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Modeling of the Media-Supply of
Gas Burners of an Industrial Furnace

Christoph Froehlich, Stephan Strommer, Andreas Steinboeck, Martin Niederer and Andreas Kugi
Automation and Control Institute (ACIN)

TU Wien
Gusshausstrasse 27-29, 1040 Vienna, Austria

{froehlich, strommer, steinboeck, niederer, kugi}@acin.tuwien.ac.at

Abstract—Gas-fired industrial furnaces are used to heat prod-
ucts to a predefined temperature level. As the temperature of
the load as well as the composition of the flue gas are crucial
for many applications in industry, the controllers of burners
have to ensure a given heat input and air-fuel ratio. As a basis
for such controllers, an accurate mathematical model of the
media supply of an industrial furnace, including valves, pressure
reducing valves, and long hot-air pipelines, will be derived from
first principles and verified by means of measured data of a real
plant1.

Index Terms—Mathematical model, System identification,
Fluid flow, Furnaces, Least squares approximations, Pipelines,
Temperature, Thermal analysis, Finite element analysis, Valves

I. INTRODUCTION

In the steel industry, gas-fired furnaces are often used to
heat steel products for annealing or for further processing like
rolling. The furnace being considered is part of a production
process of flat steel products. Here, the mass flows of the
fuel gas and the combustion air serve as control inputs for a
superimposed temperature controller. The furnace has two op-
erating modes that differ in terms of the fuel-gas composition:
fuel-lean and fuel-rich mixtures. The latter is used to prevent
scale formation on the product surface as a consequence of
oxygen-free flue gas. A controller has to prevent unwanted
switching between these two modes, i. e., an accurate control
of the air-fuel ratio is critical for safety reasons and for the
product quality. In this work, a mathematical model of the
media supply network will be derived. It can be used as a
basis for control design. Hence, the model should capture the
essential dynamic behavior of the system and it should be
computationally inexpensive.

A. Media supply of gas burners

In Figure 1, the media supply of the considered furnace is
outlined. Fuel gas and combustion air are separately fed to the
nozzle mix burner. Natural gas is used as fuel. It is supplied by
a transfer station and expanded by a pressure reducing valve

1 This research was partially supported by the Austrian Research Promotion
Agency (FFG), Grant No.: 834305. The third author gratefully acknowledges
financial support provided by the Austrian Academy of Sciences in the form
of an APART-fellowship (Austrian Programme for Advanced Research and
Technology) at the Automation and Control Institute of TU Wien.

This work has been presented at the IEEE IAS Annual Meeting 2015 in
Dallas, TX [1]
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Fig. 1: Media supply of a nozzle mix burner.

(PRV in Figure 1) to a defined operating pressure pf . The
fuel gas flow control valve regulates the mass flow ṁf to the
furnace, which then heats up the steel products. Additionally,
a bypass line maintains a minimum mass flow to prevent an
extinction of the flame. If required, a shut-off valve can be
used to completely stop the supply of natural gas.

As a second medium for the combustion, ambient air is
sucked into the media supply by a compressor. To reduce the
consumption of fuel gas, the combustion air is preheated by
means of a recuperator. It recovers thermal energy from the
flue gas leaving the furnace. The recuperator does not need
to be considered in the present work because the temperature
T inha and the pressure pinha of the hot air leaving the recuperator
are measured. The heated air then passes through an insulated
hot-air pipeline which is several dozens of meters long. Along
this pipeline, the air exchanges thermal energy with the
environment leading to a change of its temperature. A hot-
air flow control valve defines the mass flow ṁha of the air.
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B. Existing models

To describe the states of transient pipe flows, several ap-
proaches are available in the literature. A short overview will
be given here:

The most accurate but computationally expensive method
is computational fluid dynamics (CFD). Due to the high
computational effort, it is not useful for model-based con-
trol design [2], [3]. Neglecting thermodynamical effects, a
MATLAB/SIMULINK library was used to model long gas
pipelines [4]. The pipes in the considered media supply
network are of shorter length and thermodynamical effects
should not be neglected. Another possibility is to employ the
analogy between electrical networks and pipe networks [5].
This method uses a simplification of resistances in the fluid
system and assumes isothermal gas flow.

Glueck et al. [6] presented a mathematical model of a pneu-
matic system. Neglecting pipe friction, this model describes
the flow and the thermodynamic behavior of the compressible
fluids. Pipes with constant surface temperatures are assumed.
Gölles et al. [7] proposed a model of a biomass furnace with
incompressible fluids neglecting thermodynamic interaction
between the fluids and the environment.

