

T . Minimization of the Joule losses is also
commonly known as maximum torque per ampere (MTPA).
An active-set algorithm is used to calculate a numerical
solution of the optimal currents as functions of the rotor angle
ϕ from the nonlinear constrained optimization problem (11).
For this, the rotor angle ϕ is discretized by 144 points which
corresponds to a step size ∆ϕ = 0.5◦ mechanical angle.
Corresponding results are shown in Fig. 4, where in Fig. 4(a)
the desired torque τd = 5 N m was chosen close to the rated
value of the motor. The associated optimal current shape is,
in fact, almost perfectly sinusoidal. If the desired torque is
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Fig. 4. Optimal current shape and corresponding fundamental wave providing
minimum Joule losses for a constant desired torque of τd = 5 N m in (a)
and τd = 25 N m in (b).

increased towards overload operation (i.e. τd = 25 N m) as
shown in Fig. 4(b), harmonics of order k = 5, 7, 11, 13, . . .
are more developed. The fundamental wave, however, is still
dominating. This behavior is quite common for PMSMs with
surface-mounted magnets, where magnetic saturation strongly
influences the amplitude of the currents, while the shape still
is close to a sinusoidal form. Other motor designs as PMSMs
with internal-mounted magnets frequently show dominating
influence of harmonics already at low torques, which makes
the subsequent control strategy not directly applicable to these
motor designs. The subsequent analysis and controller design
are based on a fundamental wave approximation of the optimal
current shapes, which, of course, is at the expense of a
torque error. The small and thus tolerable influence of this
approximation will be investigated later in the paper.

It should be noted that it is also possible to consider
sinusoidal currents right from the start and to optimize the
amplitude and phase of the current by minimizing the resulting
(cumulative) torque error over the discretized fundamental
period of the rotor angle in the cost function. This approach
has not been chosen due to the following reasons: (i) In
general, sinusoidal currents do not yield an almost constant
torque, e.g., IPMSM with distinctive nonuniform air gap ge-
ometry. (ii) The advantage of the chosen approach (to calculate
optimal current waveforms first, followed by a sinusoidal
approximation) over the above-mentioned approach appears
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Fig. 5. Current-to-torque characteristic due to a sinusoidal current supply
according to (12).

in a significant reduction of the dimension of the nonlinear
constrained optimization problem in terms of optimization
variables and equality constraints with almost the same ac-
curacy.

The chosen optimization and approximation leads to the
current-to-torque characteristic as given in Fig. 5. Here again,
the nonlinear characteristic due to magnetic saturation at
higher loads can be recognized. The fundamental wave ap-
proximation of the optimal currents can be expressed as

īdtc = [ida, i
d
b ]
T = îdTc,i(ϕ), (12)

with Tc,i(ϕ) = [cos(α), cos(α+2π/3)]T and α = p(ϕ−ϕ1),
the amplitude of the current îd(τd) according to the current-
to-torque characteristic in Fig. 5 and the phase ϕ1 = 40◦ +
18◦sign(τd). If the currents in (12) are supplied to the ma-
chine, it can be expected that the PMSM generates the desired
torque τd. Since the electric voltages at the machine terminals
serve as control inputs, the voltage equation (8a) has to be
considered to account for the corresponding flux dynamics.

Substituting the optimal sinusoidal currents (12) into (4)
allows for the numerical calculation of the corresponding coil
fluxes φtc and, based on the relationship (9), the flux linkages
ψac = ψa − ψc and ψbc = ψb − ψc. This procedure applied
for different amplitudes îd and rotor angles ϕ directly yields
two-dimensional maps for the flux linkages ψac(̂i

d, ϕ) and
ψbc(̂i

d, ϕ), see Fig. 6 for a map of ψac. For the flux linkage
calculation, a grid with ∆ϕ = 0.5◦ (a total of 144 grid points)
and ∆i = 2 A (a total of 20 grid points) is chosen. The flux
linkages ψac and ψbc have identical form but their phase is
shifted by ϕ̄, i.e. ψbc(̂id, ϕ) = ψac(̂i

d, ϕ+ ϕ̄) with ϕ̄ = 12◦.
To analyze the form of the flux linkages, profiles for

constant current amplitudes are depicted in Fig. 7. Beside
the rising amplitude of the flux linkages with increasing cur-
rent, an additional load-dependent phase shift occurs. Again,
harmonics of order k = 5, 7, 11, 13, . . . are visible in the
overload operating range. The second simplification step in the
considered analysis consists of the sinusoidal approximation
of the flux linkages in the entire operating range. Thus, the
fundamental wave of the flux linkages due to the sinusoidal
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Fig. 6. Two-dimensional map of the flux linkage ψac (̂id, ϕ) due to a
sinusoidal current supply according to (12).
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current supply according to (12) can be formulated as

