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Model-predictive control of servo-pump driven
injection molding machines

Christoph Froehlich, Member, IEEE, Wolfgang Kemmetmüller, Member, IEEE, and Andreas Kugi, Member, IEEE

Abstract—A high-dynamic and accurate control of the process
variables within their admissible limits is essential to meet a high
product quality in injection molding processes. Conventional con-
trol concepts of hydraulic injection molding machines typically
employ servo-valves or variable displacement pumps as actua-
tors. Nowadays, servo-motor driven pumps are frequently used
due to their higher energy efficiency. These systems, however,
exhibit a slower actuator dynamics and thus demand for more
advanced control concepts. This paper proposes a novel control
concept for this type of injection molding machines consisting
of a Lyapunov-based load volume flow estimator and a model-
predictive controller based on a Riccati recursion. The control
concept systematically accounts for the system constraints and
features a high performance for the filling and packing phase
without knowledge of the mold geometry or information from
previous injection cycles. A thorough comparison of the proposed
control strategy with the industrial state-of-the-art controller is
made by injection and melt cushion experiments on an industrial
injection molding machine. Finally, also the robustness of the
proposed control concept with respect to model uncertainties is
shown.

Index Terms—Nonlinear Control Systems, Injection Molding,
Process Control, Model-Predictive Control

I. INTRODUCTION

INJECTION molding is a widely applied manufacturing
process for shaping plastic products of various sizes and

forms. Fig. 1 gives an overview of the considered injection
unit. In contrast to the classical setup of hydraulic injection
units, where the servo-valve is used for controlling the injec-
tion process, the servo-driven internal gear pump serves as
the actuator for the controller design. This makes the overall
system more energy efficient, but at the cost of a slower actu-
ator dynamics and thus a more challenging controller design.
The cyclic production process consists of the following phases:
First, the reciprocating screw is moved towards the nozzle and
the molten polymer is injected from the antechamber through
the nozzle into the mold (filling phase). Then a high pressure
is applied in the packing phase to completely fill the mold and
get the desired mechanical properties of the product after the
cooling phase. As soon as the melt delivery channel is frozen
(in cold runner molds) or actively closed (in hot runner molds),
i. e., no more polymer can flow into the mold, the screw is
rotated by the plastication drive. This feeds cold granulate
from the hopper towards the antechamber. Inside the heated
barrel the polymer is molten and homogeneously mixed. In
the end of the cycle, the mold is opened and the finished part

The authors are with the Automation and Control Institute, TU
Wien, 1040 Vienna, Austria (e-mail: froehlich@acin.tuwien.ac.at; kemmet-
mueller@acin.tuwien.ac.at; kugi@acin.tuwien.ac.at).
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Fig. 1. Overview of the hydraulic injection unit [1].

is ejected. For a detailed description of the injection molding
process see, e. g., [2], [3].

The control of the injection molding process is a challenging
task, mainly due to the nonlinear system dynamics resulting
from the properties of the polymer, the complex geometries of
the molds, and the nonlinear actuator dynamics. An overview
of different existing control approaches for the injection mold-
ing process can be found, e. g., in [2], [4]. An accurate control
of the process variables (as, e. g., the mass flow into the mold,
the pressures in the mold, etc.), especially during the filling
and packing phase, is crucial for the final product quality.
However, a direct measurement of these process variables is
mostly not possible. Instead, measurable machine variables
(as, e. g., the injection speed or injection pressure) are used for
the control task. For the considered type of injection molding
machines, typically the injection speed is controlled in the
filling phase, while the injection pressure is controlled in the
packing phase. The transfer point between these two control
tasks can be chosen by the operator, either as a function of the
screw position, the injection time, or the injection pressure.

Furthermore, a practically feasible control strategy has to
take into account the following conditions: (i) The control
performance should be identical in every cycle. In particular,
a high control performance has to be ensured already from
the first cycle on. Thus, despite the repetitive nature of
injection molding, in this paper the control concept should
not rely on information from previous cycles. (ii) Since the
exact mold geometry is often not available for the controller,
this information should not be used in the control design.
Moreover, the control performance should be identical for
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different molds without the need for separately adjusting the
control parameters. (iii) The desired trajectories given by the
operator typically do not comply with the physical constraints
of the system. For the considered hydraulic injection unit,
the essential constraints are the maximum injection pressure,
the maximum rotational speed and torque of the servo-drive,
and the maximum slew-rate of the hydraulic pump speed. (iv)
The injection process is characterized by a fast dynamics. In
particular, very fast pressure rises can occur when the mold is
completely filled [2], [3]. To protect the mold and the injection
unit, a suitable control strategy has to accurately control the
injection pressure and has to ensure that it always stays within
the admissible system limits.

A. Existing Solutions

To master these challenges, extensive research has been
conducted over the last decades. Agrawal et al. [4] gave an
overview of the control concepts up to the late 1980s, where
conventional PI/PID controllers were commonly used [5],
[6]. Up to now these controllers are still state of the art in
industry. These linear control concepts have been extended
and improved by various authors. Pandelidis and Agrawal
[7] proposed an optimal state controller. Dong and Tseng [8]
discussed the application of self-tuning regulators for injection
molding machines. Smud et al. [9] developed simple predictive
controllers based on input-output responses. Zhang and Gao
[10] proposed an optimal state controller based on input-output
process data, capable of handling partial actuator failure.
Predictive controllers based on input-output data like dynamic
matrix controllers [11], [12], general predictive controllers
[13], [14], extended predictive controllers to systematically
derive the tuning parameters [15], or multi-model predictive
controllers [16], [17] show promising improvements compared
to conventional PI/PID controllers. Although these controllers
rely on a calibration of the tuning parameters or extensive
measurement campaigns for collecting input-output data, they
are not able to show the same high performance for the whole
operating range and different molds.

This issue has been addressed by the development of model-
based nonlinear controllers. Yang [18] applied an adaptive
backstepping method with estimating two unknown process
parameters. Tan et al. [19] proposed a sliding mode controller.
Daxberger et al. [20] developed nonlinear control laws together
with a Lyapunov estimator for the unknown mold behavior and
Lindert et al. [21] used a flatness-based control approach for
the ram position. All these methods have in common that they
are based on a mathematical model of the system. However,
the limiting constraints were not systematically considered in
the controller design. Furthermore, no measurement results
were presented, leaving open questions of their practical ap-
plicability and robustness with respect to parameter variations,
model inaccuracies and sensor noise.

As an alternative, several model-free control approaches
have been proposed. One example are fuzzy logic rule-based
controllers. The drawback of this type of controllers is that a
systematic way of choosing the membership functions is quite
difficult [22], [23]. Lin and Lian [24] propose to utilize training

data in a neural network to learn these membership functions.
Neural networks were also investigated to train a feedforward
control in combination with linear feedback controllers [25],
[26]. Because the learning phase of these concepts relies on the
availability of a sufficient amount of high quality training data,
these concepts require a long calibration phase for every type
of machine or product, which limits their practical feasibility.

In contrast to the previously mentioned control strategies,
iterative learning concepts exploit the repetitive nature of
the injection molding process [23], [27], [28], [29], [30],
[31], [32], [33]. These concepts, however, exhibit a poor
performance in the first cycles and thus do not meet the
requirements of having a high performance already from the
first cycle on.