Further, a model of the PRV has to be developed to describe
the mass flow in the fuel gas branch. Parker and White [8]
studied the steady-state characteristics of a pneumatic pressure
regulator. Tsai and Cassidy [9] proposed a dynamical model
of PRVs where an idealized behavior for the pressure drop
was assumed.

During an earlier study of the presented furnace, a less
detailed simulation model of the media supply was devel-
oped [10]. In this study, the hot-air pipeline, the PRVs in the
natural gas pipeline, and the compressibility of the fluid have
not been considered.

Additionally, a transient thermodynamical model to describe
the temperature loss along the hot-air pipeline has to be
derived. The governing partial differential equations (PDEs)
could be solved by finite difference methods (FDMs) [11]. To
solve these PDEs with less effort, weighted residual methods,
e. g., the Galerkin method, can be used. Steinboeck et al.
[12] derived a fast simulation model for one-dimensional
heat conduction. Yu et al. [13] also presented a simulation
model for underground oil pipelines by means of the Galerkin
method.

C. Motivation for this work

The superordinate controller for the temperature of the
steel product assumes an ideal behavior of the media supply.
Therefore, an accurate control of the mass flows is crucial
to allow for high product quality and to ensure a safe op-
eration of the furnace. Thus, a model-based control for the
media supply may be useful. Additionally, the possibility to
operate the furnace at its limits, i. e. with highest heat input
at dynamic load variations, seems promising. For this, an
accurate mathematical model with low computational effort is
required. None of the models proposed in the literature meet
these requirements. Moreover, the proposed model can also be
beneficial for other purposes:

• training of operators
• tool for design decisions
• recuperating more thermal energy without overstressing

the heat exchanger

D. Contents
The present work is structured as follows: In Section II,

a mathematical model of the media supply of a nozzle mix
burner is derived by first principles. In Section III, the system
is validated and compared to measured data from a real plant
at voestalpine Stahl GmbH, Linz, Austria and Section IV
contains some conclusions.

II. MATHEMATICAL MODELING

A mathematical model of the pipe network shown in
Figure 1 is derived. It consists of several submodels which
are defined first. The most important process variables are
the mass flows, the temperatures, and the pressures of the
streaming fluids, i. e., hot air and fuel gas. Both fluids are
modeled as compressible and ideal gases. With the exception
of the hot-air pipeline, all pipe flows are assumed to be
isothermal.

A. Orifice flow
The description of the mass flow ṁ through a valve is based

on a sharp-edged orifice [14], [15]. Assuming frictionless
adiabatic flow without the supply of specific work, the mass
flow is given by

ṁ = Cp1ρ0

√
T0/T1Ψ (Π) . (1)

Here, Π = p2/p1 is the pressure ratio, p1 the upstream pressure,
p2 the downstream pressure, T1 the upstream temperature,
C the so-called discharge coefficient, ρ0 the mass density
of the fluid at a reference temperature T0, and Ψ (Π) =√

1−
(

Π−b
1−b

)2

a normalized approximation of the discharge
function for b < Π < 1. Below the so-called critical pressure
ratio

b = Πkrit :=

(
2

κ+ 1

) κ
κ−1

(2)

with the adiabatic index κ of the fluid, a further decrease of
Π does not result in an increase of ṁ. This case is called
choked-flow, i. e., Ψ (Π) = 1 for 0 < Π < b. The real critical
pressure ratio b is smaller than the theoretical value according
to (2) and consequently, a constant value b = Πkrit/2 is used.
Caused by the low upstream pressures p1 in the pipe network,
Π = p2/p1 > b always holds and the case with choked flow
is neglected. Analytical formulations of a constant discharge
coefficient C are available [14], [15]. However, C is not
constant over the whole operating range and a relation of the
form C = C (Π, β) can be used, where β is the valve position.
Therefore, measured values from the real plant (pi1, p

i
2, ṁ

i, T i1)
are used to calculate the discharge coefficients at the sampling
instances i, i. e., Cimeas = ṁi/

(
pi1ρ0

√
T0/Ti1

√
1−
(

Πi−b
1−b

)2

)
.