ψdac(̂i
d, ϕ) = ψ̂d sin(p(ϕ−∆ϕ)) (13a)

ψdbc(̂i
d, ϕ) = ψdac(̂i

d, ϕ+ ϕ̄), (13b)

with a current-dependent amplitude ψ̂d(̂id) and phase shift
∆ϕ(̂id). These functions, as depicted in Fig. 8, are approxi-
mated by means of polynomials of order three and five for the
phase and the amplitude of the flux linkages, respectively.

Utilizing these approximations of the flux linkages in the
voltage equation (8a) results in

∂ψdac
∂îd

dîd

dt
+
∂ψdac
∂ϕ

ω = −R
(
2ida + idb

)
+ vac (14a)

∂ψdbc
∂îd

dîd

dt
+
∂ψdbc
∂ϕ

ω = −R
(
ida + 2idb

)
+ vbc, (14b)

with the electric line-to-line voltages vac = va − vc, vbc =
vb − vc, the phase currents ida, idb in the form (12), and the
angular velocity ω.

Up to now, optimal currents for a desired torque have been
calculated by a nonlinear constrained optimization problem.
Based on a sinusoidal approximation of the optimal currents in
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(12), the corresponding flux linkages have been calculated and
a sinusoidal approximation of these flux linkages yields the
simplified model (14). Note that the simplified model (14) still
incorporates the magnetic saturation effect in a systematic and
physically consistent way. Thus, this model can be regarded
as a good basis for the flatness-based controller design in the
next section.

IV. CONTROLLER DESIGN

The proposed flatness-based torque control strategy relies
on the measurements of the (independent) electric currents
ītc = [ia, ib]

T and of the rotor angle ϕ. It is based on a
two-degrees-of-freedom control structure with a flatness-based
feedforward controller in combination with a time-variant
feedback error controller. As pointed out in the previous
section, torque control is replaced by controlling the currents
along the corresponding optimal trajectories. The control in-
puts vac and vbc are split into

vac = vdac + vcac (15a)

vbc = vdbc + vcbc, (15b)

with the feedforward control inputs vdac, v
d
bc and the feedback

control inputs vcac, v
c
bc, respectively. Furthermore, the indepen-

dent electric phase currents ītc = [ia, ib]
T are written in the

form

ia = ida + ∆ia (16a)

ib = idb + ∆ib, (16b)

with the desired currents īdtc = [ida, i
d
b ]
T due to (12) and the

tracking errors of the currents ∆ia and ∆ib. The flatness-based
feedforward controller can be directly deduced from (14) in
the form

vdac = R(2ida + idb) +
∂ψdac
∂îd

dîd

dt
+
∂ψdac
∂ϕ

ω (17a)

vdbc = R(ida + 2idb) +
∂ψdbc
∂îd

dîd

dt
+
∂ψdbc
∂ϕ

ω, (17b)

with the sinusoidal flux linkages ψdac and ψdbc from (13), the
desired sinusoidal currents īdtc from (12) in combination with

the desired current amplitude îd and the nominal winding
resistance R. The desired value of îd and its time derivative
are calculated from the current-to-torque characteristic given
in Fig. 5, assuming at least a C1-continuous desired torque
signal τd(t).

The flatness-based feedforward controller (17) is extended
by a (time-variant) feedback error controller to stabilize the
tracking error in case of parameter variations due to un-
modeled dynamics, measurement uncertainties and external
disturbances. In this work, unmodeled dynamics mainly results
from iron losses (including both eddy current and hysteresis
losses) as well as the temperature behavior of the magnets and
winding resistances. Measurement inaccuracies typically occur
due to the approximate numerical differentiation of the rotor
angle ϕ when calculating the angular velocity ω, and the cur-
rent measurement signals are often corrupted by measurement
noise and disturbances resulting from the switching of the VSI.
Of course, the feedback controller also has to compensate
for variations resulting from the simplification steps in the
simplified model.

