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A Magnetic Equivalent Circuit Based Modeling
Framework for Electric Motors Applied to a

PMSM With Winding Short Circuit
Gabriel Forstner, Student Member, IEEE, Andreas Kugi, Senior Member, IEEE, and

Wolfgang Kemmetmüller, Member, IEEE,

Abstract—Accurate and real-time capable mathematical mod-
els are an essential prerequisite for the design of model-based
controller and estimation strategies for electric motors. Magnetic
equivalent circuit (MEC) models have proven to be an interesting
alternative to classical inductor models that are typically utilized
for the controller design. MEC models allow for a systematic
inclusion of magnetic saturation and non-fundamental wave
behavior of motors, while still having a manageable model
complexity. The systematic derivation of the model equations can
be rather involved, if in addition to the magnetic circuit of the
motor also the electric interconnection is taken into account. For
this reason, a modeling framework for electric motors based on
MEC models including the electric interconnection is proposed.
It makes use of network theory, which allows to systemize and
automate major parts of the modeling task. The presented frame-
work can be applied to a wide range of electromagnetic actuators.
The feasibility of the proposed framework is demonstrated by
the application to the modeling of a PMSM with (turn-to-turn)
winding short circuit. A comparison with measurement results
shows a high model accuracy of the resulting real-time capable
model both for healthy and faulty conditions.

Index Terms—magnetic equivalent circuit (MEC), model cali-
bration, permanent magnet synchronous motor (PMSM), wind-
ing short circuits.

I. INTRODUCTION

PERMANENT magnet synchronous motors (PMSMs) are
used in various industrial applications due to their high

power density and efficiency. Their (optimal) control remains a
challenge in particular when the PMSM is operated in ranges
where nonlinear effects as magnetic saturation are relevant.
Moreover, in many recent applications as, e.g., automotive
steering systems, a fault tolerant operation is demanded, see,
e.g., [1], [2], [3]. A turn-to-turn winding short circuit of the
stator coils is one of the most common faults in applications
with PMSMs. Such faults commonly result in a nonlinear and
asymmetrical behavior of the motor. Moreover, higher harmon-
ics within the electromagnetic quantities of the machine can
occur and high currents may arise in the shorted coil. This can
lead to local magnetic saturation of the machine, see, e.g., [4],
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[5], [6], [7], [8], [9], [10], [11], [12]. In these cases, analytical
models, or dq0-models, which frequently rely on fundamental
wave approximations and on a magnetic linear behavior of
the motor, cannot describe the real PMSM behavior with high
accuracy. Nevertheless, control and fault detection strategies
are mostly based on such dq0-models, see, e.g., [11], [12],
[13], [14], [15], [16], [17]. This, as a matter of fact, brings
along that an optimal performance cannot be achieved for
fault cases or in operating ranges with significant magnetic
saturation.

A well established method to account for magnetic satura-
tion, non-fundamental wave behavior and asymmetrical oper-
ation of a PMSM are finite element (FE) models. FE models
contain detailed information about the magnetic field in the
electric machine. They allow for an accurate consideration
of complex geometries and saturation effects, see, e.g., [8],
[18], [19]. Their relatively high complexity, however, results
in a high computational effort, which makes FE models hardly
suitable for the design of model based real-time fault detection
or control algorithms.

Magnetic equivalent circuit (MEC) models provide a good
compromise between model complexity and accuracy. There-
fore, they are a good basis for fast dynamical simulations
and the model-based design of control and fault detection
strategies. It is easily possible to systematically include the
nonlinear material behavior and inhomogeneous air gap ge-
ometries in MEC models, see, e.g., [20], [21], [22], [23]. In
the authors’ previous works [22], [23], it was shown that
the application of network theory allows for a systematic
derivation of the model equations even for large MECs. All
these works lack the systematic incorporation of the electric
interconnection of the motor coils with each other and to other
electric components (e.g. a cable or an inverter) into the MEC
model.

Therefore, a novel modeling framework for real-time ap-
plications of (nonlinear) electromagnetic actuators, including
both the magnetic and the electric circuit utilizing graph
theory, is presented in this paper. It will be shown that a
systematic and accurate description of PMSMs under healthy
and faulty conditions is possible. In particular, a (turn-to-turn)
short circuit between the windings of a stator coil of a PMSM
can be considered in a straightforward way. The foundation of
this approach is the application of network theory to both the
MEC and the electric network, cf. [23], [24], [25].

The model proposed in this paper is intended to serve as a
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basis for the design of model-based control, observer and fault
detection strategies. For these tasks, an accurate description
of the input-to-output behavior in the entire operating range
is essential, while high accuracy of, e.g., the flux densities in
the machine is of less importance.

The paper is structured as follows: In Section II, a frame-
work for the systematic modeling of nonlinear electromagnetic
networks coupled with nonlinear electric networks is derived.
The proposed framework is applied to the modeling of a three-
phase PMSM with a short circuit between the windings of
one stator coil in Section III. Section IV deals with the model
calibration and the validation by measurement results. Finally,
a short conclusion and an outlook on future research is given
in Section V.

II. MODELING FRAMEWORK FOR ELECTROMAGNETIC
ACTUATORS

In this section, a framework for the systematic mathematical
modeling of electromagnetic actuators is presented, which
comprises two main parts.

MEC model: The magnetic part of the electromagnetic
actuator is described by an MEC model that basically describes
the magnetic flux and magneto motive forces (mmf) in the
actuator. It contains mmf sources to represent the coils and
permanent magnets. Magnetic permeances are used to describe
the core and the air gap. The magnetically linear air gap
permeances are in general (nonlinear) functions of the position
of the moving parts of the electromagnetic actuator (e.g. the
rotor in the case of an electric machine). The permeances of
the core are nonlinear functions of the corresponding mmf to
account for magnetic saturation.

Electric network: The electric interconnection of the coils
of the electromagnetic actuator is described by an electric
network. It consists of voltage and current sources, (nonlinear)
electric resistors, (nonlinear) capacitors and (nonlinear) induc-
tors. In this electric network, the coils of the electromagnetic
actuator are represented by magnetically coupled (nonlinear)
inductors.

