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Modeling and Force Control for the

Collaborative Manipulation of Deformable

Strip-Like Materials

Stefan Flixeder ∗ Tobias Glück ∗ Andreas Kugi ∗

∗ Automation and Control Institute (ACIN), TU Wien, 1040 Vienna,
Austria (e-mail: {flixeder;glueck;kugi}@acin.tuwien.ac.at)

Abstract: This work analyzes and evaluates state-of-the-art force control strategies for the
collaborative multi-arm handling of deformable materials. We exploit and validate the well-
known catenary equation to predict the materials sag and interaction stiffness. The material
properties are considered in the manipulator design and coupled system stability is investigated
including the dynamics of a first-order force low-pass filter. The analysis provides practical
relevant conditions for the selection of the force controller parameters. Different force control
strategies are implemented on a multi-arm manipulator, comprising two biaxial gantries, and
are evaluated in the light of praxis-oriented case studies.

Keywords: Force Control, Impedance Control, Deformable Materials, Collaborative Handling

1. INTRODUCTION

Deformable materials like textiles, leather, porous tissues,
and adhesive foils are used in many industries. Typical
manipulation tasks in the cloth, shoe, and garment indus-
try involve transportation, handling, and folding. Similar
tasks are encountered in composite manufacturing for the
lay-up of preimpregnated or dry fabric sheets on a mold.
Although economically important, the manipulation of
this material class is hardly automated and hence still
labor intensive, time consuming, and lacks of reproducibil-
ity, see, e. g., Saadat and Nan (2002) and Lankalapalli and
Eischen (2003).

Automatic manipulation of deformable materials is chal-
lenging because of their low bending stiffness and geo-
metric diversity. Typical solutions from the field of ma-
chine tool engineering focus on the design of highly-
sophisticated, special-purpose end-effectors mounted on
a single manipulator, e. g., area- or multi-gripper, see
Fig. 1. The approach, however, is rather inflexible and
becomes inefficient for large-scale objects or more complex
tasks, e. g., folding or lay-up on non-flat surfaces. Recently,
several authors proposed a more human-like approach,
namely, the cooperation of multiple manipulators. For
example, the multi-functional cell of Krebs et al. (2013)
consists of two industrial robots mounted on gantries. The
handling and the lay-up of a preimpregnated composite
sheet is based on pure position control. Koustoumpardis
and Aspragathos (2008) present a robot manipulator col-
laborating with a human to handle a fabric based on a
neural network force controller. Besides force feedback,
the follow-up work of Koustoumpardis et al. (2016) ad-
ditionally exploits visual feedback to percept the humans
intention. Their robot manipulator is capable of folding
a rectangular piece of fabric by human guidance. An ap-

⋆ This work was supported by Festo AG & Co. KG
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manipulation
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Fig. 1. Different approaches for the manipulation of de-
formable materials.

proach to collaboratively manipulate a deformable sheet
between a person and a dual-armed robot is presented by
Kruse et al. (2015). To follow the human motion, the robot
utilizes a hybrid controller which combines force and vision
information. A comprehensive review on the challenges
and solutions on the robotic manipulation of deformable
objects is provided by Khalil and Payeur (2010). During
the handling of deformable materials it is crucial to main-
tain the appropriate amount of internal tension force, i. e.,
a tension force which is high enough to avoid sagging or
wrinkles and low enough to avoid tearing or loss of grip-
ping. To solve the force controlled manipulation problem,
different control strategies are presented in literature, see,
e. g., Zeng and Hemami (1997); De Schutter et al. (1998);
Vukobratovic et al. (2009). These strategies, however, have
hardly been applied to the coordinated manipulation of de-
formable materials. One reason is the complex interaction
behavior between the manipulator and the handling object
during physical contact.

