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Abstract: An algorithm for the estimation of the electric resistance for self-sensing magnetic
levitation systems is presented. The development of this novel estimation algorithm is based on
the position estimator proposed in Glück et al. (2010). Based on the mathematical model of the
considered magnetic levitation system, the main ideas of the position estimation algorithm are
summarized. A detailed analysis shows that the estimation error of the electric resistance can
be deduced from the results of the position estimation algorithm. This observation leads to the
design of a new resistance estimation algorithm. The performance of the proposed algorithm is
demonstrated by means of measurement results on a test bench.

Keywords: magnetic levitation system, self-sensing, position estimation, switching control,
electric resistance estimation, least squares identification

1. INTRODUCTION

Magnetic levitation enables suspension with no support
other than a magnetic field. The magnetic force resulting
from the magnetic field supports the levitated object and
counteracts the gravitational force. Especially due to the
low friction and the possibility to actively change both
the position of the levitated object and the characteris-
tics (stiffness and damping) of the suspension, magnetic
levitation is applied to various practical applications as
e.g. magnetic bearings. However, magnetic levitation sys-
tems are inherently unstable, which is why the position
of the levitated object must be controlled. The measure-
ment of the position makes magnetic levitation systems
relatively cost-intensive and decreases the reliability in
view of possible sensor failures. To overcome these deficien-
cies, so-called sensorless or self-sensing magnetic levitation
systems have been developed in recent years replacing
the position sensor by a position estimation algorithm.
These estimation algorithms make use of the voltage and
current measurement and are based on the change of the
inductance as a function of the position of the levitated
object. Self-sensing approaches can be divided into two
basic working principles: (i) state observer approach and
(ii) parameter estimation approach. In the following, a
short overview of possible estimation algorithms is given.

The classical state observer approach is based on the
Luenberger state observer. The reported approaches are
almost exclusively designed using a linearized model of the
magnetic levitation system, see, e.g., Vischer (1988). Ma-
jor shortcomings of this approach concern the robustness
with respect to changes of the parameters, especially the
electric resistance, and external disturbances (Thibeault
and Smith, 2002; Maslen and Montie, 2006).

More recent works deal with the parameter estimation
approach to determine the position of the levitated object.
They can be further subdivided into three categories:

(a) One approach is based on the injection of a high
frequency sinusoidal voltage test-signal. The inductance
and thus the position of the levitated object is inferred
from the amplitude of the resulting current signal. The
choice of an appropriate frequency for the test-signal
enables to decouple the control from the estimation task
(Sivadasan, 1996). The substantial disadvantage is the
additional hardware effort for supplying and evaluating
the test-signal. In addition, the implementations of this
approach typically make use of linear amplifiers with a
low energy efficiency (Sivadasan, 1996).

(b) Another approach involves hysteresis amplifiers, see,
e.g., Mizuno and Hirasawa (1998). By switching on and off
the supply voltage and keeping the resulting amplitude of
the current ripples constant, the position of the levitated
object is calculated from the switching frequency of the
hysteresis amplifier. The frequency is typically measured
by a phase-locked loop circuit. The drawback of this
approach is that it is not capable of accurately estimating
high-dynamic position changes.

(c) Today’s research is increasingly focused on energy
efficiency, which is why pulse-width modulation (PWM)
controlled switching amplifiers are mostly used for the con-
trol of magnetic levitation systems. In this context, most
of the contributions dealing with the position estimation
rely on a harmonic analysis of the voltage and the current
signals (Kucera, 1997; Noh and Maslen, 1997; Schammass
et al., 2005; Park et al., 2008). Although practical im-
plementations have been reported in literature, the first
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harmonic is certainly only a rough approximation of the
real time evolution of the current and the voltage signal.
It is well known that fast changes of the duty ratio or
a fast motion of the levitated object result in estimation
errors. Furthermore, the influence of the electric resistance
of the coil is generally neglected. Kucera (1997) proposes
to approximately compensate for these effects by means
of look-up tables. A least squares estimation to obtain an
estimation of the inductance was performed in Pawelczak
(2005), where the dependence on the electric resistance is
systematically included. However, a change of the duty
ratio or a motion of the levitated object again yields
estimation errors. Also in this contribution, a look-up table
is used to approximately compensate for this effect.