Most of these given publications solve the control problem
only for one phase of the process, either the filling or the
packing phase. In order to cover both phases without provok-
ing discontinuities a seamless transition strategy or a common
controller for both phases is required. Havlicsek and Alleyne
[27], [30] solved this problem with independent controllers
and a bumpless transfer scheme at switchover. Huang and Lee
[34] trained two independent neural networks for both phases
reducing the overshoot after switchover. Lin and Lian [24]
developed two independent fuzzy logic rule-based controllers
for both phases. Dorner et al. [33] solved the switchover by
adapting the cost function at the switchover point with the
same optimal iterative learning controller for both phases.

As already discussed before, several constraints have to be
considered for the injection molding process. In the literature,
only few publications address this issue. One possible method
is model-predictive control, which allows to systematically
account for these limits. Peng et al. [35] used a neural network
solving the underlying optimal control problem. Reiter et al.
[36] formulated a model-predictive controller and conducted
experiments on a prototype machine. The achieved sampling
time of 8 ms is, however, too slow for the rapid injection cycles
with very fast dynamic response considered in this paper. Cao
et al. [32] proposed a two-time-dimensional model-predictive
controller for the weld line position, combining a conventional
model-predictive controller with an iterative learning control.
Therefore, they use a simplified linear actuator model together
with a model for the mold, where the cross-sectional area
along the flow path has to be known in advance. Due to these
assumptions and the different control task these results are
not directly applicable to the control problem addressed in
this paper.

Modern hydraulic injection units are often servo-pump
driven to reduce the demand of energy and hence the oper-
ating costs. The requirements for the controllers significantly
increase due to the slower dynamics of the servo-pump com-
pared to the classical setup where the servo-valve serves as
actuator for the controller design. For example, filling the mold
close to the pressure limit or reacting on the fast pressure over-
shoot after the complete filling is more challenging with this
slower actuator dynamics. The control of this type of actuator
has been topic of recent research: Wang et al. [23] proposed a
fuzzy PI control for the packing pressure, with the already
discussed drawback of shaping the membership functions.
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Peng et al. [35] presented a model-predictive controller for the
injection speed under some simplifications, e. g., a constant
volume flow into the mold was assumed. Furthermore, no
proof of real-time capability was given.

B. Objective and Structure of the Paper

Based on the literature review, the following open issues
are identified: (i) A control strategy is missing which sys-
tematically includes both the filling and the packing phase.
(ii) Control strategies tailored to servo-pump driven injection
molding machines are required. (iii) The maximum perfor-
mance of the actuator has to be utilized while still meeting the
essential constraints of the system. (iv) The control algorithm
must be executable in real time on an industrial automation
platform. The present paper addresses these open issues and
proposes a real-time capable control strategy meeting the given
requirements.

The paper is structured as follows: The mathematical model,
which serves as a basis for the controller design, is presented in
Sec. II. Sec. III is concerned with the derivation of the control
strategy, which consists of an estimator for the unknown
polymer flow into the mold and a nonlinear model-predictive
controller. The control strategy is finally validated by means
of simulations and measurements in Sec. IV. The last section,
Sec. V, contains some conclusions.

II. MATHEMATICAL MODEL

The mathematical model serves as a basis for the design
of a real-time capable model-based control strategy. This
model has to be sufficiently accurate and should cover the
essential nonlinearities and the dominating dynamics while
still being computationally efficient. Thus, starting from a
detailed mathematical model described by the authors in [1],
a (simplified) model tailored to the needs of the controller and
estimator design is derived in this section.

The motion of the screw (position xs, velocity vs = ẋs) is
described by

d

dt
xs = vs (1a)

d

dt
vs =

1

ms
(Aac(pac − p0)− 2Aci(ph − p0)− Ffr), (1b)

where ms is the overall mass of the screw and the connected
components, Aac = D2

sπ/4 and Aci are the effective areas
of the antechamber (filled with polymer; screw diameter Ds)
and the injection side of the cylinder. Moreover, p0 is the
constant ambient pressure, ph is the cylinder pressure, and the
pressure of the polymer in the antechamber is denoted by pac.
The friction force Ffr summarizes the friction in the hydraulic
cylinder and between the screw and the barrel, cf. [1].

The pressure pac of the polymer in the antechamber results
from the balance of mass in the form [1]

d

dt
pac =

βac
x0 + xs + rs(pac + βac)

(
−vs −

qno
Aac

)
, (2)

where rs accounts for the stiffness of the screw and x0Aac
is the remaining dead volume at xs = 0. The bulk modulus

βac of the polymer is typically a nonlinear function of the
pressure pac and can by approximated for instance by a Tait
model [37]. In the operating range of the machine and for
constant temperature, the simpler approximation βac = β0 +
β1pac + β2p

2
ac with constant parameters β0, β1, and β2 yields

a high accuracy and will therefore be utilized in the following.
The volume flow qno into the mold is described by the

power-law model

qno = cno(pac − p0)
1
n , (3)

with the polymer flow behavior index n and the time-
dependent flow conductance cno, see [1] for a detailed dis-
cussion. If the pressure drop in the piping from the pump to
the hydraulic cylinder is neglected, the pump pressure pp is
equal to the cylinder pressure ph. Applying the balance of
mass then yields [1]

d

dt
ph =

1
Vpρh
βp

+ 2ρh(Vci0−Acixs)
βci

(ṁp + 2Acivsρh). (4)

Here, Vp is the volume of the piping, Vci0 is the cylinder
volume for xs = 0, and ρh is the density of oil (as a function
of ph). Moreover, βp and βci are the effective bulk moduli
of the oil in the corresponding hydraulic cavities, which are
not equal due to the presence of flexible hydraulic hoses in
the supply line between the pump and the cylinder. The pump
mass flow ṁp can be modeled as

ṁp = −ρhVthnpηvol, (5)

with the displacement volume Vth of the pump, the volumetric
efficiency ηvol(ph), and the pump speed np. Applying the
balance of moment of momentum, the pump speed is given
by

d

dt
np =

1

2πJp
(−τp,hm − τfr + τel), (6)

with the hydro-mechanic pump torque τp,hm = −Vth

2π
(ph−p0)
ηhm

,
where ηhm(ph) is the hydro-mechanic efficiency. Moreover,
τfr is the friction torque and the electric torque τel of the
motor is the control input to the system.

Remark 1. The servo-pump of the injection unit is speed-
controlled by an inner controller implemented on the inverter,
which utilizes τel as control input. Thus, the desired pump
speed ndp serves as control input for the outer controller and
(6) is used to estimate the required torque τel. The dynamics
of the inverter and its inner control loop can be assumed to
be ideal except for a significant time delay, which has to be
addressed in the controller design.