The MEC and the electric network are coupled by the coils
of the electromagnetic actuator. This means that the electric
currents of the coils define the mmf of the corresponding mmf
sources in the MEC, while the fluxes of these mmf sources
define the flux linkage of the corresponding inductors in the
electric network. Starting from the equations of the MEC and
the electric network, an overall mathematical model of the
electromagnetic actuator is derived in the next subsections.

A. MEC Model

The magnetic part of the electromagnetic actuator is mod-
eled by an MEC, see, e.g., [20], [23], [26]. The topology of
the MEC can be described via network theory by defining a
tree, which connects all nodes of the network without forming
any meshes, see, e.g., [24]. In general, the choice of the tree
is arbitrary but all mmf sources must be placed in the tree.
Given a suitable tree, the topology of the network (i.e. the
interconnection of the network components) is described by
the incidence matrix DT = [DT

c ,D
T
m,D

T
g ]. This matrix can

be separated into a part Dc linking the coils in the tree with
the co-tree elements, a part Dm defining the interconnection
of the tree magnets with the co-tree elements and a part Dg ,
which connects the tree permeances with the co-tree elements.
Following the ideas and steps described in [23], the MEC can
be described by the set of (nonlinear) algebraic equations

[
D̄cGcD̄T

c D̄cGcDT
g

DgGcD̄T
c Gt + DgGcDT

g

] [
iL̄
utg

]
=

[
ψL̄
0

]
−
[
D̄c

Dg

]
GcDT

mutm.

(1)

Therein, D̄c = NcDc with Nc = diag[Nc,1, . . . , Nc,nc]
is used, where Nc,j is the number of turns of a coil
j = 1, . . . , nc. The nonlinear magnetic permeances within
the tree and co-tree are described by the diagonal matri-
ces Gt (utg, ϕ) and Gc (uc, ϕ), respectively. They are func-
tions of the mmf utg of the tree permeances and the mmf
uc = −DT

[
uT
tc uT

tm uT
tg

]T
of the co-tree permeances. Fur-

thermore, they are nonlinear functions of the mechanical de-
grees of freedom, which is the rotor angle ϕ for the considered
motor. The mmf of the coils utc are calculated from the coil
currents iL̄ by utc = NciL̄, utm describes the equivalent mmf
of the permanent magnets and ψL̄ are the flux linkages of the
coils of the motor, see [23] for a detailed description. Finally,
the electromagnetic torque τ of the electromagnetic actuator
is given by

τ =
1

2

(
uT
tg

∂Gt
∂ϕ

utg + uT
c

∂Gc
∂ϕ

uc

)
. (2)

B. Electric Network

The electric interconnection of the electromagnetic actu-
ator’s coils is represented by an electric network. It can
comprise capacitors (index C), resistors (index R), voltage
sources (index V ), current sources (index I) and inductors.
The inductors are divided into magnetically coupled inductors
(index L̄), which represent the actuator coils, and magnetically
uncoupled inductors (index L̂), which, e.g., represent the
inductance of long electric cables or the inverter.

The topology of the electric network is again described via
network theory by defining a suitable tree, see, e.g., [24], [25].
The choice of the tree is arbitrary, but all voltage sources must
be included in the tree and all current sources must be placed
in the co-tree. The resulting circuit equations are given by

it = Eic (3a)

vc = −ETvt, (3b)

where E is the incidence matrix of the electric network. The
currents and voltages of the tree elements are given by it and
vt. Further, ic and vc denote the currents and voltages of
the co-tree elements. A beneficial structure of the incidence
matrix E is achieved when the maximum number of capacitors
is placed in the tree and the maximum number of inductors
is placed in the co-tree, cf. [25]. In the case when a node
is connected to inductors only, the maximum number of

Post-print version of the article: G. Forstner, A. Kugi, and W. Kemmetmüller, �A magnetic equivalent circuit based modeling framework for
electric motors applied to a pmsm with winding short circuit,� IEEE Transactions on Power Electronics, vol. 35, no. 11, pp. 12 285�12 295,
2020
The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.



IEEE POWER ELECTRONICS VOL. ??, NO. ?? 3

magnetically uncoupled inductors should be placed in the co-
tree. If the currents of the tree and co-tree are arranged in the
form

it =
[
iTtC iTtV iTtR iT

tL̄
iT
tL̂

]T
(4a)

ic =
[
iTcC iTcR iTcI iT

cL̄
iT
cL̂

]T
(4b)

then the incidence matrix reads as [25]

E =




ECC ECR ECI ECL̄ ECL̂
0 EV R EV I EV L̄ EV L̂
0 ERR ERI ERL̄ ERL̂
0 0 0 EL̄L̄ EL̄L̂
0 0 0 0 EL̂L̂



. (5)

The electric network model is completed by the balance and
constitutive equations of the network elements, which are
formulated in the following.

1) Capacitors: The electric charge Q of a capacitor is
described by the nonlinear relation Q = C(v)v, where C(v)
defines the voltage-dependent capacitance and v is the electric
voltage at the capacitor. Applying this constitutive equation to
the capacitors of the electric network gives

[
QtC

QcC

]
=

[
CtC 0
0 CcC

] [
vtC

−ET
CCvtC

]
, (6)

where QtC and QcC describe the electric charges of the
capacitors in the tree and co-tree, respectively. The electric
charge is described by the balance of charge in the form

d

dt
QtC = ECC icC + ECRicR

+ ECI icI + ECL̂icL̂ + ECL̄icL̄

(7a)

d

dt
QcC = icC . (7b)

2) Resistors: The constitutive equations of the (nonlinear)
resistors are written in the form

[
itR
icR

]
=

[
GtR 0
0 GcR

] [
vtR
vcR

]
, (8)

where GtR (vtR) and GcR (vcR) define the (voltage-
dependent) conductances of the resistors within the tree and
co-tree, respectively. The currents itR can be expressed as
itR = ERRicR + ERI icI + ERL̂icL̂ + ERL̄icL̄ according to
(3)-(5). Furthermore, vcR = −ET

CRvtC−ET
V RvtV −ET

RRvtR
holds. Utilizing these results yields the set of nonlinear alge-
braic equations

[
GtR −ERRGcR

ET
RR I

] [
vtR
vcR

]
=

[
ERI icI + ERL̄icL̄ + ERL̂icL̂
−ET

CRvtC −ET
V RvtV

]
,

(9)

which has to be solved for vtR and vcR, where I describes
the identity matrix of suitable dimension.