In Glück et al. (2010) a self-sensing position estimation
algorithm for magnetic levitation systems based on least
squares identification was proposed. It is shown that the
influence of the electric resistance, the change of the
duty ratio and a motion of the levitated object can
be approximately eliminated by means of the proposed
position estimation strategy. However, the knowledge of
the actual value of the electric resistance is important in
practical implementations for the following reasons: The
electric resistance increases with the temperature of the
coil. Thus, an estimation of the electric resistance allows
for the monitoring of the coil temperature. Furthermore, if
a model-based controller design is used, the performance
of the controller relies on an exact knowledge of the system
parameters including the electric resistance. Finally, in
spite of the fact that the influence of the estimation error
of the electric resistance can be suppressed, increasing
errors of the electric resistance still yield a reduction of the
position estimation accuracy. In this work, an extension of
the basic position estimation algorithm presented in Glück
et al. (2010), which enables the estimation of the electric
resistance, is proposed.

The paper is organized as follows. In Section 2, the math-
ematical model of the considered magnetic levitation sys-
tem is given. A summary of the position estimation scheme
proposed in Glück et al. (2010) is outlined in Section
3, where at first only a stationary object is considered.
The position estimation is then augmented for the case
of a moving levitated object. Based on these results, the
resistance estimation algorithm is derived. Measurement
results on a test bench are presented in Section 4. Here,
the estimation performance of the position estimation al-
gorithm from Glück et al. (2010) in combination with the
proposed resistance adaptation are outlined.

2. MATHEMATICAL MODEL

Fig. 1 depicts a schematic sketch of the considered mag-
netic levitation system. It comprises the levitated object,
which in the considered case is a ball with massm, and the
magnetic core with the coil (N turns). The ball and the
magnetic core are made of ferrite with a relative perme-
ability µr ≫ 1. A voltage v applied to the terminals of the
coil results in a current i which in turn yields a magnetic
field in the air gap between the core and the levitated
object. The resulting magnetic force fm is used to control
the position s of the levitated object. In order to achieve
a good estimation performance a precise mathematical

model of the magnetic levitation system is needed. The
mathematical model of the levitation system is based on
the equivalent magnetic circuit given in Glück et al. (2010).
In this work, a position dependent reluctance R(s) was
developed and parameterized by means of measurements.
Given R(s), Faraday’s law results in

m

fm
s, w

i
v

Fig. 1. Schematic diagram of the levitation system.

d

dt
ψ = −Ri+ v, (1)

where R denotes the electric resistance and ψ is the flux
linkage. With the velocity w = ṡ of the levitated object,
the inductance

L(s) =
N2

R(s)
, (2)

and the relation ψ = L(s)i, (1) can be formulated in the
form

d

dt
i =

1

L(s)

(
−Ri− ∂L(s)

∂s
wi+ v

)
. (3)

In order to achieve a high energy efficiency, magnetic levi-
tation systems are usually driven by a switching amplifier.
In the considered application, an H-bridge comprising 4
MOSFETs is used to supply the coil placed in the cross-
path of the bridge. Using a suitable control strategy for the
four transistors of the H-bridge, either the supply voltage
vbat or the negative supply voltage −vbat can be applied
to the coil. A pulse-width modulated voltage v of the form

v(t) =

{
vbat for kTpwm < t ≤ (k + χ)Tpwm

−vbat for (k + χ)Tpwm < t ≤ (k + 1)Tpwm
(4)

k = 0, 1, 2, . . . is used. Here, 0 ≤ χ ≤ 1 is the duty ratio
and Tpwm is the modulation period. Due to the switching
actuation by means of a PWM voltage, a repeated charging
and discharging of the coil takes place, see Fig. 2.

vbat

−vbat

t

Tpwm χTpwm

v(t) i(t)

Fig. 2. PWM waveform and resulting current ripple.

3. POSITION AND RESISTANCE ESTIMATION

In this section the position estimation algorithm proposed
in Glück et al. (2010) is summarized and extended by
an estimator for the electric resistance. The first part
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of this section outlines the main idea for estimating the
inductance of a static levitated object. It is shown that
motions of the levitated object and deviations of the
electric resistance from its nominal value lead to wrong
estimated inductances. Therefore, an extension of the basic
algorithm is proposed in the second part. The derivation of
an estimation algorithm for the electric resistance in the
third part relies on an analysis of the extended position
estimation algorithm. As will be shown, the estimation
error of the electric resistance can be directly obtained
from values which are already calculated in the position
estimation algorithm. Thus, the proposed estimation algo-
rithm for the electric resistance can be easily incorporated
in the existing position estimation scheme.