The resulting fifth order model (1) - (6) is able to accurately
describe the system behavior in a large operating range. For
a model-based control strategy, it makes sense to analyze this
model with respect to possible simplifications, which might
reduce the overall model complexity. First, the friction force
Ffr in (1) is neglected. This is reasonable because Ffr is small
compared to the hydraulic forces acting on the pistons during
the filling and packing phase, cf. [1].
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It is well documented in literature that mechanical systems
driven by a hydraulic cylinder often contain subsystems with
significantly different dynamics, see, e. g., [38]. The fast
subsystem is linked to the coupling between the hydraulic
force Fs = Aac(pac − p0)−2Aci(ph − p0) and the velocity vs
of the piston. From a control perspective, it is meaningful to
eliminate this fast dynamics from the controller design model.
To do so, the state transformation

[xs, vs, pac, ph, np]
T → [xs, vs, Fs, ph, np]

T
, (7)

with Fs as described before, is applied to the mathematical
model (1) - (6). This gives the dynamics of the fast subsystem
in the form

d

dt
vs =

1

ms
Fs (8a)

d

dt
Fs =

βac
x0 + xs + rs(pac + βac)

(−Aacvs − qno) (8b)

− 2Aci
Vpρh
βp

+ 2ρh(Vci0−Acixs)
βci

(ṁp + 2Acivsρh)

while the slow dynamics is still given by (1a), (4), (6). This
can be also checked by the eigenvalues of the linearized
system for typical operating points. As expected, there is a
conjugate complex eigenvalue, which is significantly faster
than the other eigenvalues, and which can be attributed to vs
and Fs. Applying the singular perturbation theory yields the
quasi-stationary solution of the fast subsystem (8) in the form

vs =

 Aacβac
x0 + xs + rs(pac + βac)

+
4A2

ciρh
Vpρh
βp

+ 2ρh(Vci0−Acixs)
βci



−1

(
− βac
x0 + xs + rs(pac + βac)

qno

− 2Aci
Vpρh
βp

+ 2ρh(Vci0−Acixs)
βci

ṁp


, (9)

pac =
1

Aac
(2Aci(ph − p0)) + p0. (10)

The final reduced model for the controller design then reads
as

d

dt
xs = vs (11a)

d

dt
ph =

1
Vpρh
βp

+ 2ρh(Vci0−Acixs)
βci

(ṁp(np) + 2Acivsρci)

(11b)
d

dt
np =

1

2πJp
(−τp,hm − τfr + τel), (11c)

where vs from (9) with (3), ṁp(np) from (5), and pac from
(10) are to be utilized.

To check the validity of this reduction step, the
eigenvalues of the linearized reduced system are com-
pared with the eigenvalues of the linearized complete
system. E. g., during the filling phase with a typical

mold, the eigenvalues of the reduced model calculate as
{−25.7,−7.47,−0.04} and those of the complete model read
as {−35.5± 696I,−25.0,−7.49,−0.04}. Similar results are
obtained for all other operating points.

A thorough proof of the validity of this reduction step would
include checking the stability of the resulting boundary layer
system, see, e. g., [39]. For the linearized system, this definitely
holds true, which also applies locally to the nonlinear case.
A systematic stability proof of the nonlinear boundary layer
model is beyond the scope of this paper, which is why the
feasibility of the reduced model is assessed by comparing
the reduced with the complete model in simulations. Fig. 2
and Fig. 3 show the results of a typical injection experiment
and a typical melt cushion experiment, respectively. Here, an
identified mold conductance cno(xs) is used for the injection
experiment and qno = 0 holds during the melt cushion
experiment, see Sec. IV-B2. Furthermore, the measured torque
τel serves as model input. It is clearly visible that the
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Fig. 2. Comparison of the reduced with the complete model: Simulation
results of an injection experiment.

reduced model accurately captures the dynamic behavior of
the complete model in these scenarios. The non-zero force
Fs of the complete model mainly results from the friction
force, which is neglected in the reduced model. This results
in small stationary offsets of the remaining system states. This,
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Fig. 3. Comparison of the reduced with the complete model: Simulation
results of a melt cushion experiment with qno = 0.

however, is no major drawback since stationary accuracy will
be ensured by considering a possible model-plant mismatch
in the controller design. Thus, the reduced model serves as a
good basis for the subsequent controller design.

The reduced model (11) is abbreviated as

ẋ = f(x, τel, cno), (12)

with the state x = [xs, ph, np]
T, the system input τel and the

unknown input cno.

Remark 2. The mathematical model (12) of the IMM is
parametrized as follows: The areas, volumes and stiffness
parameters of the IMM are taken from construction data. The
parameters of the hydraulic fluid, the hydraulic hoses, and
the parameters of the servo-pump are made available in the
respective data sheets. The parameters β0, β1, and β2 of the
polymer’s bulk modulus are calculated from a complex Tait
model. The parameters of the Tait model and the flow behavior
index n of the utilized polymer can be found in the literature.
The mass ms and the friction force Ffr can be identified by
measurements as described in [1]. These parameters, however,
are not used in the reduced model and thus have no influence
on the controller design. A discussion on the sensitivity of

the proposed control strategy to uncertainties in the model
parameters is given in Sec. IV-C.

III. CONTROL STRATEGY

A. Control Task

In the present work, a common control strategy for the
filling and packing phase of an injection process is developed.
The different control tasks in these two phases are defined
as follows: (i) During filling of the mold the velocity vs of
the screw should track a desired trajectory vds . Experienced
users typically try to set this trajectory in order to maintain a
constant velocity of the melt front in the mold. This trajectory
would ideally be parameterized as a function of the mold
filling level instead of the time t. Because the mold filling level
cannot be measured, it is typically parameterized as a function
of the screw position xs, i. e., vds = vds (xs). This parameter-
ization guarantees that the same filling level (screw position)
is reached, even if the velocity cannot be perfectly tracked
due to system constraints or non-ideal controllers. During the
filling phase it has to be ensured that the injection pressure
ph does not exceed a maximum pressure pmaxh to protect the
mold and the injection unit. (ii) To completely fill the mold
after the filling phase and to compensate for the shrinking of
the cooling polymer in the mold, a desired pressure trajectory
pdh has to be maintained in the packing phase. In contrast to
the filling phase, this trajectory is parameterized as a function
of time, i. e., pdh = pdh(t). To keep the mechanical stress of
the polymer below a critical limit, the screw velocity vs is
constrained by a velocity trajectory1 vs ≥ vds (xs) in this phase
as well.

The limits of the actuator have to be taken into account
during both phases. The physical constraint of the servo-drive
in combination with the power electronics can be formulated
as |np| ≤ nmaxp and |τel| ≤ τmaxel . Additionally, the slew rate
of the rotational speed np has to be within a safety margin
ṅminp ≤ d

dtnp ≤ ṅmaxp to avoid cavitation in the hydraulic
system, in particular at the pump.

The control of the system is further complicated by the fact
that the behavior of the mold, i. e., the volume flow qno, is
in general unknown. Another challenge in the control of the
considered system is due to the significant time delay (mainly
due to communication and processing time delay between the
ECU and the inverter of the servo-pump), which can cause a
significant deterioration of the closed-loop performance.

To solve this control task, a model-predictive control (MPC)
strategy in combination with an estimation strategy for qno is
proposed in this paper.

B. Estimation of qno
As discussed before, the control strategy should be ap-

plicable to any (unknown) mold and therefore, no model
for the flow conductance cno is available. Subsequently, an
online estimator for the volume flow qno is developed first,
since it turned out that estimating qno and calculating cno
with (3) results in a more robust estimation of the process

1Please note that the velocity vs has negative values during injection.
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behavior. In addition to qno also the measured pressure ph
is estimated because this gives additional degrees of freedom
for the estimator design [38]. As there is no valuable a priori
information available, the volume flow qno is assumed to be
constant but unknown, i. e., q̇no = 0. The estimator is basically
a copy of the mathematical model (11b)

d

dt
p̂h = Φq(xs, ph)q̂no + Φp(xs, ph)np − χp (13a)

d

dt
q̂no = −χq, (13b)

adding the corrector terms χp and χq which serve as degrees
of freedom for the estimator design. Here, the abbreviations
Φq and Φp summarize the corresponding terms in (11). They
are nonlinear functions of the measured quantities xs and ph.
Introducing the estimation errors êp = ph − p̂h and êq =
qno − q̂no yields the error system

d

dt
êp = Φq êq + χp (14a)

d

dt
êq = χq. (14b)

For the design of the corrector terms, the stability of the
error system (14) with x̂e = [êp, êq]

T is analyzed using the
Lyapunov function candidate

We(x̂e) =
1

2
ê2
p +

1

2λq
ê2
q, (15)

with the estimator parameter λq > 0. The change of We along
a solution of (14) gives

d

dt
We = Φq êpêq + χpêp +

χq
λq
êq.