Then, a polynomial in Π and β is fitted by applying the
least-squares method to approximate C (Π, β). Figure 2 shows
measured values as crosses, while the surface represents the
identified polynomial C (Π, β).
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Fig. 2: Identified discharge characteristics of a valve.

B. Valve dynamics

The valves are controlled by subordinate position con-
trollers, which use auxiliary pneumatic systems. Figure 3
shows the desired valve position βsp and the actual time
evolution β of a typical valve of the considered plant. Clearly,
the dynamic response is characterized by a dead time. A
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Fig. 3: Poppet valve with actuator dead time.

simplified semi-empirical dynamical model is given in the
form of a first-order low pass with a constant dead time TDT ,
i. e.,

β̇ =
1

τ
(Kβsp (t− TDT )− β) . (3)

Here, potential feedback forces of the streaming fluid on the
valve are neglected. The time constant τ , the dead time TDT ,
and the gain K can be identified by means of measured data
of the respective valve. For this purpose, the optimization
problem

min
τ,TDT ,K

∑

i

(
βi − βisim (τ, TDT ,K)

)2
(4)

is solved. Here, βisim is the output of the simulated system (3)
and βi is the corresponding measured value at the sampling
instance i.

C. Pressure reducing valves

To provide the system with fuel gas at a fixed pressure level,
mechanical pressure reducing valves (PRVs) are used. Figure 4
shows the configuration of a typical PRV. The measurement
diaphragm, which is pretensioned by a setpoint spring, com-
pares the ambient pressure p∞ with the downstream pressure

ṁ

setpoint spring
measurement diaphragm

compensation diaphragm

poppet

breathing valve

impulse pipe with throttle

p1
p2
p∞

s

Fig. 4: Pneumatic PRV including a return spring.

p2, and holds the poppet of the valve at the position s. The
compensation diaphragm eliminates the static pressure forces
on the poppet. Thus, the poppet position is independent of
the upstream pressure p1. Due to the design of the poppet,
steady-state flow forces are negligible [16] and the downstream
pressure is a function of the form p2 = f (ṁ, s (p2)). Mea-
sured data show that the valve reacts immediately and without
overshooting (sufficient damping) upon changes of the mass
flow ṁ. This justifies the use of a quasi steady-state model
of the PRV. Because the poppet positions cannot be measured
without extra sensor equipment, it is omitted in the model
proposed here. Similar to (1), the steady-state model of a PRV
reads as

ṁ = Cprv (p1, p2) p1ρ0

√
T0/T1Ψprv (p2/p1) (5)

with the upstream pressure p1, the upstream temperature T1,
the downstream pressure p2, and the mass density ρ0 at a refer-
ence temperature T0. The discharge coefficient Cprv (p1, p2)
of a PRV is a function of p1 and p2 and can be identified
in a similar way as described in Section II-A. Considering
a polytropic temperature change, the downstream temperature
T2 follows as

T2 = T1 (p2/p1)
n−1
n (6)

with the polytropic exponent n ∈ (1, κ). Note that n is chosen
such that (6) describes measured temperature changes in an
accurate way.

D. Pressure drop in a long pipeline

Based on the Reynolds number

Re :=
vL

ν
(7)

with a characteristic length L, an average fluid velocity v, and
the kinematic viscosity ν of the fluid, it can be argued that the
pipe flows in the considered media supply system are always
turbulent. For this flow regime and compressible fluids, the
pressure drop ∆p reads as

∆p = p1 − p2 = p1

(
1−

√
1− ζ L

D

ρ1

2
v2

1

(T1 + T2)

p1T1

)
(8)

with the upstream pressure p1, the upstream temperature T1,
the downstream pressure p2, the downstream temperature T2,
a characteristic length L, the diameter D of the channel, the
dimensionless coefficient ζ called Moody friction factor, the
mass density ρ1, and the mean velocity v1 at the inlet [3],
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[17]. As Petukhov [18] suggested, an approximate relation for
turbulent flows is

ζ = (0.79 ln (Re)− 1.64)
−2 . (9)

E. Transient thermal model for a long pipeline

Figure 5 shows a cross-section of an insulated pipeline with
length L, inner radius ri and outer radius ro. The pipe is
surrounded by ambient air with the temperature T∞ and a fluid
with the mass flow ṁ and the input temperature T inha streams
through the pipe. The fluid temperature Tg (z, t) changes due
to heat exchange with the pipe (heat flux q̇i (z, t)). The outlet
temperature Tg (z = L, t) = x1 (t) is of interest. The wall
temperature Tw (r, z, t) is Tw,i (z, t) at the inner surface and
Tw,o (z, t) at the outer surface. There the heat flux q̇o (z, t) is
present.

vg (z, t) Tg (z, t)

insulation

sheet metal enclosure steel pipe

Tw,i (z, t)
Tw,o (z, t)

q̇o (z, t)

q̇i (z, t)

ro

ri

z
r

L

T∞

fluid

0

Tw (r, z, t)x2(t)

x4(t)

x1(t)

x5(t)

x3(t)

ṁ, T inha

x0(t)

Fig. 5: Cross section of the hot-air pipeline.