Although a number of mathematical models for the shape
prediction of this material class are available, see, e. g.,
Henrich and Wörn (2000); Syerko et al. (2012), they are
hardly used for control, mainly due to their complexity. A
rather simple, but interesting modeling approach proposed
by Grießer and Taylor (1996) is based on potential and
bending energy stored in a two-edges lifted fabric. A closer
examination of their work reveals that the derived ana-
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lytical function is equivalent to the well-known catenary
equation, see, e. g., Routh (1891).

In order to enable and support the coordination of multiple
manipulators for the handling of deformable materials, this
work exploits and validates the catenary equation as a
suitable interaction model for strip-like objects. Utilizing
parallel position and force control, which generalizes pure
force and impedance control, and a low-pass force filter in
the loop, an extension of the coupled system stability crite-
rion proposed by Šurdilović (2007) will be presented. The
stability analysis provides practically relevant conditions
for the selection of the controller parameters and motivates
an intrinsic compliance in the mechatronic manipulator
design to further enhance the force control performance.
Moreover, different force control implementations on a
multi-arm manipulation system are experimentally eval-
uated and compared in view of a collaborative handling
approach.

The paper is organized as follows: Section 2 utilizes the
catenary model to determine the materials shape and
interaction parameters. Moreover, an appropriate model
of the considered multi-arm manipulation system consist-
ing of two biaxial gantry robots is introduced. Section
3 briefly classifies state-of-the-art force control strategies
and provides a stability analysis for the general parallel
position and force control approach with additional force
low-pass filtering in the loop. Finally, Section 4 presents
experimental results and compares different force con-
troller implementations for the collaborative handling of a
deformable strip-like material. In a future work, the results
of this publication will be utilized for a collaborative lay-
up of deformable materials on a complex mold.

2. MATHEMATICAL MODELING

The following section introduces suitable mathematical
models for the deformable material to be handled and the
multi-arm manipulation system. These models serve for
simulation purposes and model based controller design.

2.1 Deformable Material

While most modeling approaches are essentially developed
for material design and the prediction of tensile and
bending properties, only a few models allow for real-time
shape prediction. As previously mentioned, the model of
Grießer and Taylor (1996) for a strip-like fabric leads to the
well-known catenary equation. Subsequently, this static
equation is used to predict the shape and the stiffness of
a two-edges lifted, strip-like, deformable material.

A catenary is a curve of an idealized hanging string under
its own weight, see Fig. 2. With regards to strip-like,
deformable materials it is assumed that the material is
so thin that any tension force exerted by the string is
tangential to the string (zero bending stiffness). Moreover,
the mass per unit length is considered uniform and does
not change with tension. Let us consider the schematic
of a catenary hanging between two supporting points
GAi, with i ∈ {1, 2}, as depicted in Fig. 2. Since only
gravitational forces act along the negative z-axis, the y-
component of the force is uniform at each point of the
string and Fy = FGA1,y = FGA2,y holds. Utilizing calculus

z1
y1

∆z

∆y

L, W , ρA

g

GA1

GA2

FGA1,y
FGA1,z

FGA2,y

FGA2,z

Fig. 2. Catenary with length L, width W , and area density
ρA under its own weight supported at the grasping
points GAi, i ∈ {1, 2}.
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Fig. 3. Horizontal force Fy subject to a normalized distance
variation ∆y/L for various materials, see Table 1.

of variations, the catenary equation reads as, see, e. g.,
Routh (1891),

z =
Fy

q
cosh

(
q

Fy

y + C1

)

+ C2 , (1)

with q = gρAW , where g denotes the gravitational accel-
eration g = 9.81m s−2, ρA is the area density, and W is
referred to as the catenary width. The parameters C1, C2,
and Fy depend on the boundary conditions. Evaluation of
(1) with respect to the boundary conditions at the sup-
porting points z|y=0 = 0 and z|y=∆y

= ∆z in combination
with the catenary length

L =

∫ ∆y

0

√

1 +

(
dz

dy

)2

dy (2)

yields the transcendental equation
(

2
Fy

q
sinh

(
q

2Fy

∆y

))2

+∆2
z − L2 = 0 , (3)

with one unknown parameter Fy. Equation (3) can be
solved numerically using, e. g., Newton’s method, and
has at most one solution with Fy > 0. The integration
constants C1 and C2 are derived by means of the remaining
independent equations