The derivation of the current error dynamics is based on
a Taylor series expansion of (8a) and (4). In this context it
is advantageous to express the flux linkages as functions of
the independent electric phase currents ītc = [ia, ib]

T . Note
that the desired current amplitude îd in (12) can be easily
calculated from the desired phase currents ida and idb with
the help of ida + idb + idc = 0. Using (16), the flux linkages
ψac(ia, ib, ϕ) and ψbc(ia, ib, ϕ) can be written in the form
ψac = ψdac + ∆ψac, ψbc = ψdbc + ∆ψbc, with
[
∆ψac
∆ψbc

]
≈
[
∂ψac(i

d
a,i

d
b ,ϕ)

∂ia

∂ψac(i
d
a,i

d
b ,ϕ)

∂ib
∂ψbc(i

d
a,i

d
b ,ϕ)

∂ia

∂ψbc(i
d
a,i

d
b ,ϕ)

∂ib

]

︸ ︷︷ ︸
Lψ

[
∆ia
∆ib

]
. (18)

Given a sufficiently accurate current control, deviations from
the desired operating point īdtc are small and thus the error
made by this approximation is also small. Substitution of (15)–
(18) into the voltage equation (8a) results in

d

dt

[
∆ψac
∆ψbc

]
=

d

dt
Lψ

[
∆ia
∆ib

]
+ Lψ

d

dt

[
∆ia
∆ib

]

= −
[
2R R
R 2R

] [
∆ia
∆ib

]
+

[
vcac
vcbc

]
.

(19)

As can be seen from (18), the differential inductance matrix
Lψ depends on the operating point. For a more detailed
analysis, the partial derivatives of the flux linkages ψac and ψbc
with respect to the currents ia and ib have to be evaluated at the
desired sinusoidal reference trajectories ida and idb according to
(12). Since explicit analytical expressions of these terms are
not available, appropriate approximations have to be derived.

It can be shown that the derivatives of the permeance
matrices Gt and Gc with respect to ītc and utg are small and
thus can be neglected. Please note that in the magnetically
linear case, these derivatives would be exactly zero. For the
considered magnetically nonlinear case, the derivatives are
small, since the rate of change of the relative permeability
µr(H) of the iron core with respect to the magnetic field
strength H is also small. Thus, the errors of this approximation
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Fig. 9. Numerical results of the differential inductance matrix Lψ for different
operating points as a function of the rotor angle ϕ in (a) and average values
over a fundamental period of 72◦ in (b).

are again small and thus this approximation can be considered
feasible. Then, (4) yields the approximations

∂φtc
∂ ītc

≈ −DcGcD
T
c NcVc −DcGcD

T
g

∂utg
∂ ītc

(20a)

∂utg
∂ ītc

≈ −(Gt + DgGcD
T
g )−1DgGcD

T
c NcVc. (20b)

With (20) and (9), the differential inductance matrix Lψ reads
as

Lψ = −VT
c Nc

∂φtc
∂ ītc

. (21)

A numerical solution of Lψ as a function of the rotor angle
ϕ and for fixed values of îd can be easily determined from
(21). Numerical results for different values of îd (i.e. τd)
are depicted in Fig. 9(a). The calculations show that the
differential mutual inductances ∂ψac/∂ib and ∂ψbc/∂ia (off-
diagonal entries of Lψ) are identical, which, as is expected,
implies that Lψ is a symmetric matrix. Additionally, average
values over a fundamental period of 72◦ of the entries of
the diagonal elements ∂ψac/∂ia and ∂ψbc/∂ib (differential
self-inductances), are identical too. It can be seen from
Fig. 9(a) that the differential self and mutual inductances
show a periodicity of twice the fundamental period, which

is physically interpretable. The variation of the differential
inductance matrix Lψ with respect to the rotor angle ϕ is
neglected for the design of the feedback controller. One can
deduce from Fig. 9(a) that this assumption is clearly feasible
for desired torques up to 15 N m, but the variations of the
differential inductances increase for higher torques. However,
as will be shown subsequently, Lψ only acts as a gain in the
feedback control law and thus the decrease of control accuracy
made by this assumption is again negligible. Hence, operating
point dependent average values over a fundamental period of
72◦, as shown in Fig. 9(b), are used instead. Here, the strong
influence of magnetic saturation of the iron core and a ratio
L̄s/L̄m ≈ 2 can be observed. Thus, the averaged differential
inductance matrix L̄ψ can be formulated as