1) Problem formulation: Heat conduction mainly occurs
in radial direction because the temperature gradient in radial
direction is much higher than in longitudinal direction. This
is why the heat equation in cylindrical coordinates is used for
the domain (r, z) ∈ ΩW = (ri, ro)× (0, L] [19]. It reads as

D (Tw) = ρw (r) cw (r)
∂Tw
∂t
− 1

r

∂

∂r

(
rkw (r)

∂Tw
∂r

)
= 0 .

(10a)

The considered pipe wall consists of three layers: an inner steel
pipe, a mineral wool insulation, and a sheet metal enclosure,
see Figure 5. Each layer is characterized by its mass density
ρw, specific heat capacity cw, and thermal conductivity kw.
Let the initial temperature distribution be

Tw (r, z, t = 0) = Tw0 (r, z) . (10b)

The heat transfer on the wall surfaces is convective. Hence,
the boundary conditions read as

Bi (Tw) = −kw
∂Tw
∂r

∣∣∣∣
r=ri

− q̇i = 0 (10c)

Bo (Tw) = kw
∂Tw
∂r

∣∣∣∣
r=ro

− q̇o = 0 (10d)

with

q̇i (z, t) = αi (Tg (z, t)− Tw,i (z, t)) (11a)
q̇o (z, t) = αo (T∞ − Tw,o (z, t)) . (11b)

The orientations of the heat fluxes q̇i and q̇o are shown in
Figure 5. The calculation of the heat transfer coefficients αi
and αo will be discussed later.

By using the energy balance and applying Reynold’s trans-
port theorem [3], [19], the differential equation governing the
gas temperature Tg (z, t) follows as

Dg (Tg, Tw,i) =
∂Tg
∂t

+ vg
∂Tg
∂z

+
2riπ

Aρgcp,g
q̇i = 0 (12a)

subject to the boundary condition

Tg (z = 0, t) = T inha (t) (12b)

and initial condition

Tg (z, t = 0) = Tg0 (z) , (12c)

respectively. Here, ρg is the mass density calculated from the
ideal gas law, cp,g is the specific heat capacity of the fluid,
A = r2

i π is the cross-sectional area, and vg is the mean fluid
velocity.

2) Convection: The heat transfer coefficients αi and αo are
computed from the Nusselt number

Nu :=
αL0

k
, (13)

where L0 is a characteristic length and k is the thermal
conductivity of the fluid. Moreover,

Pr := ν/a (14)

is the Prandtl number, where a is the thermal diffusivity of the
fluid. For forced convection in smooth tubes with L/D ≥ 10,
the empirical relation

Nu =
ζ/8 (Re− 1000)Pr

1 + 12.7
√
ζ/8

(
Pr

2
3 − 1

) (15)

with ζ from (9) is suggested [20]. With (7), (13) – (15), and
v = vg = ṁ/(ρgr2

i π), αi follows as a function of ṁ.
Free convection occurs on the outer surface. For this con-

figuration and Rayleigh numbers in the range of

Ra := GrPr . 1012 , (16)

the approximate relation

Nu =

(
0.6 +

0.387Ra1/6

1 +
(
0.559/Pr)9/16

)8/27

)2

(17)

with the Grashof number

Gr :=
gβL3

0 |Tw,o − T∞|
ν2

(18)

is used [20]. Here, g is the gravitational acceleration, Tw,o the
surface temperature, and β = 1

T∞
is the thermal expansion

coefficient of an ideal gas. Eq. (13), (14), and (16) – (18) are
used to calculate αo.
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If the burners are shut off, the fluid is not in motion, i. e.,
ṁ = 0 or vg = 0 and free convection occurs also on the
inner pipe surface. In this case, the temperature evolution of
the pipe wall is of interest to obtain the initial condition when
valves are opened again. Here, the gas temperature itself is
of smaller significance, because the evolution of the pipe wall
temperature is mainly influenced by the pipe wall itself due to
its high heat capacity. Due to simplicity reasons, (17) is also
used to calculate αi for ṁ = 0.