C1 = atanh

(
∆z

L

)

−
q∆y

2Fy

, C2 = −
Fy coshC1

q
. (4)

Fig. 3 shows the modeled and measured horizontal force
Fy subject to a distance variation ∆y of the supporting
points for a constant distance ∆z = 0 and different strip-
like materials listed in Table 1. Note that although the
static model solely relies on the material parameters L,W ,
and ρA, the model (1) fits the measurements very well. The

Post-print version of the article: S. Flixeder, T. Glück, and A. Kugi, �Modeling and force control for the collaborative manipulation of

deformable strip-like materials�, in Proceedings of the 7th ifac symposium on mechatronic systems & 15th mechatronics forum international

conference, Loughborough, UK, Sep. 2016, pp. 95�102. doi: 10.1016/j.ifacol.2016.10.518

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

http://dx.doi.org/10.1016/j.ifacol.2016.10.518


Table 1. Technical characteristics of the con-
sidered fiber materials. ID = identifier, NC =

non-crimp, UD = uni-directional

ID description width area density length
W [mm] ρA [gm−2] L [mm]

(M1) glas, plain weave 80 225 700
(M2) carbon, NC, UD 75 250 1000
(M3) adhesive tape 38 115 1000
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Fig. 4. Measured and modeled catenary stiffness kC,y of a
strip-like material subject to a horizontal force Fy.

experiment demonstrates that the considered materials
comply with the assumptions of an ideal catenary, i. e.,
low bending stiffness and high tension stiffness.

Obviously, the relationship between distance and force is
highly nonlinear, in particular for the case of a normalized
distance ∆y/L close to one, see Fig. 3. The gradient of
the curve can be interpreted as the horizontal tension
stiffness kC,y opposed by material for a given set-point
∆y. To determine kC,y, the first partial derivative of (3)
with respect to ∆y is calculated in the form

−4q∆y sinh
(

q∆y

2Fy

)

cosh
(

q∆y

2Fy

)

+ 8Fy sinh
(

q∆y

2Fy

)2

q2
kC,y

+
4Fy sinh

(
q∆y

2Fy

)

cosh
(

q∆y

2Fy

)

q
= 0 .

(5)
Finally, the catenary stiffness kC,y can be directly obtained
from (5) for a given set of measurements ∆y and Fy.

Fig. 4 compares the stiffness obtained from measure-
ment data using numerical differentiation and the stiffness
model (5). Apparently, the model agrees well with the
measured stiffness, although, it solely relies on the nominal
parameters W and ρA as well as the measurements of
∆y and Fy. In view of the intended force based handling
strategy, the considerable increase of the stiffness kC,y

for higher forces Fy potentially causes stability problems
in force control, see Section 3.2. As will be shown in
the course of this work, these stability problems can be
circumvented by an appropriate mechatronic design, i. e.,
an intrinsic compliance of the manipulator’s end-effector.

2.2 Multi-Arm Manipulator

The considered multi-arm manipulator comprises of two
grasping arms k ∈ {GA1,GA2}, each consisting of a
two-dimensional (2-DOF) gantry and an end-effector, see

z0
y0

Fk,y

Fk,z

sk

τk,y JM,k,y JBS,k,y

τk,z JM,k,z

JBS,k,z

g
slide

y-axis

z-axis

ball screwservo motor

gripperb.) end-effector

a.) 2-DOF gantry

force sensor
suction cup

Fig. 5. Schematic diagram of a grasping arm, with k ∈
{GA1,GA2}.