The choice

χq = −λqΦq êp (16a)
χp = −λpêp (16b)

with λp > 0 renders Ẇe = −λpê2
p negative semi-definite. As

We(x̂e) > 0 is radially unbounded, the equilibrium êp = êq =
0 of (14) can be proven to be globally asymptotically stable
by applying LaSalle’s invariance principle [40].

The estimator (13) with (16) will be combined with an MPC
strategy. It is clear that the choice of the estimator parameters
λp and λq will influence the performance and stability of
the overall closed-loop system. Simulation studies have shown
that it is necessary to adapt the estimator dynamics in order
to achieve the same high performance of the overall closed-
loop system in the whole operating range. In particular, the
estimator dynamics has to be reduced in operating points with
low injection speed, i. e., for instance in the packing phase.
Therefore, the corrector term χq from (16a) is changed to

χq = −f(vs)λqΦq êp, (17)

by means of

f(vs) = min

{
1,

(
vs
vs,q1

)2

+ fmin

}
, (18)

with the parameters fmin > 0 and vs,q1 > 0. A proof of the
stability of the adapted estimator (13) with time-varying gain

(17) is given in App. A. The estimator (13) with (16b), (17) is
implemented in discrete time by means of a 3rd-order Runge-
Kutta integration method with the sampling time Ts = 1 ms.

In the subsequent model-predictive control strategy, it makes
sense to utilize the estimated value ĉno of the conductivity cno
of the mold model instead of q̂no, since this allows to take
into account the influence of the (predicted) pressure pac on
the predicted volume flow into the mold. The estimated value
ĉno is directly calculated by utilizing (3) in the form

ĉno =
q̂no

(pac − p0)
1
n

, (19)

with pac from (10) using the measured pressure ph.

C. Formulating the Optimal Control Problem

In this section, the control task defined in Sec. III-A is
formulated as an optimal control problem (OCP), which will
be solved on a receding horizon. Before this can be done,
some preliminary discussion is required.

The control task in the filling phase is defined as a velocity
tracking control problem, where the desired trajectory vds
is defined as a function of the screw position xs. Direct
measurement of the velocity vs is not available in the real
system. Thus, it makes sense to reformulate the velocity
control task in the form of a position control task, with the
desired position xds calculated by the solution of

d

dt
xds = vds

(
xds
)
, xds(0) = xs,0, (20)

where xs,0 is the screw position at the beginning of the
injection cycle. This ODE is numerically solved yielding the
desired trajectory xds(t).

As mentioned before, the actuator (servo-pump and inverter)
has a non-negligible time delay (≈ 2 ms) due to the bus
communication and internal data processing. Furthermore, the
delay due to the solution of the optimization problem is
basically equal to the sampling time Ts = 1 ms. Thus, a
total time delay of Ttd = NtdTs = 3Ts = 3 ms passes
before a measured control error is reflected in a reaction of the
system. Without considering this time delay, the closed-loop
system can become unstable, in particular during the pressure-
controlled phase. To approximately take into account this time
delay the subsystem

ż = fz(z, np, cno), (21)

which is derived from (11a) and (11b) with z = [xs, ph]
T, is

extrapolated over the time delay. For this, (21) is integrated
via the explicit Euler method with the sampling time Ts
starting from the currently measured position xs and hydraulic
pressure ph as initial values, the previously calculated control
inputs ndp,k−3, n

d
p,k−2, n

d
p,k−1, which already had been sent to

the inverter, and the current estimate ĉno,k. Since it can be
assumed that the speed controller of the pump works well,
no prediction of the speed dynamics (11c) is required and the
predicted speed n̂p,k+Ntd

can be set to the value calculated by
the MPC, i. e., ndp,k−1. This yields a prediction

x̂k+Ntd
= [x̂s,k+Ntd

, p̂h,k+Ntd
, n̂p,k+Ntd

]
T
,
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which will be used as the initial value for the OCP of the MPC.
For a more detailed discussion of this time delay compensation
method, see, e. g., [41].

The model (12) is utilized for the prediction step in the MPC
strategy. A discrete-time approximation with sampling time
Tp of (12) is utilized by applying the explicit Euler method,
yielding

xj+1|k = xj|k + Tpf
(
xj|k, τel,j|k, ĉno,k

)
. (22)

Therein, xj|k describes the predicted value of x at time t =
(k+Ntd)Ts+jTp based on measurements up to kTs and x0|k
is initialized with x̂k+Ntd

as described before. Fig. 4 shows
the discretization steps for the extrapolation phase as well as
for the prediction step.

tkTs (k + 3)Ts (k + 3)Ts + 2Tp

extrapolation prediction

zk x0|k = x̂k+3

zk+3 = [x̂s,k+3, p̂h,k+3]
T

ndp,k−3
ndp,k−1 = n̂p,k+3

x1|k

x2|k

τel,0|k τel,1|k

τel,2|k

Fig. 4. Timing of the MPC.

It is well documented in literature that the control per-
formance and stability of an MPC is strongly related to
sufficiently long prediction horizons NTp, see, e. g., [42]. The
number of prediction steps N is, however, limited by the
computational effort. If the sampling time Tp of the prediction
model is chosen to be a multiple of Ts, e. g., Tp = NpTs,
longer prediction horizons can be achieved while keeping the
computational effort limited. The suitable choice of Np is
related to the stability and accuracy of the prediction model
(22) and will be discussed later.

Due to the unknown load, i. e., the behavior of the mold, it
is possible that the constraints discussed in Sec. III-A (e. g.,
pressure and speed limits) cannot be exactly satisfied at every
time step. To avoid an infeasible OCP in these cases, the
inequality constraints are taken into account in the form of
soft constraints utilizing a penalty function. E. g., the penalty
function Pnp

(
np,j|k

)
for the pump speed np is formulated as

Pnp

(
np,j|k

)
=

Γnp

2





(
np,j|k − nminp

)2
np,j|k < nminp(

np,j|k − nmaxp

)2
np,j|k > nmaxp

0 else,
(23)

with the maximum and minimum values nmaxp and nminp ,
respectively, and the weight Γnp

> 0. The penalty functions

Pτel , Pph , Pṅp , and Pvs,j for the quantities τel, ph, ṅp, and
vs are defined in a similar way.