3) Solution by means of Galerkin method: Because an
analytical solution of the PDEs (10a) and (12a) is difficult
to find, an approximate solution scheme is used. By applying
the Galerkin weighted residual method [21], the temperature
distribution is approximated by a finite number of discrete
system states xl, l = 0, . . . , 5, shown in Figure 5. The approx-
imation involves two steps: First, the dependence of Tw (r, z, t)
on r is approximated by Tw,i (z, t) and Tw,o (z, t). Then,
the dependence of Tw,i (z, t), Tw,o (z, t), and Tg (z, t) on the
longitudinal coordinate z is approximated using the states xl.
As an appropriate trial function in radial direction, the steady-
state solution of (10a) is employed. For a wall consisting of
N layers, the steady-state temperature distribution within layer
m = 1, . . . , N , i. e., r ∈ [ri,m, ri,m+1], takes the form

T̃w (r, z) = T̃w,i (z)φi (r) +

T̃w,o (z)

m−1∑
l=1

ln(ri,l+1/ri,l)
kw,l

+
ln(r/ri,m)
kw,m

N∑
l=1

ln(ri,l+1/ri,l)
kw,l

︸ ︷︷ ︸
φo(r)

(19)

with φi (r) = 1 − φo (r). Here, ri,m is the inner radius of
the layer m, ri,1 = ri, ri,N+1 = ro, and kw,m is the uniform
thermal conductivity of the layer m. The functions φi and φo
are used as trial functions for the approximate solution in the
layer m

T̂w (r, z, t) = Tw,i (z, t)φi (r) + Tw,o (z, t)φo (r) (20)

for r ∈ [ri,m, ri,m+1]. Tw,i (z, t) and Tw,o (z, t) follow from
the weighted residuals equations∫ ro

ri

φi (r) D
(
T̂w

)
dr

+ φi(ri)︸ ︷︷ ︸
=1

Bi

(
T̂w

)
+ φi(ro)︸ ︷︷ ︸

=0

Bo

(
T̂w

)
= 0 (21a)

∫ ro

ri

φo (r) D
(
T̂w

)
dr

+ φo(ri)︸ ︷︷ ︸
=0

Bi

(
T̂w

)
+ φo(ro)︸ ︷︷ ︸

=1

Bo

(
T̂w

)
= 0 (21b)

with D , Bi, and Bo from (10). This yields

∂

∂t

[
Tw,i (z, t)
Tw,o (z, t)

]
=

=:Γ︷ ︸︸ ︷[
Cw1 Cw2

Cw2 Cw3

]−1

[
q̇i (z, t)− Tw,i (z, t)Aw,i − Tw,o (z, t)Aw,o
q̇o (z, t)− Tw,i (z, t)Bw,i − Tw,o (z, t)Bw,o

]

︸ ︷︷ ︸
=:f(Tw,i,Tw,o)=[f1(Tw,i,Tw,o),f2(Tw,i,Tw,o)]T

. (22)

If the integrals are evaluated piecewise with φi and φo within
the respective layer m, the calculation of the entries of Cw

and f , i. e. Cwl, l ∈ {1, 2, 3} and Awl, Bwl, l ∈ {i, o}, is fairly
straightforward, e. g.,

Cw3 =

∫ ro

ri

cw (r)ρw (r) (φo (r))
2

dr

=

N∑

m=1

∫ ri,m+1

ri,m

cw,m ρw,m (φo (r))
2

dr . (23)

Here, cw,m and ρw,m are uniform within the respective layer
m.