Table 2. Components of a grasping arm.

component manufacturer type

y-axis ball screw Festo EGC-80-BS-KF-600

z-axis ball screw Festo EGC-70-BS-KF-800

servo motor Festo AS-55-M

force sensor ME-Meßsysteme K3D40

Table 3. Parameters of the 2-DOF gantry.

j-axis mT,k,j mJ,k,j Fc,k,j cv,k,j
y-axis 12.77 kg 21.37 kg 47.3N 238.8N sm−1

z-axis 8.93 kg 17.62 kg 54.5N 187.8N sm−1

Fig. 5. The end-effectors are equipped with force sensors,
grippers, and compliant suction cups.

A dynamic model of a 2-DOF gantry of a similar setup was
introduced in Flixeder et al. (2014) and is briefly revisited
in the following. As depicted in Fig. 5a.), sTk = [sk,y sk,z]
refers to the position of the end-effector with respect to
the reference frame (y0, z0). Moreover, mT,k,j denotes the
moved mass (including the end-effector mass) of each axis,
pk,j the spindle pitch, andmJ,k,j = (JM,k,j + JBS,k,j)/p

2
k,j

the equivalent mass of the inertia of the servo drive JM,k,j

and the ball screw JBS,k,j , respectively. The actual motor
torques τk,j , j ∈ {y, z} serve as control inputs to the
system because of the fast subordinate current controllers.
The equivalent motor force reads as FM,k,j = τk,j/pk,j
and the load force on the end-effector is denoted by Fk,j .
Furthermore, the friction force of the ball screw drives is
modeled as FF,k,j = tanh(ṡk,j/w)Fc,k,j + cv,k,j ṡk,j , with
w ≪ 1, and the viscous and Coulomb friction coefficients
cv,k,j > 0 and Fc,k,j > 0. Details on the different
components of the grasping arms are listed in Table 2. The
model parameters provided in Table 3 are either extracted
from data sheets or measurements.
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Fig. 6. Measured and modeled interaction stiffness kIy as a
function of Fy for fabric (M2) and length L = 0.7m.

Because of the high mechanical rigidity and the sturdy
construction, the coupling between the motor, the ball
screw drives, and the mechanic connection between the
two axis are assumed stiff and backlash-free. Hence, the
axis dynamics are decoupled and the equations of motion
for each axis j ∈ {y, z} read as

s̈k,j = fk,j +Gk,jFM,k,j −Gk,jFk,j , (6)

with

fk,y=
−FF,k,y(ṡk,y)

mT,k,y+mJ,k,y

, Gk,y=
1

mT,k,y+mJ,k,y

,

fk,z=
−FF,k,z(ṡk,z)−gmT,k,z

mT,k,z+mJ,k,z

, Gk,z=
1

mT,k,z+mJ,k,z

.

(7)

For the subsequent controller design, the end-effector dy-
namics are neglected, because the eigenfrequencies of the
force sensors and suction cups are a magnitude higher
than the target dynamics typically observed in human arm
operation and active compliance control. The stiffness of
the suction cup, kSC,y = 700Nm−1, was experimentally
determined as the mean value of the stiffness in the force
range Fy = 0 - 1.5N. The rather low stiffness will be
considered by an interaction model.

2.3 Interaction Model

The interaction model characterizes the physical connec-
tion between the grasping arms. For the controller design
this connection is typically modeled as a most destabilizing
environment of a pure spring element, see Colgate and
Hogan (1988). For the considered multi-arm configuration,
the horizontal interaction stiffness sums up as a series
connection of three spring elements, i. e., two suction cups
and the handling material. Thus, the interaction model
reads as

kIy =
kC,y

kSC,y

2

kC,y +
kSC,y

2

, (8)

with the catenary tension stiffness kC,y according to (5)
and the stiffness of the suction cup kSC,y. As shown in Fig.
6, the model (8) agrees well with the measured stiffness kIy .

Note that kIy, though a function of the force Fy, is bounded
by the intrinsic compliance of the suction cup with 0 <

kIy <
kSC,y

2
. The implication of this upper bound on the

interaction stiffness is discussed in the course of the next
section.