With these preliminaries, the OCP reads as

min
x0|k,...,xN|k,

τel,0|k,...,τel,N|k

N∑

j=0

Jj (24a)

s.t. xj+1|k = xj|k + Tpf
(
xj|k, τel,j|k, ĉno,k

)
,

j = 0, . . . , N − 1 (24b)
x0|k = x̂k+Ntd

(24c)

Therein, the cost function Jj is differently defined for the
filling and packing phase due to the different control tasks.
In the filling phase, the cost function takes the form

Jfillj =
1

2
Qxs

(
x̄ds,j|k − xs,j|k

)2

(25)

+
1

2
Rτel

(
τel,j|k − τel,j−1|k

)2
+ Pτel

(
τel,j|k

)

+ Pph
(
ph,j|k

)
+ Pnp

(
np,j|k

)

+ Pṅp

((
np,j|k − np,j−1|k

)
/Tp
)

+ Pvs,j
((
xs,j|k − xs,j−1|k

)
/Tp
)
,

with the positive weighting factors Qxs
> 0, Rτel > 0. While

the first term obviously penalizes the deviations of the screw
position from its desired position x̄ds,j|k, the second term is
introduced to improve the smoothness of τel.

Remark 3. Jfill0 differs slightly since the trajectory error
as well as the penalty functions for the initial point x0|k
can be omitted. Thus, Jfill0 = 1

2Rτel
(
τel,0|k − τel,−1|k

)2
+

Pτel
(
τel,0|k

)
remains. Here, τel,−1|k is introduced to ensure

the smoothness of the control input τel,0|k in reference to the
last MPC step at k − 1.

In (25) an adjusted desired position x̄ds,j|k is introduced in
order to prevent very large tracking errors, e. g., when the
pressure limit is hit. To do so, x̄ds,j|k is defined as

x̄ds,j|k = max
(
xds((k +Ntd)Ts + jTp), xs,k − emaxs

)
,

which limits the tracking error in (25) to emaxs referred to the
currently measured position xs.

The penalty function Pvs requires a little more explanation.
As discussed before, the operator input is a desired velocity
as a function of xs, i. e., vds (xs). The screw velocity is closely
related to the volume flow into the mold, and the operator
chooses vds (xs) in a way that the resulting product meets its
specification. It is well documented that if the mold is filled
with higher speed the product quality can significantly reduce.
In a system without constraints, tracking the desired trajectory
xds would of course keep the desired speed limit. If, however,
the desired trajectory cannot be tracked, e. g., due to hitting
the pressure limit, a pronounced tracking error can occur. If,
after a certain time, e. g., due to a change of the mold behavior,
these limits are no longer active, the controller tries to catch
up with the desired position xds . This may result in injection
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speeds |vs| which are larger than the desired speed
∣∣vds (xs)

∣∣.
Now, the penalty function Pvs is defined as

Pvs,j
(
vs,j|k

)
=

1

2

{
Γvs,j

(
vs,j|k − vds

(
xs,j|k

))2
vs,j|k < vds

(
xs,j|k

)

0 else,
(26)

with the abbreviation vs,j|k =
(
xs,j|k − xs,j−1|k

)
/Tp and the

time-varying weight Γvs,j > 0. Thus, Pvs in the form (26)
penalizes injection speeds of the screw faster than the desired
speed

∣∣vds
∣∣.

The cost function for the packing phase can be formulated
in a similar way by

Jpackj =
1

2
Qph,j

(
pdh((k +Ntd)Ts + jTp)− ph,j|k

)2
(27)

+
1

2
Rτel

(
τel,j|k − τel,j−1|k

)2
+ Pτel

(
τel,j|k

)

+ Pnp

(
np,j|k

)
+ Pṅp

((
np,j|k − np,j−1|k

)
/Tp
)

+ Pvs
(
vs,j|k

)
,

with the time-varying weight Qph,j > 0. As a matter of fact,
the penalty function Pph for the pressure is not relevant in this
phase.

D. Implementation of the MPC with Riccati Recursion

To efficiently solve the OCP (24) the iterative algorithm
introduced by Diehl [43] is employed and extended. This
algorithm calculates a suboptimal solution on a finite receding
prediction horizon. For this, the cost function is reformulated
by introducing the time-shifted variables of xj|k and τel,j|k in
the form

yj+1|k = xj|k (28a)
zj+1|k = τel,j|k. (28b)

Thus, the cost function Jj of (25) or (27), respectively, only
depends on τel,j|k and the augmented state

sj|k =
[
xj|k,yj|k, zj|k

]T
(29)

at the time index j.

Remark 4. Subsequently, the notation

∂ζ

∂ξ

(
ξj|k

)
=
∂ζ(ξ)

∂ξ

∣∣∣∣
ξ=ξj|k

for the Jacobian of ζ(ξ) with respect to ξ evaluated at ξ = ξj|k
will be used. Note that ζ and ξ can also be a scalar function
or variable, respectively.

For the iterative solution of the OCP, the nonlinear con-
straint (24b) is linearized in the iteration l around the optimal
trajectory (sl−1

j|k , τ
l−1
el,j|k) obtained in the previous iteration l−1,

i. e.,

xj+1|k = xl−1
j+1|k + ∆xlj+1|k (30)

≈ xl−1
j|k + Tpf

(
xl−1
j|k , τ

l−1
el,j|k, ĉno,k

)

+ Φl
x,j|k∆xlj|k + Γlx,j|k∆τ lel,j|k,

with ∆xlj|k = xlj|k − xl−1
j|k and ∆τ lel,j|k = τ lel,j|k − τ l−1

el,j|k.
Here, the abbreviations

Φl
x,j|k = I + Tp

∂f

∂x

(
xl−1
j|k , τ

l−1
el,j|k, ĉno,k

)

Γlx,j|k = Tp
∂f

∂τel

(
xl−1
j|k , τ

l−1
el,j|k, ĉno,k

)
,

with the identity matrix I, are utilized, which have to be
calculated for each prediction step j = 0, . . . , N − 1 and in
each iteration l = 1, . . . , Nit. To reduce the computational
effort for a real-time capable implementation, the derivatives in
Φl
x,j|k,Γ

l
x,j|k are calculated for the first iteration l = 1 and for

the starting point x0|k, τel,0|k only and are kept constant, i. e.,
Φl
x,j|k = Φ1

x,0|k = Φx,k, Γlx,j|k = Γ1
x,0|k = Γx,k. It has been

verified by simulation studies that this simplification yields
sufficiently accurate results of the prediction model within the
prediction horizon NTp. The resulting equality constraint (30)
can then be abbreviated as

cl−1
x,j+1|k + ∆xlj+1|k −Φx,k∆xlj|k − Γx,k∆τ lel,j|k = 0, (31)

with cl−1
x,j+1|k = xl−1

j+1|k−xl−1
j|k −Tpf

(
xl−1
j|k , τ

l−1
el,j|k, ĉno,k

)
. The

(already linear) dynamics of the augmented state (28) can be
formulated similarly as

cl−1
y,j+1|k + ∆ylj+1|k −∆xlj|k = 0 (32a)

cl−1
z,j+1|k + ∆zlj+1|k −∆τ lel,j|k = 0, (32b)

with cl−1
y,j+1|k = yl−1

j+1|k−xl−1
j|k and cl−1

z,j+1|k = zl−1
j+1|k−τ l−1

el,j|k.
Putting the results of (31) and (32) together, the following
equivalent formulation of the constraints (28), (30) is given
by

cl−1
j+1|k + ∆slj+1|k −Φk∆slj|k − Γk∆τ lel,j|k = 0. (33)

The cost function Jj is approximated in every iteration l by a
Taylor series of second order in the form

J lj = Jj

(
sl−1
j|k , τ

l−1
el,j|k

)
+
(
glj|k

)T

∆slj|k (34)

+ dlj|k∆τ lel,j|k + ∆τ lel,j|k

(
blj|k

)T

∆slj|k

+
1

2

(
∆slj|k

)T

Ωl
j|k∆slj|k +

1

2
Rlj|k

(
∆τ lel,j|k

)2

with
(
glj|k

)T

:=
∂Jj
∂sj|k

(
sl−1
j|k , τ

l−1
el,j|k

)
(35)

dlj|k :=
∂Jj

∂τel,j|k

(
sl−1
j|k , τ

l−1
el,j|k

)

(
blj|k

)T

:=
∂2Jj

∂sj|k∂τel,j|k

(
sl−1
j|k , τ

l−1
el,j|k

)

Ωl
j|k :=

∂2Jj
∂s2
j|k

(
sl−1
j|k , τ

l−1
el,j|k

)

Rlj|k :=
∂2Jj
∂τ2
el,j|k

(
sl−1
j|k , τ

l−1
el,j|k

)
.