3) Inductors: As mentioned before, the inductive circuit
elements are divided into magnetically coupled and uncou-
pled inductors. The magnetically coupled inductors represent
the magnetic part of the electromagnetic actuator (or other
electromagnetically coupled inductors as, e.g., transformers),
whose equations are given in Section II-A. The differential
equations of the flux linkages are defined by Faraday’s law of
induction

d

dt
ψtL̄ = vtL̄ (10a)

d

dt
ψcL̄ = −ET

CL̄vtC −ET
V L̄vtV −ET

RL̄vtR −ET
L̄L̄vtL̄,

(10b)

where ψtL̄ and ψcL̄ are the flux linkages of the coils that
are placed in the tree and co-tree of the electric network,
respectively. Note that by a suitable arrangement of the entries
of ψL̄, ψT

L̄
= [ψT

tL̄
,ψT

cL̄
] and iT

L̄
= [iT

tL̄
, iT
cL̄

] hold.
The magnetically uncoupled inductors are modeled by the

nonlinear constitutive equations
[
ψtL̂
ψcL̂

]

︸ ︷︷ ︸
ψL̂

=

[
LtL̂ 0
0 LcL̂

]

︸ ︷︷ ︸
LL̂

[
itL̂
icL̂

]

︸ ︷︷ ︸
iL̂

, (11)

where the positive definite inductance matrix LL̂ is in general
a nonlinear function of the currents itL̂ = EL̂L̂icL̂ and icL̂.
The differential equations of the flux linkages ψtL̂ and ψcL̂
follow as

d

dt
ψtL̂ = vtL̂ (12a)

d

dt
ψcL̂ = −ET

CL̂
vtC −ET

V L̂
vtV −ET

RL̂
vtR

−ET
L̂L̂

vtL̂ −ET
L̄L̂

vtL̄.
(12b)

C. Elimination of Dependent Variables

The MEC model and the equations of the electric in-
terconnection given in Section II-A and II-B describe the
overall behavior of the electromagnetic actuator. It, however,
contains a number of dependent variables, whose elimination
is meaningful, both for fast numeric simulations and for a
model-based controller design. This section is thus concerned
with the derivation of a mathematical model with a minimum
number of state variables.

To do so, first the charges of the capacitors are considered. It
is obvious that the voltage vtC can be calculated as a function
of the variable QtC by solving (6). This implies that the
charge QcC is a dependent variable, since it can be expressed
as QcC = −CcCE

T
CCvtC(QtC). To eliminate the unknown

current icC from the set of equations, the new (independent)
state QI

C = QtC −ECCQcC is introduced

QI
C =

[
CtC + ECCCcCE

T
CC

]
vtC . (13)

This independent state QI
C is described by the nonlinear

differential equation

d

dt
QI
C = ECRicR + ECI icI + ECL̂icL̂ + ECL̄icL̄. (14)
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The inductor currents are determined by the co-tree currents
icL̂ and icL̄ since

[
iL̂
iL̄

]
=




EL̂L̂ 0
I 0

EL̄L̂ EL̄L̄
0 I




︸ ︷︷ ︸
VI
L

[
icL̂
icL̄

]

︸ ︷︷ ︸
icL

=

[
VI
L̂

VI
L̄

]
icL (15)

holds, cf. (3a). Utilizing this result in (1) and (11) gives



LL̂V
I
L̂

0

D̄cGcD̄T
c V

I
L̄

D̄cGcDT
g

DgGcD̄T
c V

I
L̄

Gt + DgGcDT
g



[
icL
utg

]
=



ψL̂
ψL̄
0


−




0
D̄c

Dg


GcDT

mutm.

(16)

Additionally, (15) implies that not all flux linkages ψT
L =

[ψT
L̂
,ψT

L̄
] are independent variables, which is further con-

firmed by the fact that (16) has more equations than unknown
variables icL̂, icL̄, utg . To separate the dependent from the
independent variables, the matrix V⊥L

V⊥L =

[
V⊥
L̂

V⊥
L̄

]
=




I 0
−ET

L̂L̂
−ET

L̄L̂
0 I
0 −ET

L̄L̄


 (17)

is introduced, where (V⊥L )TVI
L = 0 and (VI

L)TV⊥L = 0
holds. This allows to define the transformation matrix Te =
diag[TeL, I] with

TeL =

[
(V⊥L )T

(VI
L)T

]
=

[
(V⊥

L̂
)T (V⊥

L̄
)T

(VI
L̂

)T (VI
L̄

)T

]
. (18)

Utilizing this transformation the independent flux linkage
ψIL = (VI

L)TψL and the dependent flux linkages ψ⊥L =
(V⊥L )TψL of the inductor elements are defined. The dif-
ferential equations for the independent flux linkages ψI

L̂
=

ET
L̂L̂
ψtL̂+ψcL̂+ET

L̄L̂
ψtL̄ and ψI

L̄
= ET

L̄L̄
ψtL̄+ψcL̄ read as

d

dt

[
ψI
L̂

ψI
L̄

]
=

[−ET
CL̂

vtC −ET
V L̂

vtV −ET
RL̂

vtR

−ET
CL̄

vtC −ET
V L̄

vtV −ET
RL̄

vtR

]
. (19)

Applying Te to the set of algebraic equations (16) gives, after
some calculations,

KL



icL̂
icL̄
utg


 =



ψI
L̂

ψI
L̄
0


−



D̂c

D̃c

Dg


GcDT

mutm, (20)

with

KL =



L̂ + D̂cGcD̂T

c D̂cGcD̃T
c D̂cGcDT

g

D̃cGcD̂T
c D̃cGcD̃T

c D̃cGcDT
g

DgGcD̂T
c DgGcD̃T

c Gt + DgGcDT
g


 ,

(21)