3. CONTROL METHODS

The controller design is based on the models presented
in Section 2. Available measurements are the external
load force F

T
k = [Fk,y Fk,z ] as well as the position

s
T
k = [sk,y sk,z ], and velocity ṡ

T
k = [ṡk,y ṡk,z] of the

handling arms calculated from the measurements of the
integrated motor encoders. For the ease of notation, the
index denoting the grasping arm k ∈ {GA1,GA2} and
the direction j ∈ {y, z} are suppressed in the following.
To solve the collaborative manipulation problem several
control strategies are employed.

3.1 Position Control

Feedback linearization, see, e. g., Isidori (1995), is used
for position control. The first- and second-order time-
derivative of the position output y = s reads as (see (6))

ẏ = ṡ , ÿ = f +GFM −GF . (9)

Introducing the new input ũ = ÿ and solving (9) for the
motor force FM yields the feedback transformation

FM =
1

G
(−f + ũ) + F . (10)

The controller

ũ = s̈p − a2ė
p
s − a1e

p
s −

∫ t

0

a0e
p
sdτ (11)

with position error eps = s − sp and sufficiently smooth
reference sp yields an exponentially stable error dynamics
that can be arbitrarily assigned by suitable constants ai,
i = 0, 1, 2. An anti-windup strategy is used to account for
input constraints.

3.2 Force Control

For a comprehensive literature overview on robotic force
control, see, e. g., Zeng and Hemami (1997); De Schutter
et al. (1998); Vukobratovic et al. (2009). Basically, two
groups of robotic force control strategies are distinguished,
i. e. pure force control and impedance control. Force con-
trol aims at following a prescribed force reference. In prac-
tice, however, force measurement is typically corrupted by
noise and hence damping is difficult to implement, see,
e. g., Wedel and Saridis (1988). By contrast, the idea of
impedance control is to establish a desired relationship
between effort and motion.

A combination of the two approaches is the so called
parallel position and force control (PPFC) strategy, see
Chiaverini et al. (1992). Typically, the target dynamics of
PPFC are specified in the form

eF + aF0

∫ t

0

eFdτ = mdës + ddės + kdes , (12)

with force error eF = F − F d and position error es = s −
sd, where sd and F d denote the reference position and
force, respectively. The constant parameters md, dd, and
kd represent the desired inertia, damping, and stiffness of
the target dynamics. The constant parameter aF0 refers to
the integration coefficient of the force error. Note that pure
force control and impedance control are special cases of
PPFC. Pure force control is obtained by setting dd = kd =
0 in (12) and the target dynamics of impedance control are
equivalent to (12) for aF0 = F d = 0.
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With regard to an implementation, a further distinction
between explicit (force-based or dynamic-based) and im-
plicit (position-based or inner/outer) methods is made, see
Fig. 7. The explicit approach utilizes the control law

ũ =
−ddėds − kdeds

md
+ s̈d

︸ ︷︷ ︸

position controller

+
eF + aF0

∫ t

0
eFdτ

md

︸ ︷︷ ︸

force controller

(13)

in combination with the feedback transformation (10).
In contrast, the implicit approach employs an inner loop
position controller (10)-(11) to track the reference sp

generated by the outer loop controller. To realize the
closed-loop target dynamics (12), the outer control law
reads as

s̈p =
−ddėpds − kdepds

md
+ s̈d

︸ ︷︷ ︸

position controller

+
eF + aF0

∫ t

0
eFdτ

md

︸ ︷︷ ︸

force controller

ṡp =

∫ t

0

s̈pdτ , sp =

∫ t

0

ṡpdτ ,

(14)

with epds = sp−sd. This implementation allows to account
for velocity and acceleration limits of the physical system
by conditional execution and integration.