3.1 Estimation of the inductance for a static levitated
object

Considering Faraday’s law (1) for a constant electric
resistance R and taking into account the time dependence
of the inductance L, i.e. L(t) = L(s(t)), integration of (1)
from time ts to time te yields
∫ te

ts

dψ

dt
dt =

∫ te

ts

dL

dt
idt+

∫ te

ts

L
di

dt
dt =

∫ te

ts

(−Ri+ v) dt.

(5)
For the time being it is assumed that the levitated object
is not moving, i.e. ṡ = w = 0, which results in a constant
inductance L (L̇ = 0). Then, (5) is given in the form

i(te) = i(ts) +
1

L

∫ te

ts

(−Ri+ v) dt

︸ ︷︷ ︸
∆ψ

. (6)

In the following, an estimation algorithm will be derived
which can be easily implemented in a digital real-time
hardware. For this, the measurements of the voltage v
and the current i are sampled with a sampling time Ts,
which is significantly smaller than the modulation period
Tpwm. The overall time period Tpwm can be subdivided
into the charging phase (index I) where v ≈ vbat and the
discharging phase (index II) where v ≈ −vbat, cf. Fig. 3.
Instead of calculating a single estimation of the inductance
L every modulation period Tpwm, separate estimated val-
ues LI and LII are calculated for the charging and the
discharging phase, respectively. As will be shown later,
a suitable averaging of these two values can be used to
approximately cancel out the influences of a motion of
the levitated object or an estimation error of the electric
resistance. In the subsequent derivations only the charging
phase I is considered, since the results for the discharging
phase II can be obtained in a similar way.

In order to avoid the influence of the switching glitches due
to the non-ideal switching amplifier only measurements in
the time interval (tIs, t

I
e), with the start time tIs and the end

time tIe, of the overall charging phase (t0, t0 + χTpwm) are

used for the estimation L̂I of the inductance. This time
interval corresponds to sampled measurement data with
indicesmI

s, . . . ,m
I
e. With these prerequisites, the change of

the flux linkage ∆ψkI = ∆ψ(kITs), with k
I = mI

s, . . . ,m
I
e,

results from (6) in the form

v

i

t

t

k

vbat

−vbat

t0

tIs tIe

t0 + χTpwm

tIIs tIIe

t0 + Tpwm

0I mI
s mI

e mI − 1

0IImII
s mII

e mII − 1

Fig. 3. Charging I and discharging II phase of a single
PWM period.

∆ψmI
s
= 0 (7a)

∆ψkI = Ts

kI−1∑

j=mI
s

(−Rij + vj) , kI = mI
s + 1, . . . ,mI

e

(7b)

and equation (6) for the current i reads as

ikI = imI
s
+

(
L̃I

)−1

∆ψ̃kI , kI = mI
s, . . . ,m

I
e. (8)

Here, the scaling ∆ψkI = Ts∆ψ̃kI and
(
LI

)−1
=(

L̃I
)−1

/Ts is introduced, which is useful for the practical

implementation of the estimation algorithm. Using mI
e −

mI
s + 1 measurements of the current i and the voltage v,

(8) can be reformulated in vector-notation in the form



imI
s

imI
s+1

...
imI

e




︸ ︷︷ ︸
yI

=




1 ∆ψ̃mI
s

1 ∆ψ̃mI
s+1

...
...

1 ∆ψ̃mI
e




︸ ︷︷ ︸
SI

[
ĩmI

s(
L̃I

)−1

]

︸ ︷︷ ︸
θI

, (9)

where yI ∈ RmI
e−mI

s+1 denotes the measurement vector,

SI ∈ R(mI
e−mI

s+1)×2 is the regression matrix and θI ∈ R2

is the parameter vector to be determined. Obviously, the
resulting set of equations is over-determined and thus

cannot be solved exactly. The best approximation θ̂I of
the parameter vector θI in the least squares sense is given
by the pseudo-inverse

θ̂I =
((

SI
)T

SI
)−1 (

SI
)T

yI . (10)
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With this, an estimation of the initial value of the current
ˆ̃imI

s
= θ̂I1 and of the inductance L̂I = Ts/θ̂

I
2 are obtained

for the charging phase I. The same approach can be
used for the discharging phase II yielding the estimations
ˆ̃imII

s
= θ̂II1 for the initial value of the current and L̂II =

Ts/θ̂
II
2 for the inductance.

The estimated values for the inductance L̂I and L̂II are
identical only if the measurements are exact, the electric
resistance R is exactly known and the levitated object
is at rest, i.e. w = 0. In practical applications none
of these assumptions is fulfilled. Especially, the electric
resistance R of the system changes during operation due
to electrical heating. Since it is desired to control the
position of the levitated object, the assumption of a resting
levitated object is very limiting. Thus, the influence of a
moving levitated object and an inexact knowledge of the
electric resistance R on the estimated values L̂I and L̂II

is investigated in the next subsection.