To find trial functions for the direction z, the steady-state
solution of (12a), i. e.,

∂T̃g
∂z

= − 2riπ

ṁcp,g
˙̃qi , (24)

is solved first. The steady-state heat flux ˙̃qi (z) in (24) can
be calculated from the steady-state solution of (22), i. e., from
f = 0. This yields

˙̃qi (z) = T̃w,i (z)Aw,i + T̃w,o (z)Aw,o (25a)
˙̃qo (z) = T̃w,i (z)Bw,i + T̃w,o (z)Bw,o . (25b)

Using (11b) and (25b) Tw,o and q̇o can be eliminated. With
the abbreviations

c1 = Aw,i −
Aw,oBw,i
Bw,o + αo

, c2 =
αoAw,o
Bw,o + αo

,

and (25a) follows

T̃w,i (z) =
1

c1
˙̃qi (z) +

c2
c1
T∞ . (26)

This result can be inserted into (11a), which gives

˙̃qi (z) =
αi

1 + αi
c1

(
T̃g (z) +

c2
c1
T∞

)
. (27)

Insertion into (24) yields the linear ODE

∂T̃g
∂z

= − 2riπ

ṁcp,g

αi
1 + αi

c1︸ ︷︷ ︸
:=χ

(
T̃g +

c2
c1
T∞

)
. (28)

Its exact solution can be easily computed. However, only the
shape of this solution is of interest. Clearly, this shape is
defined by exp (−χz). The solution of (28) and the equations
(11), (25), and (26) show that the steady-state solutions T̃w,i,
T̃w,o, ˙̃qi, and ˙̃qo also contain the expression exp (−χz). Based
on this observation, the approximate solutions

T̂g (z, t) = x0(t)σ0 (z) + x1(t)σ1 (z) (29a)

T̂w,i (z, t) = x2(t)σ0 (z) + x3(t)σ1 (z) (29b)

T̂w,o (z, t) = x4(t)σ0 (z) + x5(t)σ1 (z) (29c)

are chosen with the trial functions

σ1 (z) =
1− e−χz

1− e−χL
(30a)

σ0 (z) = 1− σ1 =
e−χz − e−χL

1− e−χL
. (30b)
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The parameter χ (cf. (28)) is calculated once for a typical op-
erating point and then held constant. The Galerkin coefficients
xl(t), l = 1, . . . , 5 are chosen so that based on Dg (Tg, Tw,i)
from (12a) and

Di

(
T̂w,i, T̂w,o

)
=
∂T̂w,i
∂t
− Γ1,1f1

(
T̂w,i, T̂w,o

)
(31a)

− Γ1,2f2

(
T̂w,i, T̂w,o

)
= 0

Do

(
T̂w,i, T̂w,o

)
=
∂T̂w,o
∂t

− Γ2,1f1

(
T̂w,i, T̂w,o

)
(31b)

− Γ2,2f2

(
T̂w,i, T̂w,o

)
= 0

from (22), where Γi,j , i, j = 1, 2 refer to the entries of Γ, the
five weighted residuals

∫ L

0

σ1 (z) Dg

(
T̂g, T̂w,i

)
dz = 0 (32a)

∫ L

0

σψ (z) Dγ

(
T̂w,i, T̂w,o

)
dz = 0 (32b)

with ψ ∈ {0, 1}, γ ∈ {i, o} become zero. Solving (32) yields

ẋ1 = C−1
g (−Ag1x1 +Ag2x2 +Ag3x3 −Ag,inx0) (33a)[

ẋ2

ẋ3

]
= C−1

i

(
Ai,in

[
x2

x3

]
+ Bi,out

[
x4

x5

]
+

Bi,g

[
x0

x1

]
+ bi,∞T∞

)
(33b)

[
ẋ4

ẋ5

]
= C−1

o

(
Ao,in

[
x2

x3

]
+ Bo,out

[
x4

x5

]
+

Bo,g

[
x0

x1

]
+ bo,∞T∞

)
(33c)

with x0 = T inha as system input and the initial values
xl (t = 0) = xl0, l = 1, . . . , 5. A list of the constants used
in (33) can be found in [22]. Based on (33), the temperature
evolution of the gas and the pipe wall can be easily calculated.

If ṁ = 0 holds, the temperature evolution is determined to
obtain feasible initial conditions when the valves open again.
In this case, (12b) cannot be used. However, the same trial
functions (30) are employed. The additional unknown state
variable (gas temperature) Tg (0, t) = x0 (t) and the additional
weighted residual

∫ L

0

σ0 (z) Dg

(
T̂g, T̂w,i

)
dz = 0 (34)

have to be considered. Hence, (33a) is replaced by
[
ẋ0

ẋ1

]
= C̃−1

g Ãg

([
x0

x1

]
−
[
x2

x3

])
. (35)

For calculating αi and αo according to Section II-E2 and
ρg by means of the ideal gas law, average temperatures of the
wall surfaces and the gas are determined in the form