L̂ = ET
L̂L̂

LtL̂EL̂L̂ + LcL̂, D̃c = [ET
L̄L̄
, I]D̄c and D̂c =

[ET
L̄L̂
,0]D̄c. Furthermore, the relation for the dependent flux

linkages

ψ⊥L =
(
(V⊥

L̂
)TLL̂V

I
L̂

+ (V⊥L̄ )TD̄cGcD̄T
c V

I
L̄

)
icL

+ (V⊥L̄ )TD̄cGcDT
g utg + (V⊥L̄ )TD̄cGcDT

mutm,
(22)

can be obtained. Note that the dependent flux linkage ψ⊥L does
not appear in the remaining set of equations (20) and therefore
will not be considered in the subsequent derivations.

Summing up, the steps described so far allow to eliminate
those parts of the variables which are dependent due to the
interconnection of the electric components. In the next step,
the question if the algebraic equations (20) have a unique
solution will be discussed.

Remark 1. The existence and uniqueness of a solution of
(20) is equivalent to proving that KL is positive definite. To
do so, note that Gc, Gt and L̂ are positive definite matrices by
construction. Then it can be shown that KL is positive definite
if and only if D̃c has full row rank, i.e. it comprises linearly
independent rows. The proof of this statement is rather lengthy
but straightforward and thus skipped in this paper.

Let us now assume that D̃c has dependent rows, which can
arise due to the magnetic coupling of the coils within the
MEC. Then, the non-singular transformation matrix Tm =
diag[I,TmL̄, I], with

TmL̄ =

[
T⊥
mL̄

TI
mL̄

]
(23)

can be defined. Therein, TI
mL̄

spans the image of D̃T
c and

T⊥
mL̄

corresponds to the orthogonal space of TI
mL̄

, i.e.
T⊥
mL̄

D̃c = 0 holds.

Remark 2. It is always possible to define the matrices
T⊥
mL̄

, TI
mL̄

in a way that the transformation matrix TmL̄

is orthogonal, i.e. that T−1
mL̄

= TT
mL̄

holds.

This transformation matrix is now applied to (20) in the
form

TmKLT
T
m︸ ︷︷ ︸

KI
L

Tm



icL̂
icL̄
utg


 = Tm



ψI
L̂

ψI
L̄
0




−Tm



D̂c

D̃c

Dg


GcDT

mutm.

(24)

Using the abbreviation TI
mL̄

D̃c = D̃I
c , the matrix KI

L is given
by

KI
L =



L̂+ D̂cGcD̂

T
c 0 D̂cGc(D̃

I
c)

T D̂cGcD
T
g

0 0 0 0

D̃I
cGcD̂

T
c 0 D̃I

cGc(D̃
I
c)

T D̃I
cGcD

T
g

DgGcD̂
T
c 0 DgGc(D̃

I
c)

T Gt +DgGcD
T
g




(25)
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and the vector of unknown variables can be formulated as

Tm



icL̂
icL̄
utg


 =




icL̂
T⊥
mL̄

icL̄
TI
mL̄

icL̄
utg


 =




icL̂
i⊥
cL̄

iI
cL̄
utg


 . (26)

Furthermore, the application of the transformation to the right-
hand side of (24) yields

Tm



ψI
L̂

ψI
L̄
0


 =




ψI
L̂

T⊥
mL̄
ψI
L̄

TI
mL̄
ψI
L̄

0


 =




ψI
L̂

ψI⊥
L̄

ψII
L̄
0


 (27)

and

Tm



D̂c

D̃c

Dg


GcDT

mutm =




D̂c

0

D̃I
c

Dg


GcDT

mutm. (28)

It can be directly concluded that ψI⊥
L̄

= 0 must hold and
i⊥
cL̄

no longer appears in these equations. With these results,
a reduced set of algebraic equations is defined by

KI
Lr



icL̂
iI
cL̄
utg


 =



ψI
L̂

ψII
L̄
0


−



D̂c

D̃I
c

Dg


GcDT

mutm, (29)

where KI
Lr results from (25) by eliminating the zero rows and

columns.
In the final step, the transformation is applied to the dif-

ferential equations for the independent flux linkages (19). Ob-
viously, the differential equations for ψI

L̂
remains unchanged

and since ψI⊥
L̄

= T⊥
mL̄
ψI
L̄

= 0, the differential equation for
ψI
L̄

is split up in an algebraic equation

0 = T⊥mL̄
(
−ET

CL̄vtC −ET
V L̄vtV −ET

RL̄vtR
)

(30)

and a differential equation for ψII
L̄

= TI
mL̄
ψI
L̄

d

dt
ψIIL̄ = TI

mL̄

(
−ET

CL̄vtC −ET
V L̄vtV −ET

RL̄vtR
)
. (31)

In conclusion, the overall mathematical model of the elec-
tromagnetic actuator, including its electric interconnection is
given by a system of differential algebraic equations (DAEs),
with the differential equations (14) for QI

c , (19) for ψI
L̂

and
(31) for ψII

L̄
. The algebraic equations are given by (9), (13),

(22), ψI⊥
cL̄

= 0, (29) and (30). Finally, the torque results from
(2).

Remark 3. The final DAE system is of index 1 and has a
minimum number of states and algebraic variables. Its rather
low numerical complexity allows for fast dynamic simulations
and serves as a basis for the design of model-based control
strategies, as, e.g., model-predictive control. If the magnetic
saturation can be neglected and the electric components are
linear, the resulting set of linear algebraic equations can be
solved analytically, which results in a system of ordinary
differential equations for the overall mathematical model of
the electromagnetic actuator.
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Fig. 1: Schematic of the considered three-phase PMSM.