Remark 5. The initial point x0|k, included in sl0|k, is de-
termined by the measured and predicted initial state x̂k+Ntd

.
This is why any weighting of this state itself can be omitted
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and gl0|k,Ω
l
0|k are set to zero in J l0 as discussed before. As

a consequence, y0|k included in sl0|k is not used and can be
set to zero, too. The initial value z0|k has to be recalled from
a previous solution of the MPC to still ensure smoothness
of the (virtual) control input τ lel,0|k relative to the last MPC-
step τ∗el,0|k−1, i. e., z0|k = τ∗el,0|k−Np

to match the time grid
Tp = NpTs. Furthermore, the input ∆τ lel,N |k does not have an
influence on the states within the optimization horizon NTp.
To eliminate this variable from the OCP, blN |k, d

l
N |k, R

l
N |k are

set to zero in J lN .

Thus, the resulting optimization problem can be formulated
as

min
∆sl0|k,...,∆slN|k

∆τ l
el,0|k,...,∆τ

l
el,N−1|k

N∑

j=0

J lj (36a)

s.t. cl−1
j+1|k + ∆slj+1|k −Φk∆slj|k − Γk∆τ lel,j|k = 0,

j = 0, . . . , N − 1 (36b)

∆sl0|k = 0. (36c)

Summarizing, the original OCP (24) has been reformulated
to the iterative solution of the quadratic program (QP) (36),
where the coefficients of the cost function and the equality
constraints depend on the states sl−1

j|k and the control input
τ l−1
el,j|k. This QP is solved by a Riccati recursion scheme, which

is briefly summarized in App. B.
The results of this MPC are the optimal values x∗j|k and

τ∗el,j|k. As briefly discussed in Sec. II, a speed controller is
already implemented on the inverter of the servo-pump. The
dynamics of this speed control loop is rather fast and thus
can be considered ideal for the control of the filling and
packing phase. The required desired rotational speed ndp,k for
the inverter is thus interpolated at t = Ts from the optimum
value n∗p,j|k (part of x∗j|k) of the MPC strategy. Please note
that the incorporation of the servo-drive dynamics (11c) into
the MPC is only done to be able to take the limits of the
torque τel into account.

IV. VALIDATION OF THE CONTROL STRATEGY

In this section the proposed control strategy is validated
by simulation and measurements. First, the estimation of qno
is investigated. Due to the fact that the volume flow cannot
be measured in the experiment, simulation results are shown
to compare the estimated volume flow with the simulated
one. The performance of the closed-loop system including the
MPC is validated by presenting the results of measurement
campaigns conducted on a real injection molding machine.

A. Validation of the estimator

For parameter tuning and validation of the proposed es-
timator (13) with (16b) and (17), the estimated quantities
are compared with the corresponding quantities of the full
simulation model presented in Sec. II and described in detail
in [1]. Additionally, realistic measurement noise is added to
the pressure ph and the position xs. The chosen parameters of

the estimator are given in Tab. III of App. C. By means of λp
and λq the dynamics of the estimator can be adjusted. On the
one hand the estimator should be fast enough to track rapid
changes of qno, on the other hand high dynamics amplifies
the measurement noise and may deteriorate the performance
of the overall closed-loop system including the MPC. For this
reason, vs,q1 and fmin are chosen to reduce the dynamics for
operating points with low injection speeds.

Fig. 5 and Fig. 6 show the estimated pressure p̂h and
volume flow q̂no for two experimental setups. Here, qref is
the volume flow, which can be established at the maximum
injection speed |vs| of the specific injection unit. The results
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Fig. 5. Validation of the load estimator: Simulation results of a form injection
scenario.

of a typical form injection experiment are depicted in Fig. 5.
While the estimation error êp is almost zero, the estimation q̂no
has remarkable deviations from the volume flow qno into the
mold. The reason for these deviations are as follows: (i) From
t = 0 s to 0.2 s, the non-return valve is still open. In this case,
liquid polymer can flow back at the screw and no pressure
build-up takes place in the antechamber. This operation case
is not covered by the model (11) utilized for the controller
and estimator design. For this reason, the estimated volume
flow q̂no is the sum of the volume flow into the mold and
of this leakage flow. (ii) From t = 0.2 s to 0.45 s, the non-
return valve is closed and the form is filled with q̂no close to
qno. (iii) During the packing phase, i. e., t > 0.45 s, the screw
velocity vs is almost zero and the estimator feedback gain is
reduced for stability reasons of the overall closed-loop system.
This results in an estimation error due to the slower estimator
dynamics.
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Fig. 6. Validation of the load estimator: Simulation results of a melt cushion
scenario.

Fig. 6 shows the simulation results of a so-called melt
cushion experiment, where the nozzle is closed manually and
the polymer inside the enclosed antechamber is compressed.
This experiment is a worst-case scenario for the controller
and can occur, if, e. g., the runner freezes too early or it is
clogged. The melt-cushion experiment can also be used to
test the control performance in the pressure-controlled phase,
see Sec. IV-B2. Clearly, qno = 0 holds in this case. Again,
the estimated value q̂no 6= 0 accounts for the open non-return
valve at the beginning. The non-return valve closes at t = 0.9 s.
The non-zero estimated volume flow q̂no then represents the
leakages in the hydraulic system. For the rapid movements at
t = 4.5 s and t = 5.5 s, the peaks in the estimated volume
flow are due to the neglected inertia of the moving mass ms.

These and further simulation results show that the proposed
load estimator exhibits a good performance in all operating
points and gives reasonable estimates q̂no for the volume flow
qno. It should be mentioned again that the main reason for
utilizing an estimator for the unknown load volume flow is
to achieve stationary accuracy of the closed-loop system in
combination with the MPC. Thus, the focus of this estimator
is not on estimating qno as accurate as possible but to establish
a stable closed-loop system with stationary accuracy.

B. Experimental Validation

The overall control strategy was experimentally validated
by a number of different measurement campaigns. To do so,

a dSPACE real-time rapid-prototyping platform1 was used to
implement the MPC and the estimator at a sampling time
of Ts = 1 ms. The connection to a state-of-the-art injection
molding machine was carried out by an EtherCAT bus system.
The performance of the proposed MPC is compared with
the state-of-the-art controller (PID-based control strategy with
trajectory planning that takes into account the limits of the
injection molding machine, and a heuristic method to meet
the pressure limits during the injection process). Polypropylene
was used in the experiments with a temperature of 220 ◦C.