The stability properties of force control strategies are
widely discussed in literature, see Zeng and Hemami
(1997); Vukobratovic et al. (2009). For simplicity reasons,
a perfect feedback compensation of the system dynamics
for the explicit implementation and/or a perfect tracking
of the inner position loop for the implicit implementation is
assumed. Furthermore, let us consider a most destabilizing
environment of a pure spring element, see Colgate and
Hogan (1988), with the stiffness kE > 0. Hence, a neces-
sary and sufficient condition to ensure stability of (12) is
that the target parameters are positive real, see Vukobra-
tovic et al. (2009). However, in practical implementations,
the measured force F contains high frequency components
due to non-modeled dynamics that, e. g., stem from the
force sensor dynamics, the mechanical frame vibrations,
and the non-rigid axes coupling. These high frequency
components of the measured force signal are typically
reduced by low-pass filtering, see Fig. 7. Consequently,
the positive realness of the target parameters is no longer
sufficient to provide stability of the coupled system.
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Fig. 8. Stability boundary for different low-pass filter
frequencies fc, m

d = 0.4 kg, and aF0 = 0.

The coupled system stability (Šurdilović, 2007, Definition
1) ensures stable interaction between a robotic manipula-
tor under impedance control and a passive environment.
Subsequently, we present an extension for the more gen-
eral case of PPFC with additional low-pass force filtering.
Along the lines of Šurdilović (2007), coupled stability is
guaranteed, if the transfer function

[
1 +G−1

d (p)GPT1(p)k
E
]
−1

(15)

is stable. In (15), Gd(p) = eF /es denotes the target
dynamics of (12), kE corresponds to the environment
transfer function, GPT1(p) refers to a first-order low-pass
filter (PT1) with cutoff frequency fc = 1/(2πTc), and
p is the Laplace variable. Following the Routh-Hurwitz
stability criterion, the transfer function (15) is stable as
long as

0 <dd + kdTc, 0 < md + ddTc,

0 <aF0 k
E , 0 < kE + kd, 0 < mdTc,

0 <
(
kE + kd

)(
dd + kdTc

)
− aF0 k

E
(
md + ddTc

)
,

0 <
(
kE + kd

)(
dd + kdTc

)(
md + ddTc

)

− aF0 k
E
(
md + ddTc

)2
−mdTc

(
kE + kd

)2

(16)

holds. For given parameters md > 0, kE > 0, Tc > 0, and
kd = 0, the lower bound for the damping parameter to
ensure stability in terms of (16) computes as

dd >
aF0 m

d

1−aF0 Tc

(17)

and

dd >
±
√

md
(
md+4kET 2

c −4aF0 k
ET 3

c

)
−md

(
1−2aF0 Tc

)

2Tc

(
1−aF0 Tc

) .

(18)
Condition (18) proves to be more restrictive.

Fig. 8 depicts the stability boundary (18) as a function
of the environment stiffness kE and different cutoff fre-
quencies fc for a desired mass of md = 0.4 kg and a
force error integration coefficient aF0 = 0. Clearly, the
stiffer the environment, the more damping is required in
order to preserve a stable contact without oscillations.
If the damping parameter is chosen higher than actually
needed, high transient forces may occur (in the case of
an external disturbance) due to the slow target dynamics.
Consequently, a proper selection of the damping param-
eter is essential in order to preserve stability, but also to
enable high force control performance. Furthermore, Fig. 8
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Fig. 9. Stability boundary for various force integration
constants aF0 , a cutoff frequency fc = 10Hz and a
desired mass of md = 0.4 kg.

reveals that the lower the cutoff frequency of the low-pass
filter is chosen, the more damping is required in order to
preserve stability. Likewise, the increase of the integration
coefficient of the force error aF0 rises the required minimum
damping, see Fig. 9.

Note that the concept of coupled system stability is also
valid for multiple manipulators handling one object, see
Šurdilović et al. (2010). The assumption of a constant
environment stiffness kE = kIy , however, only holds for
a constant force Fy , see (5) and (8). Thus, in view of a
varying interaction stiffness kIy , condition (18) provides
only a local stability criteria. The intrinsic compliance is
bounded by 0 < kIy < kSC/2. Hence, for the subsequent
controller tuning, the environment is modeled by a most
destabilizing environment element with stiffness kSC/2.
Apparently, the target damping dd can be reduced by a
proper mechatronic design of the intrinsic compliance to
considerably enhance the force control performance, cf.
Fig. 8 and 9.