T̄φ (t) =
1

L

∫ L

0

T̂φ(z, t) dz , φ ∈ {w,o,w,i ,g } . (36)

F. Thermocouple

Thermocouples covered by a ceramic shield are used to
measure the gas temperature as shown in Figure 6. Due
to the radiative interaction with the pipe wall and the heat
capacity of the thermocouple itself, the measured temperature
Ttc may deviate from the true gas temperature Tg [23], [24]. To

Q̇ (t) Tg

Ttc

Tw,i

vg

ceramic shield

Fig. 6: Thermocouple inside a pipe.

compensate for this error, a dynamic model of Ttc is derived.
A simple heat balance yields

dTtc
dt

=
1

mtcctc
Q̇ (t) (37)

with the mass mtc and the specific heat capacity ctc of the
thermocouple. The heat flow

Q̇ (t) = Atcαi (Tg − Ttc) +Atcσεtc
(
T 4
w,i − T 4

tc

)
(38)

via the surface of the thermocouple consists of a convective
and a radiative part. Here, Tg is the local gas temperature, Tw,i
is the local inner pipe wall temperature, Atc is the surface area
of the thermocouple inside the pipe, σ is the Stefan-Boltzmann
constant, εtc is the radiative emissivity, and the heat transfer
coefficient αi is assumed to be the same as on the inner pipe
surface.

G. Full model

Now, the mathematical model of the considered pipe net-
work according to Figure 1 can be presented. For this, recall
that the indices ha and f are used for the hot-air and the fuel
gas subsystem, respectively.

The dynamic behavior of the system switches depending
on the fact if hot air is streaming through the hot-air pipeline
(ṁha > 0) or not (ṁha = 0). If ṁha > 0, the upstream
gas temperature x0 (t) = T inha (t) is calculated according to
Section II-F based on a thermocouple measurement T intc at
z = 0. Rearranging (37) and (38) yields

T inha = Ṫ intc
mtcctc
Atcαi

+
σεtc
αi

((
T intc
)4 − x4

2

)
+ T intc , (39)

with the simulated inner pipe wall temperature x2. The time
derivative Ṫ intc in (39) can be numerically calculated, e. g., by
means of a Savitzky-Golay filter [25]. The equation (see (33a))

Ṫha = C−1
g

(
−Ag1Tha +Ag2x2 +Ag3x3 −Ag,inT inha

)
(40)

defines the ODE for the output temperature x1 = Tha of hot
air. If the pipeline is shut off (ṁha = 0), the temperature
change of the air in the pipeline can be described by (cf. (35))

[
ẋ0

Ṫha

]
= C−1

g Ag

([
x0

Tha

]
−
[
x2

x3

])
. (41)
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The equations (33b) and (33c) hold true independent of ṁha.
Using (8), the pressure at the end of the hot-air pipeline follows
in the form

pha = pinha

√
1− ζ L

2ri

ρha
2
v2
g

(
T inha + Tha

)

pinhaT
in
ha

(42a)

with vg = ṁha/(ρhar2
i π) and ρha = ρ0,ha

pinhaT0/(T inhap0) from
the ideal gas law. The temperature Ttc of the thermocouple,
which is located at the end of the pipeline (cf. Figure 1), is
calculated from (37) and (38), i. e.,

Ṫtc =
Atcαi
mtcctc

(Tha − Ttc) +
Atcσεtc
mtcctc

(
x4

3 − T 4
tc

)
(42b)

with the pipe wall temperature x3 and the hot-air temperature
Tha at the location of the thermocouple. The position βha of
the poppet of the hot-air flow control valve and βf of the
fuel gas control valve are calculated from (3). Considering the
shut-off valve by an additional discrete input βso,f ∈ {0, 1}
( βso,f = 1 for closed valve), the mass flow of the fuel gas
follows from (1) in the form

ṁf = (1− βso,f )Cf

(
pc
pf
, βf

)
pfρ0,f

√
T0

Tf
Ψf

(
pc
pf

)
.