The parameters of the MPC were tuned by means of
simulation studies in advance. Tab. IV in App. C shows the
final parameter set. The sampling time of Ts = 1 ms has
proven advantageous for the considered injection molding
machine. The maximum sampling time of the discrete-time
approximation Tp = NpTs is limited by the stability of the
chosen integration algorithm (22) for the model (11). The
prediction horizon NTp is chosen according to the actuator
dynamics, i. e., at minimum the time which is required to reach
maximum drive speed from standstill. As a consequence, the
maximum number of iterations Nit used in the termination
criterion of the MPC algorithm has to be selected according
to the given computational power to restrict the computation
time to Ts. The weights of the cost function are tuned in the
following way: (i) The weights of the trajectory error Qxs

and Qph,j are chosen together with Rτel in the unconstrained
case. Here, a trade-off between the closed-loop dynamics and
the smoothness of the control input has to be found. (ii) The
weight of every single penalty function is tuned subsequently
to appropriately meet the corresponding constraint.

1) Form Injection: The measurement results of a typical
form injection experiment with the MPC is shown in Fig. 7.
The desired screw velocity vds at the beginning of the cycle is
chosen at almost maximum speed to quickly reach the pressure
limit. Then, the speed is reduced to validate the performance of
the controller during the injection close to the pressure limit.
After the mold is filled, the pressure-controlled phase with
pdh = 30 bar starts at a position-dependent switch-over point.
Thus, this point varies with the actual injection speed. The set-
point ndp for the drive controller and the measured drive speed
np are depicted in Fig. 7 as well. In addition to the minimum
and maximum velocity also the constraints of the drive’s accel-
eration are shown in two relevant situations, highlighted by the
shaded areas. These limits are chosen asymmetrical to obtain
a good compromise of system dynamics and protection of the
pump when sucking oil from the tank or the cylinder. The
primary control objective, i. e., tracking the desired velocity
vs(xs), is very well fulfilled. From t = 0 s to 0.06 s the
injection molding machine is accelerating with the maximum
allowed acceleration and hence, a tracking error is present.
At t = 0.18 s, the flow resistance of the mold rises rapidly,
causing a steep pressure rise and subsequent a drop in the
velocity vs. Due to the time delay this velocity drop is
inevitable, but the desired velocity is reached again already
a few milliseconds after the pressure rise. Additionally, the
resulting torque τ∗el of the MPC is compared with the measured

1Freescale QorlQ P5020, dual-core, 2 GHz
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Fig. 7. Measurement results: Form injection experiment with MPC and
pmaxh = 55 bar.

torque τel showing good accordance. In this specific test
case, the torque limit is never reached. This is why the drive
acceleration is the relevant limit to be considered. For the sake
of completeness, the estimated volume flow q̂no is also shown
for this experiment.

In Fig. 8, the closed-loop performance of the proposed
MPC is compared with the industrial state-of-the-art (SOA)
controller by means of the same experiment as shown in

Fig. 7. It is obvious that the MPC can better exploit the
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Fig. 8. Measurement results: Comparison of the state-of-the-art (SOA)
controller with MPC for the form injection experiment with pmaxh = 55 bar.

full actuator dynamics and accelerates faster than the SOA
controller. After the pressure rises steeply at t ≈ 0.2 s,
the velocity shows a significant tracking error for the SOA
controller. Furthermore, after the switch-over to the pressure-
controlled phase at t > 0.65 s the MPC reacts faster causing
less overshoot and a faster decrease of the pressure.

To investigate the influence of the pressure limit during the
injection the same experiment was conducted while gradually
reducing the pressure limit. Fig. 9 and Fig. 10 show the results
for three injection cycles with different pressure limits for both
controllers. The drawbacks of the SOA controller compared
to the proposed MPC can be summarized as follows:
• The injection speed |vs| drops considerably at t = 0.2 s

due to the steep pressure rise although the pressure is
well below the limit pmaxh .

• From t = 0.4 s to 0.6 s the velocity constraint is violated
severely.

• During the experiment with pressure limit pmaxh = 40 bar,
this limit is violated by almost 10 bar at t = 0.7 s to 0.8 s
despite the lower injection speed |vs|.

Fig. 10 demonstrates that with the proposed MPC concept the
velocity constraint is almost never exceeded while the injection
is as fast as possible. Additionally, the pressure limit is never
exceeded by more than 5 bar.

To further study the control performance of the MPC, ex-
periments with different molds, i. e., with a different behavior
of the flow resistance, were conducted. In Fig. 11, the results
of injection experiments with the same injection profile vds (xs)
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as in Fig. 7 but with three different molds are compared. In
summary, it can be seen that the MPC shows a good control
performance during the filling phase, independent of the used
mold without the need for reconfiguring the controller or
adapting the controller parameters.
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Fig. 11. Measurement results: Form injection experiments into different molds
with the MPC.

2) Melt Cushion Experiment: While the control perfor-
mance in the velocity-controlled phase is validated with form
injection experiments, the pressure-controlled phase cannot be
well investigated with such type of experiments. Therefore, the
nozzle is manually closed and the polymer in the antechamber
is compressed without possible influences of the mold (melt
cushion experiment). An important parameter of this test is the
injection stroke, i. e., the volume of the compressed polymer
defining the stiffness of the melt cushion. In Fig. 12, the MPC
and the state-of-the-art (SOA) controller are compared for an
injection stroke of half the screw diameter Ds/2, which is a
rather stiff melt cushion. At t = 4.5 s, the pressure-controlled
phase starts and a step-like pressure profile pdh is chosen. The
MPC shows a slightly better step response behavior in this
case resulting in a smaller control error pdh − ph compared to
the SOA controller2. Both controllers are stationary accurate
in the pressure-controlled packing phase. If the same test is
performed at a larger injection stroke 2Ds, i. e., a softer melt
cushion, the MPC outperforms the SOA controller as can be
seen in Fig. 13. In contrast to the SOA controller the MPC has
similar good performance independent of the operating point.

2Note that the control error in the pressure is depicted only after the switch-
over point to the pressure-controlled phase.
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half the screw diameter Ds/2.

C. Sensitivity to Unknown Model-Parameters

A thorough sensitivity analysis of the MPC with respect to
varying model parameters was conducted by means of simula-
tion studies. While the geometry parameters of the system are
typically well known, the parameters of the hydraulic fluid and
the polymer are known only with some uncertainty and even
may change over time (aging, entrapped air, etc.). For that
reason these parameters of the prediction model were varied
and the impact on the controller performance was evaluated. It
turned out that the most critical parameters are the bulk moduli
of the hydraulic oil βp, βci and the polymer βac as well as the
polymer’s flow behavior index n. To evaluate the worst-case
behavior these parameters were altered simultaneously within
their expected range in the real application and the behavior
was evaluated by means of a Monte-Carlo simulation. The ex-
pected range of the parameters’ variation is β0 = ±50 % (see
(2)), n = ±50 % (see (3)), and βp = ±50 %, βci = ±50 %
(see (4)). Tab. I and Tab. II summarize the results for the

−100

−50

0

50

v s
/

m
m

s−1

SOA
MPC

0

50

100

150

p
h
/

ba
r

0 2 4 6 8

−40

−20

0

20

40

t / s

p
d h
−

p
h
/

ba
r

Fig. 13. Measurement results: Melt cushion experiment with injection stroke
double of the screw diameter 2Ds.

form injection experiment and the melt cushion experiment,
respectively. Here, the nominal case is compared to the worst-
case combination of the varied parameters.