L̄ψ =

[
L̄s

1
2 L̄s

1
2 L̄s L̄s

]
. (22)

Substitution of L̄ψ into (19) allows for further simplifications.
As can be deduced from Fig. 9(b), the variation of L̄ψ with
respect to the current amplitude is rather small even if the cur-
rent amplitude is changed in a wide range. Consequently, the
time derivative of L̄ψ is rather small. Furthermore, assuming a
proper feedback controller, the current errors ∆ia and ∆ib are
small as well. As a consequence, the product of these terms
can be neglected in (19) without significant loss of accuracy.
It should be noted that the approximations performed in this
section are also applicable to many other PMSMs with surface-
mounted magnets. The current error dynamics (19) may thus
be written in the simplified form

L̄ψ
d

dt

[
∆ia
∆ib

]

︸ ︷︷ ︸
∆ītc

= −
[
2R R
R 2R

]

︸ ︷︷ ︸
R̄

[
∆ia
∆ib

]
+

[
vcac
vcbc

]

︸ ︷︷ ︸
v̄ctc

, (23)

where the averaged differential inductance matrix L̄ψ is a
function of the desired current amplitude îd and hence the error
dynamics (23) is time-variant. Application of the feedback
control law

v̄ctc = R̄∆ītc − L̄ψ

(
kp∆ītc + ki

∫
∆ītcdt

)
(24)

directly yields the second-order closed-loop error dynamics

d2

dt2
∆ītc + kp

d

dt
∆ītc + ki∆ītc = 0. (25)

The positive controller gains kp = diag(kp) and ki =
diag(ki) can be calculated by choosing desired eigenvalues of
the error dynamics (25). The overall control law of the PMSM
is composed of the flatness-based feedforward controller (17)
and the time-variant feedback error controller (24). A block
diagram of the proposed control structure is depicted in
Fig. 10.

V. EXPERIMENTAL RESULTS

This section demonstrates the quality and feasibility of
the proposed flatness-based torque controller. The controller
is compared with a common vector control implementation
based on the well-known dq0-model of the motor. Both
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Fig. 10. Block diagram of the proposed flatness-based torque control structure,
comprising the feedforward and feedback part.

control strategies are implemented on the DSPACE realtime-
platform DS1103 triggering an industrial standard VSI with
insulated-gate bipolar transistors (IGBTs). A sampling time
of Ta = 50 µs of the controller and a PWM frequency of
fp = 20 kHz were used in the experiments. The rotor angle
ϕ is measured with a motor-shaft mounted encoder and the
electric phase currents ītc = [ia, ib]

T are measured using LEM
current transducers. Furthermore, the static inverter losses
of the VSI were identified and compensated in the voltage
generation process.

A. Vector control of the PMSM

In a classical dq0-model, magnetic linearity (i.e. no mag-
netic saturation), negligible iron losses (including both eddy
current and hysteresis losses) and fundamental waves are
assumed. Application of the Blondel-Park transformation [2]
in the form vdq0 = K(ϕ)vabc and idq0 = K(ϕ)iabc with

K(ϕ)=
2

3




cos(ρ) cos(ρ+ 2π
3 ) cos(ρ− 2π

3 )
− sin(ρ) − sin(ρ+ 2π

3 ) − sin(ρ− 2π
3 )

1/2 1/2 1/2


 (26)

and ρ = pϕ to a fundamental wave model of the PMSM
directly results in the dq0-model expressed in rotor-fixed
coordinates

Ldq
d

dt
idq = −Rdqidq − pωL̃dqidq − pωΨ̃PM + vdq (27a)

τdq =
3

2
p
(

Ψ̃T
PM idq + iTdqL̃dqidq

)
, (27b)

with the voltage vector vdq = [vd, vq]
T , the current vector

idq = [id, iq]
T , the magnetic flux vector ΨPM = [ψPM , 0]T

with Ψ̃PM = JΨPM , the angular velocity ω, the number of
pole pairs p, the electromagnetic torque τdq , the inductance
matrix Ldq = diag([Ld, Lq]) with L̃dq = JLdq and J in the
form

J =

[
0 −1
1 0

]
. (28)

The dynamics of the zero sequence components is decoupled
and not presented in this work. Obviously, all electromagnetic
quantities in (27) are independent of the rotor angle ϕ.