Remark 4. At a first glace, the proposed framework might
seem to be rather complex due to the inherent reduction
steps, which are based on linear algebra. It should, however,
be noted that given an MEC and the electric network, all
steps can be automated utilizing a computer algebra pro-
gram. Currently, the authors are working on implementing the
proposed modeling framework in a MAPLE package, which
automatically derives all model equations and an (optimized)
simulation code for MATLAB.

III. MODEL OF A THREE-PHASE PMSM WITH WINDING
SHORT CIRCUIT

In this section, the modeling framework described in the
previous section is applied to systematically derive a mathe-
matical model for a three-phase permanent magnet syn-
chronous motor (PMSM) with a (turn-to-turn) winding short
circuit of a stator coil. The considered PMSM comprises 12
single tooth coils, 8 internal permanent magnets, a skewed
stator and an inhomogeneous air gap, see Figure 1. It is used
in an automotive power steering application, where saturation
of the stator may occur in typical operating scenarios. Safety
is a very important feature for this type of application. Thus,
it is required that typical fault cases, as the turn-to-turn
winding short circuit, are taken into account in the design
and operation of (model-based) control strategies. Therefore,
a computationally efficient model which accurately covers also
these fault cases is required.

Following the procedure in Section II, first an MEC model
is derived for the motor. The schematic of the MEC is depicted
in Fig. 2. The main components are the mmf sources of the
coils and the magnets, the nonlinear permeances of the stator
and rotor, and the position-dependent air gap permeances.
This choice of the MEC model is based on results known
form the literature, in particular [20], [21], [22], [23], [26].
In comparison to the models described in these references,
an additional mmf source is utilized to model the turn-to-turn
winding short circuit of the affected coil.
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Fig. 2: Schematic of the MEC of the three-phase PMSM with
a winding short circuit in coil 3. The tree of the network is
indicated in blue with the corresponding co-tree in red. The
magnetic model of the turn-to-turn short circuit is highlighted
by the dashed box.

It is assumed that the short circuit affects coil 3. The turn-
to-turn winding short circuit of this coil is modeled by splitting
the coil into a part of Nsc shorted windings and NL̄ − Nsc
windings of the healthy coil, where NL̄ is the number of
windings of a stator coil. This is reflected in the MEC by
two mmf sources utc3o and utc3sc in the stator tooth 3. The
full range from a complete short circuit to a short circuit
affecting one turn of coil 3 can be represented by changing the
number Nsc. The remaining structure of the MEC is designed
analogously to the MEC model proposed in [23], where also
more details on the specific choice of the network can be
found.

The electric interconnection of the coils is depicted in Fig. 3.
In the considered system, the inverter is represented in an
idealized form by the voltage sources va, vb and vc. The coils
are represented by the magnetically coupled inductors L̄ and
resistors R. Corresponding to the MEC, coil 3 is divided into
the resistance R3o and inductance L̄3o of the healthy part, and
R3sc and L̄3sc of the short circuited part. The resistance of the
short circuit is described by Rsc. The tree in the schematic of
the MEC in Fig. 2 and the electric interconnection in Fig. 3
is indicated in blue with the corresponding co-tree in red.

The stator and rotor permeances of the motor can be directly
modeled by design data of the machine and constitutive
parameters of the material. Magnetic saturation of the stator
and rotor is taken into account by nonlinear permeances Gt
and Gc, which are defined as functions of the corresponding

R3o R3sc R6

R12R9

L̄3o L̄3sc L̄6

L̄12L̄9

Rsc

R2 R5

R8 R11

L̄2 L̄5

L̄8 L̄11

R1 R4

R7 R10

L̄1 L̄4

L̄7 L̄10

va vb vc

Fig. 3: Schematic of the electric interconnection of the three-
phase PMSM with a winding short circuit in coil 3. The tree
of the network is indicated in blue with the corresponding co-
tree in red. The electric model of the turn-to-turn short circuit
is highlighted by the dashed box.

mmfs. For instance a prismatic permeance of length l and
area A can be written in the form G = µ0µr(u/l)A/l, where
u is the mmf at the permeance and µr(H) = µr(u/l) is the
nonlinear permeability function of the material, see [20], [23],
[26] for a detailed discussion.

The air gap permeances are modeled by

Ga (ϕ) =

{
Gā (ϕ) for− π/4 < ϕ < π/4

0 otherwise
(32)

where the rotor angle ϕ is mapped to the interval [−π, π] by
means of a modulo operation and Gā is defined by a Fourier
series. The air gap permeances cannot be accurately described
solely based on the geometry of the motor, since it is hardly
possible to estimate the flux tube geometry of the air gap from
the design data of the machine only. Thus, the coefficients
of a Fourier series are identified based on measurements
(or FE simulations) such that the input-to-output behavior
of the model matches the measurements, see the discussion
in Section IV. The air gap permeances are then defined by
Gajk = Ga(ϕ− (j− 1)π/6− (k− 1)π/4), with j = 1, . . . , 12
and k = 1, . . . , 8.

The currents of the voltage sources itV , the resistive circuit
elements itR and the magnetically coupled inductors itL̄ in the
tree of the electric network are given by

itV =
[
ia ib ic

]T
(33a)

itR =
[
iR1 iR2 iR3o iR3sc . . . iR12 iRsc

]T
(33b)

itL̄ =
[
iL̄1 iL̄2 iL̄3o iL̄7 iL̄8 iL̄9

]T
. (33c)

The co-tree comprises magnetically coupled inductors only,
whose currents icL̄ are summarized as

icL̄ =
[
iL̄4 iL̄5 iL̄6 iL̄10 iL̄11 iL̄12 iL̄3sc

]T
. (34)

Post-print version of the article: G. Forstner, A. Kugi, and W. Kemmetmüller, �A magnetic equivalent circuit based modeling framework for
electric motors applied to a pmsm with winding short circuit,� IEEE Transactions on Power Electronics, vol. 35, no. 11, pp. 12 285�12 295,
2020
The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.