3.2 Estimation of the inductance for a moving levitated
object

In this subsection, the assumptions of a static levitated
object and a known electric resistance are dropped. The
real value R of the electric resistance is supposed to take
the form

R = R̂+∆R, (11)

with the deviation ∆R from its nominal value R̂ resulting
e.g. from temperature variations. Furthermore, the veloc-
ity of the levitated object does not vanish, i.e. w 6= 0.
According to (5) this results in

∫ tIe

tIs

dL

dt
idt+

∫ tIe

tIs

L
di

dt
dt =

∫ tIe

tIs

(−Ri+ v) dt, (12)

describing the current i for the charging phase I. In
comparison, the least squares estimation described in the
last subsection is based on

L̂I
∫ tIe

tIs

di

dt
dt =

∫ tIe

tIs

(
−R̂i+ v

)
dt, (13)

where only the nominal value R̂ was used. Since the change
of the electric resistance is generally rather slow, R can be
assumed constant over the integration time tIs − tIe. Using
this assumption in (11), (12) and (13) the relation
∫ tIe

tIs

dL

dt
idt+

∫ tIe

tIs

L
di

dt
dt = L̂I

∫ tIe

tIs

di

dt
dt−∆R

∫ tIe

tIs

idt

(14)
is inferred. In order to analyze (14) two additional as-
sumptions are made, cf. Glück et al. (2010). First, the

time derivative L̇ of the inductance is presumed constant
over one PWM-period t0 < t ≤ t0 + Tpwm. Note that this
assumption is more general than the previous assumption
of a static levitated object, i.e. L̇ = 0. Secondly, the current
i in each phase is almost triangular 1 , i.e.

di

dt
=
i(tIe)− i(tIs)

tIe − tIs
=

∆iI

∆tI
. (15)

1 This approximation is valid if the modulation period Tpwm is
chosen sufficiently fast. Then, it can be shown that the errors
resulting from this assumption are very small.

Based on these assumptions, (14) can be rewritten in the
form

∆iI
1

∆tI

∫ tIe

tIs

Ldt = L̂I∆iI −
(
∆R+ L̇

)∫ tIe

tIs

i dt. (16)

The definition of the average value L̄ of the inductance L
and the average value īI of the current i in the form

L̄ =
1

∆tI

∫ tIe

tIs

L dt and īI =
1

∆tI

∫ tIe

tIs

i dt (17)

finally yields

L̄ = L̂I −
(
∆R+ L̇

) īI

∆iI
∆tI . (18)

With this, the average value L̄ of the inductance is given
by the estimation L̂I and an additional term depending
both on the error ∆R of the electric resistance and the
change L̇ of the inductance. Note that ∆R and L̇ influence
the average value L̄ in the same way and that large errors
may result from ∆R 6= 0 and L̇ 6= 0. A similar analysis can
be performed in the discharging phase II, which results in

L̄ = L̂II −
(
∆R+ L̇

) īII

∆iII
∆tII . (19)

The combination of (18) and (19) allows to calculate the

average value L̄ by canceling the influence of ∆R and L̇,
i.e.

L̄ =
L̂I∆iI īII∆tII − L̂II∆iII īI∆tI

∆iI īII∆tII −∆iII īI∆tI
. (20)

In (20), the values of ∆iI , ∆iII , īI and īII need to be
known, which can be directly estimated from measure-
ments of the current i, cf. Glück et al. (2010).

3.3 Estimation of the electric resistance

The estimation algorithm derived in the last two sub-
sections allows to cancel out the influence of the electric
resistance on the estimation of the average inductance L̄
and thus on the estimation of the position of the levitated
object. In practical implementations, however, the knowl-
edge of the actual value of R might be important, e.g. for
monitoring the coil temperature or for a model-based
controller design. On that score, an estimation algorithm
for the electric resistance is proposed. It was shown in the
previous subsection that both the motion of the levitated
object and the estimation of an incorrect resistance have
the same influence on the error of the estimated induc-
tances L̂I and L̂II , that is

∆L̂ = L̂II − L̂I (21a)

=
(
∆R+ L̇

)(
īII

∆iII
∆tII − īI

∆iI
∆tI

)
. (21b)