TABLE I
MAIN TECHNICAL DATA OF THE PMSM

Term Value Unit
Rated speed 3000 rpm
Rated torque 6.16 N m
Rated current 3.78 Arms

Torque constant kt 1.63 Nm/Arms

Voltage constant ke 98.43 V/1000min−1

Phase winding resistance R 1.245 Ω

Homogenous air gap geometries in surface-mounted PMSMs
entail Ld = Lq . Application of the control law

vdq = Rdqi
d
dq + pωL̃dqidq + pωΨ̃PM + Ldq

d

dt
iddq

− kp,dq(idq − iddq)− ki,dq

∫
(idq − iddq)dt

(29)

directly yields the second-order closed-loop error dynamics

Ldq
d2

dt2
∆idq + (Rdq +kp,dq)

d

dt
∆idq +ki,dq∆idq = 0, (30)

with the tracking error ∆idq = idq − iddq and the reference
trajectories iddq = [idd, i

d
q ]
T . The positive controller gains

kp,dq = diag(kp,dq) and ki,dq = diag(ki,dq) can be calculated
e.g. by pole placement. For a surface-mounted PMSM (i.e.
Ld = Lq), the torque τdq only depends on the q-axis current iq ,
see (27b). Hence, the reference trajectory idq has to be chosen
according to the desired torque τd in the form idq = τd/kt,
with the torque constant kt = 3/2pψPM . The reference value
for the d-axis current id is set to idd = 0 A to minimize Joule
losses. It should be noted that the control law (29) strongly
depends on an accurate knowledge of the model parameters.
Moreover, the exact compensation of the voltage terms on
the right-hand side of (27a) is not assured in a practical
implementation due to parameter variations and disturbances.
Finally, the dq0-model with constant parameters is inaccurate
when the PMSM is operated in the overload range, where
magnetic saturation occurs.

For the practical implementation, typically a simplified
version of (29) in the form

vdq = pωΨ̃PM−kp,dq(idq−iddq)−ki,dq
∫

(idq−iddq)dt (31)

is implemented. This control strategy results from neglecting
the feedforward terms Rdqi

d
dq , Ldq

d
dt i

d
dq and the induced

voltage term pωL̃dqidq due to the mutual coupling. Note that
the remaining model parameters of the control law (31), also
commonly known as voltage constant ke = pψPM , can be
easily obtained from the technical data sheet of the motor. The
main technical data of the PMSM are shown in TABLE I.

Eq. (27b) does not account for the nonlinear current-to-
torque behavior. To improve torque tracking accuracy, it is
common industrial practice to use a (measured) current-to-
torque characteristic as given in Fig. 3 in order to calculate
the desired current idq as a function of the desired torque τd.
This is also done in the experiments of the next subsection,
which yields an improved torque tracking accuracy.
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PMSM torque sensor inertia

Fig. 11. Test bench setup of the PMSM.

B. Benchmark Experiment

The experimental validation of the proposed flatness-based
torque control strategy and the comparison with the vector
control implementation (31) using the nonlinear current-to-
torque characteristic in Fig. 5 are performed on a test bench
setup depicted in Fig. 11. The motor shaft is attached to a
torque sensor and a load inertia (Jload ≈ 0.03 kgm2) by means
of torsionally stiff couplings. For the proposed flatness-based
torque controller, both poles of the second-order closed-loop
error dynamics (25) are placed at Λ = [−1650,−1650]T (the
resulting controller gains kp and ki are, however, time-varying)
and the controller gains of the vector control strategy (31) are
chosen as kp,dq = diag(52.33) and ki,dq = diag(0.0024).
Appropriate integrator anti-windup strategies are implemented
for both control schemes. As a benchmark experiment, an
accelerated run-up of the PMSM is performed. To do so,
the motor is accelerated with the torque profile depicted in
Fig. 12(a). According to Fig. 5, a desired torque of τd =
25 N m highly saturates the PMSM. As can be deduced from
Fig. 12(a), the proposed flatness-based torque control strategy
generates a sufficiently smooth torque even at high speeds.
It should be noted that Fig. 12(a) illustrates the recalculated
torque according to (5) on the basis of the measured currents
ītc = [ia, ib]