IEEE POWER ELECTRONICS VOL. ??, NO. ?? 7

The topology of the electric network can be formulated
according to (3) and (5) by



itV
itR
itL̄


 =



EV L̄
ERL̄
EL̄L̄


 icL̄. (35)

After eliminating the dependent variables due to the electric
interconnection, the MEC is described by

KL

[
icL̄
utg

]
=

[
ψI
L̄
0

]
−
[
D̃c

Dg

]
GcDT

mutm, (36)

with

KL =

[
D̃cGcD̃T

c D̃cGcDT
g

DgGcD̃T
c Gt + DgGcDT

g

]
. (37)

The differential equation for the flux linkage reads as
d

dt
ψIL̄ = −RL̄icL̄ −ET

V L̄vtV . (38)

The assumed linear behavior of the resistors allows to solve
GtRvtR = ERL̄icL̄ for vtR. Using this result in (19) gives
(38), where the abbreviation RL̄ = ET

RL̄
G−1
tRERL̄ is intro-

duced.
As discussed in Section II-C, the set of equations (36), (37)

has to be further reduced, if D̃c has linear dependent rows,
which is the case for the considered system. Proceeding along
the steps of Section II-C, the final model of the considered
PMSM with (turn-to-turn) winding short circuit is given by

d

dt
ψIIL̄ = −R̃L̄i

I
cL̄ − ẼT

V L̄vtV (39a)

KI
Lr

[
iI
cL̄
utg

]
=

[
ψII
L̄
0

]
−
[
D̃I
c

Dg

]
GcDT

mutm (39b)

τ =
1

2

(
uT
tg

∂Gt
∂ϕ

utg + uT
c

∂Gc
∂ϕ

uc

)
. (39c)

Here, the abbreviations

R̃L̄ = TI
mL̄

(
RL̄ −RL̄(T⊥mL̄)T

(
T⊥mL̄RL̄(T⊥mL̄)T

)−1
T⊥mL̄RL̄

)
(TI

mL̄)T
(40)

and ẼT
V L̄

= TI
mL̄

ET
V L̄

are used. This final DAE has 6 states
ψII
L̄

and 45 algebraic variables iI
cL̄

, utg .

IV. MODEL CALIBRATION AND VALIDATION

Most of the model parameters of the proposed MEC can
be accurately determined based on the geometric data of the
motor and the material data of the core and the permanent
magnets. In contrast, the value and shape of the air gap
permeances Ga(ϕ) and the stator leakage permeances Gsl
cannot be accurately determined by construction data only,
since it is difficult to estimate the leakage flux paths. These
permeances, however, strongly influence the behavior of the
motor, in particular the torque. Thus, a calibration based on
FE simulations or measurements is required for a high model
accuracy.

In the following, a model calibration strategy for the pro-
posed MEC model is described. Afterwards, the accuracy of
the calibrated model is demonstrated for a number of typical
operating points of the PMSM, which cover both the nominal
operation and the case of a winding short circuit.

a b c d e f g

Fig. 4: Setup of the test stand: a PMSM under consideration, b
rotary encoder, c torque sensor, d fly wheel, e rotary encoder,
f harmonic drive, g load motor.

TABLE I: Components of the test stand and measurement
setup.

Description Device
Measurement platform dSpace MicroLab Box 1202
Current sensor Sensitec CMS30050ABA
Voltage sensor Knick P27000 H1
a test motor PMSM under consideration
b rotary encoder w+s IH951
c torque sensor KTR Dataflex 16/10
d fly wheel Inertia J = 0.01 kgm2

e rotary encoder Heidenhain ERN1205000
f load motor Harmonic Drive LynxDrive-20C
g load motor Dunker Motor BG75

A. Model Calibration

The model calibration described in this part is based on
measurements of the PMSM on a test stand depicted in Fig. 4.
Starting from the left, the test stand comprises the modeled
PMSM which is coupled to a rotary encoder, followed by a
torque sensor, a fly wheel, a second rotary encoder and a load
machine. Depending on the experiment, the PMSM is either
rotated at slow speed by a harmonic drive or driven at a higher
speed by a load motor. The main components of the test stand
and measurement setup are summarized in Table I.

The identification of the model parameters (i.e. the air gap
permeances Ga(ϕ) and the stator leakage permeances Gsl) is
done for the healthy PMSM without a short circuit (Nsc = 0).
This is reasonable, since the exact location and the number
of shorted windings Nsc will not be available in practical
applications and thus would also not be feasible for a model
calibration.

The model calibration is based on the following measure-
ments:

1) In the first experiment, the PMSM is rotated at a very
slow speed of 1 rpm by the harmonic drive. Constant terminal
currents ia = in, ib = −in and ic = 0 are applied, where in
is the nominal current of the PMSM. The resulting torque τ
is measured in one electric period of ϕ = 0, . . . , 90° with a
step size of 0.5°. This results in Nτ = 180 measurements of
the torque τmk , the angle ϕmk and the terminal currents imtV,k =

[ima,k, i
m
b,k, i

m
c,k]T, k = 1, . . . , Nτ .

2) In addition to the torque, the flux linkage ψII
L̄

is
an important quantity for the model calibration. A direct
measurement of the flux linkage is, as a matter of fact,
typically not possible in a PMSM. Instead, measurements
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of the back emf of the motor for open terminals (terminal
currents ia = ib = ic = 0) are performed at a constant speed
n = 500 rpm. Using iI

cL̄
= 0 and ψII

L̄
(ϕ, iI

cL̄
) = ψII

L̄
(ϕ,0) in

(39a) gives

ψIIL̄ (ϕ,0)−ψIIL̄ (ϕ0,0) = − 1

ω

∫ ϕ

ϕ0

ẼT
V L̄v

m
tV dϕ̃. (41)

The symmetry of the motor implies ψII
L̄

(ϕ,0) = −ψII
L̄

(ϕ +
π/4,0), which allows to eliminate ψII

L̄
(ϕ0,0) in (41). Then,

the flux linkage for zero currents can be calculated in the form

ψIIL̄ (ϕ,0) =
1

2ω

∫ ϕ+π/4

ϕ

ẼT
V L̄v

m
tV dϕ̃. (42)

The flux linkage ψII
L̄

(ϕ,0) = ψIIpm(ϕ) is determined for a
step size of 2°, which gives Nψ

ϕ = 45 flux linkage values
ψII,mpm,j at the angles ϕmj = jπ/90, j = 1, . . . , Nψ

ϕ .
3) To obtain measurements of the flux linkage for non-zero

currents, sinusoidal terminal currents itV with a constant time
period Tψ = 2.5 ms and amplitude iψ , which is approximately
75% of the maximum current of the PMSM, are applied by a
simple current controller for fixed rotor angles ϕj = jπ/90,
j = 1, . . . , Nψ

ϕ . According to (39a), the flux linkage can be
calculated by

ψIIL̄ (ϕj , i
I
cL̄(t)) = ψIIpm,j −

∫ t

0

(
R̃L̄i

I,m

cL̄
+ ẼT

V L̄v
m
tV

)
dt̃.