4. EXPERIMENTAL RESULTS AND DISCUSSION

This section provides experimental results in order to
answer the following questions:

• Which one of the two strategies - explicit or implicit
force control - is more favorable for the coordinated
force control of strip-like deformable materials?

• To what extent does the additional integral term aF0
of the force error in (12) improve the force tracking
performance?

To this end, two simple experiments are designed, see Fig.
10 and 11. For reasons of simplicity, only the y-axis of the
grasping arm (GA1) is force controlled, while the z-axis
of (GA1) as well as both axes of (GA2) are position con-
trolled. The desired stiffness kdGA1,y

of the force controller
is set to zero. Thus, the natural frequency of the coupled

impedance model reads as f0,GA1,y = 1
2π

√

kIy/m
d
GA1,y

. A

desired mass of md
GA1,y

= 0.4 kg ensures that f0,GA1,y is
well below the mechanical resonance frequency f0,mech ≈
11Hz. In order to guarantee coupled system stability, the
target damping ddGA1,y

is chosen 50% higher than the min-

imum damping dmin
GA1,y

required by the stability criterion

(18). The cutoff frequency of the PT1 force filter is set
to fc = 10Hz. The parameters ai,j,k, with i = {0, 1, 2},

z
y(GA1) (GA2)

force
controlled

position
controlled

deformable material

Fig. 10. Exp. 1: The position controlled grasping arm
(GA2) moves in a circular trajectory while the force
controlled one (GA1) maintains a constant tension
force by adjusting its horizontal position.

z
y(GA1) (GA2)disturbance

force
controlled

fixed
position

deformable material

Fig. 11. Exp. 2: An external disturbance penetrates the
deformable material. To maintain a constant tension
force, the force controlled grasping arm (GA1) com-
pensates the disturbance by adjusting its y-position.

Table 4. Evaluated implementations of PPFC.

ID implementation aF
0,GA1,y

dmin

GA1,y
dd
GA1,y

(C1) explicit 3 s−1 6N sm−1 9N sm−1

(C2) implicit 0 s−1 4.7N sm−1 7N sm−1

(C3) implicit 3 s−1 6N sm−1 9N sm−1

k ∈ {GA1,GA2} and j ∈ {y, z} of the position controller
are chosen so that the eigenvalues of the closed-loop error
dynamics are pi,j,k = −70 s−1.

All experiments were performed with Material (M1), see
Table 1. The considered force controllers are summarized
in Table 4 and are implemented and executed using the
real-time system DS1006 from dSpace with a sampling
time of 1ms. The results are presented by means of
measurements and a video 1 .

4.1 Experiment 1: Collaborative Handling

The idea of the experiment is to evaluate the properties
and suitability of different force control strategies for a
coordinated transportation process. In the following sce-
nario, the position controlled grasping arm (GA2) moves
along a circular trajectory with the radius R = 0.1m and
the angular velocities of ω = 45 ◦ s−1 and ω = 90 ◦ s−1

in phase ➀ and ➁, respectively. Concurrently, the force
controlled grasping arm (GA1) adjusts its y-position to
maintain a desired tension force of F d

GA1,y
= 0.35N. Note

that by controlling the horizontal tension force FGA1,y the
sag of the deformable material is implicitly determined.

The coordination of the two grasping arms is supported by
means of the velocity feedforward ṡdGA1,y

= ṡdGA2,y
. Never-

theless, since the vertical movement of (GA2) is unknown

1 www.acin.tuwien.ac.at/fileadmin/cds/videos/collabForceCtrl.mp4
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Fig. 12. Exp. 1: (GA2) moves in a circle while (GA1)
is force controlled and adjusts its y-position to con-
stantly maintain a desired tension force F d

GA1,y
.

to the force controlled arm (GA1), the velocity feedforward
ṡdGA1,y

requires some correction by means of the force
controller. Thus, the experiment reflects a scenario, where
the information that supports coordination is not perfectly
known.