T and the measured rotor angle ϕ. This makes
sense, because the developed model is validated and calibrated
with measurements. The torque measured by the torque sensor
contains higher frequency oscillations caused by the elasticity
of the drive-train and errors in the alignment of the mechanical
setup. Thus, these measurements are not very illustrative and
have therefore not been included in the present manuscript. A
comparison of the averaged values, however, shows very good
agreement with the recalculated torque.

Comparing the results of the proposed flatness-based torque
control concept (τ ) with the vector control strategy (τdq)
shows significantly increased fluctuations of ∼ 5 N m for
the vector control concept in comparison to less than 1 N m
of the proposed control concept, see Fig. 12(a). To analyze
the reasons for this behavior, the desired and the actual
currents idq , iq and idd, id are depicted in Fig. 12(b) and
Fig. 12(c), respectively. It can be seen that both currents show
large variations around their desired values in case of the
vector control strategy. This is due to the fact that in the
considered experiment large magnetic saturation of the motor
is present which is not covered by the simple dq0-model. It,
however, seems that the higher frequency fluctuations do not
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Fig. 12. Accelerated run-up of the PMSM and comparison of the proposed
flatness-based torque control strategy with a common vector control imple-
mentation: (a) recalculated torque profile, (b) q-axis current, (c) d-axis current,
(d) rotational speed. For all subplots, the abscissa is the time measured in s.
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Fig. 13. Sections of the accelerated run-up of the PMSM utilizing the
proposed flatness-based torque control strategy for different rotational speeds,
i.e. n ≈ 500 rpm in (I), n ≈ 1000 rpm in (II) and n ≈ 1500 rpm in (III).
For all subplots, the abscissa is the rotor angle measured in ◦.

have a large influence on the resulting rotational speed, see
Fig. 12(d). In fact, the large inertia of the load suppresses
these fluctuations. For applications with smaller inertia and in
view of increased thermal losses of the VSI, the behavior of
the vector control strategy turns out to be rather problematic
in industrial applications.

In order to compare both control strategies with respect
to their ability to track desired reference trajectories of the
motor currents, the d-axis and q-axis currents idq of the vector
control strategy are transformed into phase currents ītc,dq =
[ia,dq, ib,dq]

T by the inverse of the transformation matrix (26).
First, the results of the proposed control strategy as depicted in
Fig. 13 are discussed. In this figure, the quantities are plotted
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Fig. 14. Sections of the accelerated run-up of the PMSM utilizing a common
vector control implementation for different rotational speeds, i.e. n ≈ 500
rpm in (I), n ≈ 1000 rpm in (II) and n ≈ 1500 rpm in (III). For both
subplots, the abscissa is the rotor angle measured in ◦.

as a function of the rotor angle ϕ for different values of the
rotational speed, i.e. n ≈ 500 rpm in (I), n ≈ 1000 rpm in
(II) and n ≈ 1500 rpm in (III). From Fig. 13(a) it is apparent
that the motor current ia and its reference trajectory ida are
in very good accordance. This is further confirmed by the
current error ∆ia in Fig. 13(b). The required control inputs,
converted into duty cycles, are depicted in Fig. 13(c). It can
be seen that a large part of the control input (i.e. basically the
fundamental wave component) is generated by the flatness-
based feedforward controller (17). One can further observe that
the control input demand increases with increasing rotor speed.
In (III) at ϕ = 216◦, however, the desired torque changes
its sign, cf. Fig. 12(a) at t ≈ 250 ms. As a consequence, a
reduction of the control inputs occurs. Please also note that
the maximum rotor speed in Fig. 12(d) has been carefully
chosen such that the maximum ratings of the VSI (i.e. duty
cycles within the boundary 0 and 1) are met. In conclusion,
very good control performance and practically feasible control
inputs have been obtained with the proposed flatness-based
torque control strategy.