(43)

This integral is evaluated for Nψ
i = 9 points with

t = tl for each angle ϕmj . This gives the flux linkage
ψII,m
L̄

(ϕmj , i
I,m
cL̄

(tl)) = ψII,m
L̄,jl

with the corresponding rotor
angle ϕmj , j = 1, . . . , Nψ

ϕ and currents iI,m
cL̄,l

, l = 1, . . . , Nψ
i .

Remark 5. The integration in (41) and (43) will have a drift if
non-zero mean measurement errors are present in the voltage
or current measurements. This drift, however, can be easily
compensated by exploiting the fact that ψII

L̄
(ϕk, i

I
cL̄

(t)) =
ψII
L̄

(ϕk, i
I
cL̄

(t + Tψ)) and ψII
L̄

(ϕk, i
I
cL̄

(t)) = ψII
L̄

(ϕk +
π/2, iI

cL̄
(t)) hold for the motor without winding short circuits.

Based on these measurements, the air gap permeances Ga
and the stator leakage permeances Gsl can be calibrated. As
briefly discussed before, the shape of the air gap permeance
is given by (32). A Fourier series of order Na is utilized to
approximate Gā, i.e.

Gā (ϕ) = α0 +

Na∑

n=1

αncos(npϕ) + βnsin(npϕ), (44)

where p = 4 is the number of pole pairs of the PMSM. For
the stator leakage permeances a nominal value can be approx-
imated from geometry data in the form Gnomsl = Aslµ0/lsl,
where Asl defines the area and lsl the length of the initial stator
leakage permeance. It is assumed that the real stator leakage
permeance is given by Gsl = γGnomsl , with a scalar scaling pa-
rameter γ. This results in the parameters α = [α0, . . . , αNa ]T,
β = [β1, . . . , βNa ]T and γ, which have to be identified.

The parameter calibration problem is formulated as a con-
strained optimization problem. The cost function J = Jτ+Jψ

to be minimized comprises a part Jτ , which penalizes the
torque error

Jτ = qτ

Nτ∑

k=1

(
τ(ϕmk , i

I,m
cL̄,k

,utg,k)− τmk
)2

, (45)

where qτ > 0 is a scalar weighting parameter, and utg,k is
defined by (39b) in the form, see also (25)

gτk =(Gt(ϕmk ) + DgGc(ϕmk )DT
g )utg,k

+ DgGc(ϕmk )((D̃I
c)

TiI,m
cL̄,k

+ DT
mutm) = 0.

(46)

The second part Jψ of the cost function J is used to penalize
errors in the flux linkage in the form

Jψ = qψ

Nψϕ∑

j=1

Nψi∑

l=1

(
ψIIL̄ (ϕmj , i

I,m

cL̄,l
)−ψII,m

L̄,jl

)2

, (47)

with qψ > 0. The mmf utg,lj is defined similar to (46) by

gψlj =(Gt(ϕmj ) + DgGc(ϕmj )DT
g )utg,lj

+ DgGc(ϕmj )((D̃I
c)

TiI,m
cL̄,l

+ DT
mutm) = 0.

(48)

Furthermore, the torque τ(ϕmk , i
I,m
cL̄,k

,utg,k) and the flux link-
age ψII

L̄
(ϕmj , i

I,m
cL̄,l

) are defined by (39b) and (39c), respec-
tively.

With these prerequisites, a constrained parameter optimiza-
tion problem can be formulated as

min
X

J (49a)

s.t.
0 = gτk , k = 1, . . . , Nτ (49b)

0 = gψlj , j = 1, . . . , Nψ
ϕ , l = 1, . . . , Nψ

i , (49c)

where

X =
{
α,β, γ,utg,1, . . . ,utg,Nτ ,utg,11, . . . ,utg,NψϕNψi

}

(50)

summarizes all optimization variables. This rather large con-
strained optimization problem is solved by applying the re-
duced gradient method, see, e.g., [27], [28]. The main idea is
to split the optimization variables into a set Xd of optimization
variables that are fixed by the equality constraints and a set Xi

of independent optimization variables. This allows to partially
decouple the solution of the nonlinear equality constraints
from the optimization. The mmf utg are chosen as dependent
variables, which leaves the unknown system parameters α, β
and γ as the independent optimization variables. The resulting
optimization problem is iteratively solved in MATLAB. The
solution time of the optimization problem is in the range of
15 min on a PC with Intel Core I7 processor.

The resulting optimal shape of the air gap permeances
Ga(ϕ) is depicted in Fig. 5. It constitutes a smooth and
symmetric function with a distinct fundamental wave which
agrees with the skewed stator of the considered PMSM.
Furthermore, the optimal scaling factor of the stator leakage
permeance results in γ = 3.7, which implies that the nominal
stator leakage permeance was assumed too small.
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Fig. 5: Shape of the optimal air gap permeances Gajk (ϕ)
between individual coils j and magnets k.
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Fig. 6: Validation of the calibrated model for the nominal
healthy case: torque τ for terminal currents ia = ip, ib = −ip
and ic = 0, with ip ranging from in/2 to 2in.