Fig. 12 compares measurement results of different force
control strategies, see Table 4. Clearly, the performance
of the explicit implementation (C1) is not satisfactory.
Significant force errors occur, in particular, when the
manipulator changes direction and the controller has to
compensate for the friction of the ball screw drives. In
contrast, the implicit implementation (C2) performs much
better because the Coulomb friction is compensated by the
fast inner position control loop. Fig. 12 also reveals that
the additional integral term in the force error of controller
(C3) does not improve the force tracking performance.

4.2 Experiment 2: Disturbance Rejection

The second experiment mimics a scenario that appears
during the manufacturing of fiber reinforced plastics, i. e.
the lay-up of fiber materials. While two grasping arms
cooperatively handle the deformable object a disturbance
caused by a consolidation tool exerts an external force on
the material, see Fig. 11. The task of the force controller
is to maintain the desired interaction force and thus
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Fig. 13. Exp. 2: An external disturbance of constant
velocity vdist,z = −100m s−1 penetrates the handling
material and abruptly comes to a halt in phase ➁.

to limit the internal material stress (potentially causing
unintended fiber displacements) and prevent detaching of
the material from the gripper.

To this end, both axes of the grasping arm (GA2) and
the z-axis of (GA1) are position controlled and held at a
constant set point. The force controlled y-axis of (GA1)
maintains a desired tension force of F d

GA1,y
= 0.35N. In

phase ➀ of the experiment, a consolidation tool penetrates
the handling material at constant vertical velocity of
vdist,z = −100m s−1 which abruptly comes to a halt
(vdist,z = 0ms−1) in phase ➁.

Fig. 13 provides measurement results for different force
controller strategies, see Table 4. Again, the explicit imple-
mentation (C1) performs rather bad and obviously strug-
gles with the Coulomb friction, in particular when a change
of direction is required. The controller (C2) demonstrates
reasonable disturbance compensation in both phases of the
experiment. Nonetheless, the tension force in the penetra-
tion phase ➀. This shortcoming is resolved by controller
(C3) with its additional integral force error. Obviously, the
integral term constrains the force error to lower values.
However, once the penetration comes to a halt in phase
➁, the accumulated integrator state (of phase ➀) causes a
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significant negative force overshoot. The force error only
slowly decays due to a slow decrease of the integrator state.

To exploit the advantages of both implementations, a
combination of (C2) and (C3) is introduced. The controller
(C4) utilizes the integral force error from (C3) but resets

the accumulated integrator state aF0,GA1,y

∫ t

0
eF,GA1,ydτ =

0 for eF,GA1,y ≥ 0. According to Fig. 13, the performance
of (C4) indeed combines the advantages of (C2) and (C3).
Note that the controller (C4) shows similar results as (C2)
and (C3) in the scenario of Section 4.1.

5. CONCLUSIONS AND OUTLOOK

This work exploits different force control strategies for the
collaborative manipulation of deformable materials like
textiles, leather, and foils. It is shown that the interaction
stiffness plays a crucial role in the stability analysis of force
control. The catenary equation serves as a simple suitable
model for a variety of two side clamped materials. By
considering the dynamics of the first-order low-pass force
filter in the closed-loop system, necessary conditions to
preserve coupled stability of the interacting manipulators
are derived. The stability analysis reveals that the control
performance can be considerably enhanced by a mecha-
tronic design involving an intrinsic compliance element.
The experiments on the multi-arm manipulator exposed
that the explicit force control implementation is favorable
over the implicit strategy. The implementations with and
without force integrator exhibit specific negative aspects,
whereas a purposeful combination of the two strategies
proved excellent performance.

In a future work, the above results will be utilized for
the coordination and on-line motion planning of multiple
grasping arms and a consolidation tool. The manipulation
task involves pick up, coordinated transportation, and
accurate placement of strip-like deformable materials on
a complex mold.
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