(42c)

The effect of the bypass line is captured by the discharge
coefficient Cf

(
pc
pf
, βf

)
. The mass flow ṁha of the hot air is

described in a similar fashion from (1). The pressure pf and
the gas temperature Tf after the PRV (cf. Figure 1) can be
computed from

ṁf = Cprv (ptr, pf ) ptrρ0,f

√
T0

Ttr
Ψprv

(
pf
ptr

)
(42d)

Tf = Ttr

(
pf
ptr

)n−1
n

(42e)

(cf. (5) and (6)).
The full mathematical model can be written as a differential-

algebraic-system of the form

ẋ = Φ (x, z,u) , x (t = 0) = xt0 (43a)
0 = Γ (x, z,u) , (43b)

where xT = [x0, Tha, x2, x3, x4, x5, Ttc, βha, βf ] is the state,
zT = [pha, ṁha, ṁf , pf , Tf ] is the vector of algebraic vari-
ables, and uT =

[
T intc , p

in
ha, ptr, Ttr, pc, βsp,ha, βsp,f

]
is the

system input.

III. EXPERIMENTAL VALIDATION

The proposed model is validated by means of measured data
from the real plant.

First, the submodel (42d) is validated. Figure 7 shows the
measured pressure p∗f and its simulated counterpart pf of the
PRV (presented as gauge pressures), where the fuel gas mass
flow ṁf , the upstream pressure ptr and the upstream tem-
perature Ttr serve as system inputs. Apart from measurement
noise, the model output pf and the measured time evolution
p∗f agree well. Furthermore, it can be seen that the downstream
pressure p∗f is only marginally influenced by variations in the

310

315

320

325

p
f
/
m
b
ar

p∗f pf

0 0.5 1 1.5 2

0.05

0.06

time / h

ṁ
f
/
k
g
/s

0.98

1.02

p
tr
/
b
ar

ṁf ptr

Fig. 7: Simulated and measured response of the PRV.

upstream pressure ptr but changes in the mass flow ṁf cannot
be fully compensated by the PRV.

Next, the thermal model of the hot-air pipeline (40) – (42)
is validated using measured gas temperatures. For comparison,
the finite-difference method (FDM) is used to solve the PDEs
as described in [22]. The Galerkin method simulates five
times faster than the model derived by the FDM using fifty
discretization points. The deviation between these two temper-
ature models is below Tw < 2 % (in K), which justifies the
use of the faster Galerkin method. Figure 8 shows simulation
results of the models (39), (40), and (42). The measured
thermocouple reading T ∗tc is compared to the simulated signal
Ttc for a scenario with given mass flow ṁha and input
temperature T intc . The absolute error |∆Ttc| = |Ttc − T ∗tc| (in

400

450

T
/

◦ C

T intc T inha
Tha Ttc
T ∗
tc

−1

−0.5
0

∆
T
t
c

T
t
c
/
%

0 1 2 3 4

0.6

0.8

1

time / h

ṁ
h
a
/
k
g
/s

Fig. 8: Simulated and measured temperature of hot-air
pipeline.

K) remains below 1 % K. This proves the capability of the
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model to capture cooling as well as heating of the streaming
fluid.

Now the full model (43) is validated. Figure 9 shows the
simulated mass flow ṁha of the hot-air branch compared to
the measured mass flow ṁ∗ha together with the setpoint signal
βha,sp of the valve and the calculated upstream pressure pha.
The simulated and measured signals ṁha and ṁ∗ha agree well
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Fig. 9: Mass flows of the hot-air branch.

with a small error ∆ṁha = ṁha − ṁ∗ha.
Finally, the measured mass flow ṁ∗f and the simulated mass

flow ṁf of the fuel gas branch are shown in Figure 10. At
the beginning (cf. left figure), the shut-off valve is closed,
i. e., βso,f = 1. The measured mass flow ṁ∗f shows that the
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Fig. 10: Mass flows of the fuel gas branch.

shut-off valve also exhibits a small time delay, which is not

captured by the model. Further, it can be seen that if the fuel
gas flow control valve is opened from the fully-closed state
its time delay TDT is not constant. This partially explains the
deviation ∆ṁf = ṁf − ṁ∗f . During normal operation, the
system is very accurate (cf. right figure). Noteworthy errors
|∆ṁf | > 10 % only occur during rapid motion of the valve.

IV. CONCLUSION AND OUTLOOK

In this work, a mathematical model capable of describing
the transient behavior of the media supply of a gas-fired
industrial furnace as shown in Figure 1 was presented.

The transient temperature evolution of a gaseous fluid in
a long, insulated pipeline can be accurately simulated with
low computational effort. The full model was validated by
measured data from the real plant. The most relevant process
variables, the mass flows of fuel gas and combustion air, are
accurately captured by the model. Therefore, the model serves
as a good starting point for model-based analysis, control
design and optimization.
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