The results of the vector control strategy, i.e. the phase
current ia,dq and its reference trajectory ida,dq , are depicted in
Fig. 14(a). As can be seen, the vector control strategy fails to
track the desired reference trajectory in case of high desired
torques due to the high magnetic saturation. There are two
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main reasons for this undesired and unstable behavior:
I) The magnetic saturation in the motor yields a load-

dependent phase shift of the flux linkages with respect
to the currents, and the influence of harmonics increases.
Thus, the prerequisites of the Blondel-Park transforma-
tion are no longer fulfilled. Even worse, the frequency of
the harmonics is increased by the transformation, and the
additional phase shift results in a coupling of the d-axis
and q-axis1.

II) Magnetic saturation yields a change in the effective
inductances L̄m and L̄s, see Fig. 9(b). Typically, the
parameters of vector control concepts are chosen such
that a good control performance is obtained for nominal
torque (this has also been done in the experiments of
this section). This, however, results in too high controller
gains in the saturated case, where L̄s and L̄m decrease,
such that the closed loop system can become unstable.
Of course, it would be possible to choose the controller
gains such that stable operation is also guaranteed in
the saturated case. This, in turn, would lead to an
unsatisfactory control performance in the unsaturated
case.

It is worth mentioning that, although the identified nonlinear
current-to-torque characteristics given in Fig. 3 has already
been considered in the classical vector control scheme used to
validate the proposed flatness-based torque control strategy,
the accuracy could be slightly increased if the nonlinear
relationship for the inductances given in Fig. 9 is used in the
feedback path of the vector controller to preserve a closed-loop
dynamics, which is almost independent from the operating
point. Such methods are frequently used in literature. However,
the main reason for the fluctuations in the torque and the dq-
axis currents is most likely related to the current-dependent
phase shift in Fig. 8, which is incorrectly represented in a
dq0-model (and extensions of it) in the presence of magnetic
saturation of the motor. Moreover, the vector controller for-
mulated in the rotor-fixed reference frame has to deal with
disturbances of increased frequency in comparison to a current
controller defined in the stator-fixed reference frame.

In conclusion, the experimental results show a very good
control performance of the proposed flatness-based torque
control concept in the whole operating range, while classical
vector control strategies have significant drawbacks. The MEC
model, which is able to systematically capture the magnetic
saturation and the non-sinusoidal behavior, serves as a basis for
the design of the flatness-based torque controller. These results
also show that control strategies based on dq0-models or
extensions of it (either to approximately account for harmonics
or magnetic saturation) are not the best choice for applications
where the motor is operated in regions with significant mag-
netic saturation.

VI. CONCLUSION

In this paper, a flatness-based torque control strategy for the
whole operating range of saturated surface-mounted permanent

1Note that one reason why this problem does not occur in the proposed
flatness-based torque control concept is that the (physical) currents ia and ib
are directly controlled.

magnet synchronous machines was presented. The proposed
control strategy exhibits a two-degrees-of-freedom control
structure with a flatness-based feedforward controller and a
time-variant feedback controller for the trajectory error system.
Different to existing works, magnetic saturation is considered
in a thorough and physically consistent way. The proposed
controller is formulated in the stator-fixed reference frame.
Hence there is no need to utilize a coordinate transformation
which depends on the rotor angle. Based on a calibrated
magnetic equivalent circuit model of the PMSM, which has
been proposed in a previous publication [35], a simplified
model suitable for flatness-based control design was derived by
current shape optimization and a comprehensive analysis of the
corresponding flux linkages. The controller gains of the time-
variant error controller, which is composed of a proportional
and integral term, systematically accounts for the mutual
coupling of the phase windings. As a benchmark experiment,
the PMSM was accelerated with about four times the rated
torque. The resulting currents generate a sufficiently smooth
torque and are in very good accordance with their reference
trajectories, even at higher speeds. It has been shown that the
proposed control scheme outperforms the industrial state-of-
the-art vector control implementation, which was extended by
a nonlinear current-to-torque characteristic.

To increase the speed range of the PMSM beyond rated
values, future work is concerned with the extension of the
proposed control strategy to systematically account for field
weakening.
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