B. Model Validation

In this section, the accuracy of the calibrated model is
evaluated by comparison with measurement results, both for
the nominal case and the case of a winding short circuit. As
mentioned before, the parameter identification was performed
for the healthy PMSM without a short circuit. Thus, in the
first step the model accuracy for the nominal case of a healthy
PMSM is evaluated.

Fig. 6 shows the comparison of the torque τ of the calibrated
model with measurements for terminal currents ia = ip,
ib = −ip and ic = 0, where ip ranges from in/2 to 2in.
These results show that the proposed MEC model exhibits an
excellent accuracy of the torque in the entire feasible operating
range of the PMSM. It should be noted that only measurements
at ip = in were used for the model calibration. A closer
look at the results in Fig. 6 reveals that the shape of the
torque has non-vanishing higher harmonics, which become
more pronounced for higher currents. This can be attributed to
the magnetic saturation of the motor, which becomes larger for
higher currents. The results depicted in Fig. 6 thus also show
that magnetic saturation is accurately covered by the proposed
model.

The second evaluation of the model is based on the reduced
flux linkages ψII

L̄
. Fig. 7 gives a comparison of the flux

linkage of the model with the flux linkage calculated from
current and voltage measurements according to the description
given in the previous subsection. It can be observed that again
a good matching of the model is achieved for the entire
operating range. Please note that the bend in the curve in
Fig. 7 for high values of iI

L̄,1
and iI

L̄,2
can again be attributed

−2 0 2 −4 −2 0 2 4

0.5

1

1.5

iI
L̄,1
/in iI

L̄,2
/in

ψ
I
I
L̄
,1
/ψ

n

model

Fig. 7: Validation of the calibrated model for the nominal
healthy case: flux linkage ψI

L̄,1
for a constant angle ϕ = 45°.

to magnetic saturation. This effect is also accurately captured
by the proposed model.

In the next step, the accuracy of the proposed model for
a complete winding short circuit of coil 3 (Nsc = NL̄) is
investigated. The PMSM is rotated at a constant speed of
n = 300 rpm and open terminals are considered in the first
experiment. Fig. 8 depicts the results for the torque τ , the
voltages between the terminals va − vb, vb − vc, vc − va and
the current iRsc in the short circuit path. These results confirm
that the proposed model is able to accurately describe the
relevant system variables also in the case of a winding short
circuit. In particular, a good agreement of the resulting short
circuit current iRsc and of the back emf at the terminals can be
seen. The basic shape of the torque is also well described by
the proposed model. The higher harmonics within the torque
measurements can be partially related to mechanical vibrations
on the test stand.

Finally, Fig. 9 shows results of the PMSM with winding
short circuit of coil 3 (Nsc = NL̄) for different values
of the rotational speed n. Again, a good accuracy of the
proposed model is achieved, in particular for the voltage
vc − va and the short circuit current iRsc. The slightly larger
deviations of the torque for the higher speed of n = 500 rpm
is mainly attributed to additional mechanical vibrations on
the test stand, which become even more pronounced with
increasing speed. The torque sensor has a limited stiffness,
which, in combination with the test and load motor, results
in a weakly damped spring-damper system with a resonance
frequency at approximately n = 600 rpm. Therefore, no
torque measurement results are included for n = 750 rpm
and n = 1000 rpm in Fig. 9.

Note that for n = 1000 rpm the short circuit current
reaches almost 4 times the rated current of the machine. This
value also corresponds to the maximum current allowed for
the considered PMSM. Thus, experiments with higher speeds
are not possible without damage of the motor. Moreover,
large currents also cause a significant heating of the coils.
Consequently, this heating results in an increase of the elec-
trical resistance and slightly smaller measured currents iRsc
compared to the currents predicted by the model for higher
speeds of the PMSM.
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Fig. 8: Validation of the calibrated model for a winding short
circuit in coil 3 at a rotational speed of n = 300 rpm and open
terminals: torque τ , phase voltages vph between the terminals
and current iRsc in the short circuit path.

V. CONCLUSION AND OUTLOOK

A systematic modeling framework for electric machines
based on magnetic equivalent circuits (MECs) was proposed
in this paper. It extends earlier results in [23] by a systematic
inclusion of the electric interconnection of the motor coils with
other electric components, as, e.g., the cabling or the inverter.
The main motivation for the proposed modeling approach is
to obtain a model with a small complexity, which serves as
a basis for fast dynamic simulations and for a model-based
controller and observer design. The proposed model is able to
accurately describe an electric machine in its entire operating
range, including operating ranges with significant magnetic
saturation and non-fundamental wave characteristics.

The feasibility of the proposed modeling framework was
demonstrated by applying the method to the modeling of a
PMSM. It was shown that the calibrated model exhibits a
high accuracy in the overall operating range of the PMSM,
including the failure case of a winding short circuit. The
resulting model is real-time capable, which is a prerequisite
for the design of optimal nonlinear control strategies or fault
detection algorithms, see, e.g., [29]. This modeling framework
was also successfully applied to a dual three-phase PMSM
with a short circuit between two terminals in [30]. A similar
model accuracy could be obtained as in this work. In general,
the proposed framework provides a systematic modeling tool
for a wide range of electric motor (real-time) applications with
different fault scenarios.
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Fig. 9: Validation of the calibrated model for a winding
short circuit in coil 3 at different rotational speeds from
n = 100 rpm to n = 1000 rpm and open terminals: torque
τ , voltage vc − va and current iRsc in the short circuit path.
The rated speed of the considered motor is given by 1300 rpm.

Current work of the authors deals with the application of
the approach described in this paper in a model-predictive
control strategy. First simulation results show a high potential
to improve the torque control accuracy both for the healthy and
the fault case in comparison to the state of the art. Furthermore,
the use of the model in fault detection and isolation strategies,
in particular for multi-phase PMSMs, is a current field of
research. Finally, it is worth noting that the proposed modeling
framework can be extended to consider temperature effects
that result from a heating of the coils or permanent magnets.
A possible way to do this is by augmenting the MEC model
by a thermal model, e.g. in the form of a lumped thermal
network. Current research of the authors is also directed in
the combination of such a thermal network model with the
proposed MEC model.
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