In order to distinguish between a wrong estimated electric
resistance and a motion of the levitated object, the dynam-
ics of these effects are analyzed in more detail. Naturally,
the dynamics of the change of the electric resistance due
to electrical heating is much slower than the dynamics of
the levitated object’s motion. Thus, using a low-pass filter
of the form

d

dt
∆L̄ = − 1

Tf

(
∆L̄−∆L̂

)
, (22)

with the time constant Tf > 0, allows the suppression

of the influence of L̇ (i.e. the motion of the levitated
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object). The filtered error ∆L̄ is then proportional to the
estimation error ∆R of the electric resistance R. By using
the following parameter update law

d

dt
R̂ = − 1

Te
∆L̄, R̂(0) = R̂0, (23)

with the tuning parameter Te > 0 and the initial condition
R̂0, the estimation error ∆R is driven to zero. A trade-
off between the suppression of measurement noise and
a motion of the levitated object on the one hand, and
the dynamics of the electrical heating of the coil on the
other hand must be found when choosing the parameters
Tf and Te. A main advantage of the proposed estimation
algorithm for the electric resistance is the fact that only
quantities which have already been derived in the position
estimation algorithm are used and thus an implementation
of the algorithm can be made with little effort.

4. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

In this section, measurement results on a test bench are
given in order to prove the practical feasibility of the
proposed position and resistance estimation algorithms.
The considered test bench, cf. Fig. 4, consists of an

Fig. 4. Picture of the experimental test bench.

electromagnet comprising a ferrite cylindrical core with
a plastic winding form wrapped in 452 turns of copper
wire. The levitated object is a hollow ball with a mass
of 94.83 g and a diameter of 40mm. The supply voltage
of the H-bridge is vbat = 11.4V. Two 12 bit analog-
digital converters are used to measure the current and the
supply voltage at a sampling rate of 1MSamples/s. The

whole control and estimation algorithm is implemented
on an Altera Stratix II FPGA test board with a
connection to Matlab for debugging and initialising. The
estimation algorithm is partitioned in a fast and a slow
calculation part as outlined in Glück et al. (2010). The
update of the entries of STS, STy from (10) both for
the charging phase I and the discharging phase II is
performed every sampling time Ts on the FPGA with
fixed-point arithmetics. The resulting data is transferred
to a floating point processor (e.g. a soft-core processor
emulated on the FPGA) once every modulation period

Tpwm. Here, the estimated values of the inductance L̂I ,

L̂II according to (10) are determined. With this, the
average inductance value according to (20) is calculated
and the resistance estimation according to (22) and (23) is
performed. Based on these results, the estimated position
ŝ = s(L̄) is calculated from the inverse inductance model.
For testing, a cascaded controller, comprising a current
controller in the inner loop and a position controller in
the outer loop, is used, cf. Glück et al. (2010).

For the subsequent measurement results of the resistance
estimation, the parameters of the resistance estimation
are chosen as Tf = 10 s and Te = 0.5 s. In Fig. 5a the

estimated inductances L̂I , L̂II and the average value L̄
are depicted for a constant position s = 5mm. At time
t = 50 s a wrong estimated electric resistance is set to
R̂ = 1.5Ω, which results in an error between L̂I and L̂II .
The inductance error in Fig. 5b shows that the resistance
estimation algorithm drives the inductance error to zero
and thereby estimates an electric resistance of R̂ ≈ 1.6Ω,
which corresponds to the real value R, cf. Fig. 5c. In order
to show that the algorithm produces accurate results also
for changing positions of the levitated object, in Fig. 6a the
same experiment is shown for fast changes of the setpoint
from s = 4mm to s = 6mm. As in the case of a constant
position, the wrong estimated electric resistance at t =
50 s is corrected by the resistance estimation algorithm,
cf. Fig. 6b.

5. CONCLUSION

In this work, an extension of the self-sensing position esti-
mation scheme for magnetic levitation systems proposed in
Glück et al. (2010) is given. Based on a separate inductance
estimation for the charging and the discharging phase of
a pulse-width modulation controlled coil of a magnetic
levitation system, it is shown that the resulting induc-
tance error is proportional to the electric resistance. The
inductance error was utilized to derive a novel estimation
algorithm for the electric resistance. Furthermore, it was
briefly outlined how the proposed estimation algorithm
can be easily embedded in the position estimation scheme
presented in Glück et al. (2010). In the last part, the
accuracy of the resistance adaptation was shown by means
of measurement results.
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Fig. 5. Experimental results for a constant position and a
wrong initialized electric resistance of R̂ = 1.5Ω at
time t = 50 s.
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