TABLE I
MODEL PARAMETER SENSITIVITY: FORM INJECTION.

mean
∣∣vs − vds

∣∣ max
∣∣vs < vds

∣∣ max
∣∣ph > pmaxh

∣∣
mm s−1 mm s−1 bar

nominal 6.2 8.4 3.4
worst-case 26.5 28.4 4.4

The tracking performance for the filling and packing
phase is measured by the quantities mean

∣∣vs − vds
∣∣ and

mean
∣∣ph − pdh

∣∣. The performance of adhering to the velocity
constraint and pressure limit is evaluated by the quantities
max

∣∣vs < vds
∣∣ and max|ph > pmaxh |. The simulation studies

show that the proposed control strategy is able to deal with
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TABLE II
MODEL PARAMETER SENSITIVITY: MELT CUSHION TEST.

mean
∣∣ph − pdh

∣∣ max
∣∣vs < vds

∣∣
bar mm s−1

nominal 0.4 6.5
worst-case 1.5 7.1

these parameter variations and maintain an acceptable control
performance.

V. CONCLUSIONS

In the present work, a model-predictive control strategy
for a servo-pump driven injection molding machine was pro-
posed. This strategy systematically considers all the system
constraints and is able to handle the velocity-controlled filling
and the pressure-controlled packing phase without knowledge
of the mold geometry. First, a reduced mathematical model
tailored to the needs of the controller design, which covers
the essential dynamics and nonlinearities of the injection
molding machine, was derived. Since the mold geometry is
assumed to be unknown, a Lyapunov-based online-estimator
for the volume flow into the mold was developed. Then,
the inequality constraints are taken into account in form of
penalty functions and the resulting optimal control problem for
the MPC is iteratively solved by a computationally efficient
Riccati recursion.

The proposed control strategy was implemented with a
sampling time of 1 ms on a real-time hardware and a number
of experiments were conducted on an industrial injection
molding machine. These experiments show that the proposed
control strategy significantly improves the control performance
compared to the industrial state-of-the-art controllers.

APPENDIX A
LOAD ESTIMATOR WITH TIME-VARYING GAIN

The error system (14) with the time-varying feedback (16b)
and (17) is given in the linear time-varying form

d

dt

[
êp
êq

]
=

[
−λp Φq

−f(vs)Φqλq 0

]

︸ ︷︷ ︸
A(xs,vs,ph)

[
êp
êq

]

︸︷︷︸
x̂e

. (37)

To analyze the stability of the equilibrium x̂e = 0 the
Lyapunov function candidate

We = x̂T
e Gx̂e > 0 (38a)

is utilized with the positive definite matrix

G =

[
α1

2λp
−α2

−α2
α3

λq

]
> 0 (38b)

and suitable positive constants α1, α2, and α3. The derivative
of (38a) along the trajectories of (37) is given by

d

dt
We = x̂T

e

(
GA + ATG

)
x̂e = −x̂T

e Hx̂e < 0. (39)

Although H depends on the operating point (xs, vs, ph), it can
be shown that there exists a set of coefficients α1, α2, and α3

such that G > 0 and H > 0 holds true for the whole relevant
operating range. Thus, asymptotic stability of (14) with (16b),
(17) is proven.

APPENDIX B
ITERATIVE RICCATI RECURSION SCHEME

The QP (36) is solved by a Riccati recursion scheme, which
is briefly summarized in the following. The reader is referred
to [43], [44], [45] for a more detailed discussion on this
method.

At each sampling instant k of the MPC with sampling time
Ts, the following steps are performed:

0) Initialization
Calculation of the linearized system Φk,Γk in the first
iteration, i. e., l = 1, with the measured (predicted)
state x̂k+Ntd

as discussed in Sec. III-C. To improve
robustness, it can be ensured that the eigenvalues of
the closed-loop system are located within a circle with
radius 0 ≤ r ≤ 1 by scaling the linearized system

Φ̄k =
1

r
Φk

Γ̄k =
1

r
Γk.

1) Forward integration
In the first iteration, the system (30) is integrated with
the optimal solution τ∗el,j|k−1, j = 0, . . . , N − 1 of the
last MPC step k − 1.

2) Backward recursion
Initialization of PN = Ωl

N |k and pN = glN |k
for j = N − 1, . . . , 0 do

Calculation of

Ωl
j|k,
(
blj|k

)T

,
(
glj|k

)T

, clj+1|k, R
l
j|k, d

l
j|k

from (36)

Update of

hT =
(
blj|k

)T

+ Γ̄T
kPj+1Φ̄k

g =
(
Rlj|k + Γ̄T

kPj+1Γ̄k

)−1

q = dlj|k + Γ̄T
k

(
pj+1 −Pj+1c

l
j+1|k

)

pj = glj|k + Φ̄T
k

(
pj+1 −Pj+1c

l
j+1|k

)
− gqh

Pj = Ωl
j|k + Φ̄T

kPj+1Φ̄k − ghhT

Store the variables kj = gh, kj = gq, clj+1|k
end for

3) Forward recursion
Initialize with ∆sl0,k = 0
for j = 0, . . . , N − 1 do

Linear stabilizing feedback law

∆τ lel,j|k = −kT
j ∆slj|k − kj
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Forward integration of the state variables

∆slj+1|k = −clj+1|k + Φk∆slj|k + Γk∆τ lel,j|k

end for
4) Update of the control inputs and state variables

τ l+1
el,j|k = τ lel,j|k + ∆τ lel,j|k, j = 0, . . . , N − 1

sl+1
j|k = slj|k + ∆slj|k, j = 1, . . . , N

5) Check termination criteria

if maxj=0,...,N−1

∣∣∣∆τ lel,j|k
∣∣∣ > ∆τmaxel and l ≤ Nit

then
l← l + 1
Goto step 2

end if
In addition to the maximum number Nit of iterations the
maximum change of any input variable ∆τmaxel is introduced
to stop the iteration if the solution is close to the optimum.

APPENDIX C
PARAMETERS OF THE CONTROL STRATEGY

Table III and IV list the values of the parameters of the
estimator and MPC, respectively. Here, pref , nref , xref , and
vref are typical values of the specific injection unit.

TABLE III
PARAMETERS FOR THE ESTIMATOR.

Variable Value Unit

λp 1000 s−1

λq

(qref/pref )2
1400 −

vs,q1/vref 0.2 −
fmin 0.1 −

TABLE IV
PARAMETERS FOR THE MPC.

Variable Value Unit

Ts 1 ms
Np 10 −
N 6 −
Ntd 3 −

Qxsx
2
ref 0.1 −

Qph,jp
2
ref , j < N 20 −

Qph,Np
2
ref/N 20 −

Rτel
(
τmaxel

)2 0.15 −
Γphp

2
ref 20 −

Γnpn
2
ref 100 −

Γτel
(
τmaxel

)2 1 × 105 −
Γṅp ṅ

2
ref 20 −

Γvs,jv
2
ref , j ≤ 3 100 −

Γvs,jv
2
ref , j > 3 0 −

r 0.95 −
emaxs /Ds 0.3 −
Nit 10 −
∆τmaxel /τmaxel 0.4 %
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