
This document contains a post-print version of the paper

Pneumatic pulse-width modulated pressure control via trajectory
optimized fast-switching electromagnetic valves

authored by T. Glück, W. Kemmetmüller, A. Pfeffer, and A. Kugi

and published in Proceedings of the 13th Mechatronics Forum, International Conference.

The content of this post-print version is identical to the published paper but without the publisher’s final layout or
copy editing. Please, scroll down for the article.

Cite this article as:
T. Glück, W. Kemmetmüller, A. Pfeffer, and A. Kugi, “Pneumatic pulse-width modulated pressure control via trajec-
tory optimized fast-switching electromagnetic valves”, in Proceedings of the 13th Mechatronics Forum, International
Conference, vol. 3/3, Linz, Austria, Sep. 2012, pp. 692–699

BibTex entry:
@InProceedings{GlueckME2012,
Title = {Pneumatic pulse-width modulated pressure control via trajectory optimized fast-switching

electromagnetic valves},
Author = {T. Glück and W. Kemmetmüller and A. Pfeffer and A. Kugi},
Booktitle = {Proceedings of the 13th Mechatronics Forum, International Conference},
Year = {2012},
Address = {Linz, Austria},
Month = {Sept. 17-19},
Pages = {692-699},
Volume = {3/3},
Url = {http://www.trauner.at/buchdetail.aspx?artnr=20193031}

}

Link to original paper:
http://www.trauner.at/buchdetail.aspx?artnr=20193031

Read more ACIN papers or get this document:
http://www.acin.tuwien.ac.at/literature

Contact:
Automation and Control Institute (ACIN) Internet: www.acin.tuwien.ac.at
Vienna University of Technology E-mail: office@acin.tuwien.ac.at
Gusshausstrasse 27-29/E376 Phone: +43 1 58801 37601
1040 Vienna, Austria Fax: +43 1 58801 37699

http://www.trauner.at/buchdetail.aspx?artnr=20193031
http://www.acin.tuwien.ac.at/literature
www.acin.tuwien.ac.at
mailto:office@acin.tuwien.ac.at


Pneumatic Pulse-Width Modulated Pressure Control

via Trajectory Optimized Fast-Switching

Electromagnetic Valves

T. Glück, W. Kemmetmüller, A. Pfeffer, A. Kugi

Automation and Control Institute

Vienna University of Technology

Gusshausstrasse 27–29

1040 Vienna, Austria

Email: glueck@acin.tuwien.ac.at

kemmetmueller@acin.tuwien.ac.at

pfeffer@acin.tuwien.ac.at

kugi@acin.tuwien.ac.at

Abstract— The design of a pneumatic pulse-width modulated
pressure control via trajectory optimized fast-switching electro-
magnetic valves is presented. Two fast-switching valves are used
in a half bridge configuration for pressure control in a pneumatic
volume. The valves are operated using a feedforward control,
which guarantees soft landing and time optimality. The control
performance and achievable noise reduction of the pulse-width
modulated pressure control in combination with the optimized
switching strategy is demonstrated by measurement results on
an experimental test bench.

I. INTRODUCTION

In many industrial applications, there is a demand for

pneumatic systems that are controlled by cheap and reliable

switching actuators. In automation applications, for instance,

pneumatic piston actuators are frequently controlled by means

of pneumatic pulse-width modulation, see, e.g., [9], [12], [13],

[14]. Here, four fast-switching valves, arranged in a pneumatic

full bridge, replace the traditional directional control valve. In

order to achieve a high pulse-width modulation frequency and

likewise a high closed-loop bandwidth, short valve switching

times are necessary. The high pulse-width modulation

frequency, however, produces acoustic noise and causes

mechanical wear of the valves. For this, so-called soft landing

strategies were developed in recent years, cf. [5], [6].

In [8], the design of a feedforward controller that

facilitates soft landing and time optimality of a fast-switching

electromagnetic valve was presented. The feedforward

controller was designed by point-to-point quasi-time-optimal

control, which allows to incorporate input constraints in

a systematic way. In this contribution, the feedforward

control concept is applied to two fast-switching valves

which are arranged in a pneumatic half bridge in order to

control the pressure in a chamber by means of pulse-width

modulation. For this, the mathematical model of the chamber

is derived and the model parameters are identified by means

of measurements. Furthermore, a nonlinear controller based

on exact input-output linearization is designed.

At first, in Section II and III, the modeling of the switching

valves and the design of the feedforward controller are briefly

summarized. Subsequently in Section IV the chamber model is

derived and in Section V the pulse-width modulated pressure

control is designed. Measurement results on an experimental

test bench, given in Section VI, validate the performance of

the developed control strategy and demonstrate the resulting

noise reduction.

II. VALVE MODEL

Sleeve

Supply portExhaust port

Working port

Plunger

Sealings

Electromagnet Spring

Fig. 1: Schematics of the 3/2-fast-switching valve.

The mathematical model of the considered fast-switching

valve, schematically depicted in Fig. 1, can be separated

into three subsystems: the electromagnetic, the mechanical

and the pneumatic subsystem. Since measurement results of

the considered fast-switching valve confirm that the valve is

pressure-balanced, the pressure forces acting on the plunger

will be neglected. In addition, it is assumed that the flow

force is small in comparison to the magnetic force. Since

no internal feedback from the pneumatic dynamics to the

electromechanical subsystem is considered, the optimal control
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problem can be formulated with the pneumatic subsystem

being neglected.

A. Electromagnetic Subsystem

The equivalent magnetic circuit of the fast-switching valve

is shown in Fig. 2a. It comprises the flux-dependent effective

Θ

Rfc(Φfc)
Rl

Rg(s)

Rfp

Φl Φfp

Φfc

(a) Reluctance model.

susl

fm, fs, ff

s, w

cv

dv mv Plunger

(b) Schematics.

Fig. 2: Reluctance model and schematics of the fast-switching

valve.

core reluctance Rfc(Φfc), with core flux Φfc, the effective

reluctance Rfp of the plunger, the effective reluctance Rg(s)
of the air gap s between the core and the plunger, and

the reluctance Rl which accounts for leakage fluxes. The

reluctances are modeled in the form

Rfc(Φfc) =
lfc

µ0µfc(Φfc)Afc
, Rfp =

lfp
µ0µfpAfp

,

Rl =
ll

µ0Al
, Rg(s) =

2s

µ0Ag
.

(1)

Here, lfc, lfp, and ll are the effective lengths of the core, the

plunger, and the leakage flux lines, respectively. Afc, Afp,

and Al are the corresponding effective areas. The effective

length of the air gap is equal to 2s, since there are two

air gaps between the core and the plunger, cf. Fig. 1. The

corresponding area is denoted by Ag. Furthermore, µ0 denotes

the permeability of air and the relative permeability µfp of the

plunger is assumed to be constant. Saturation of the core is

phenomenologically modeled as

µfc(Φfc) =

(
k1

( |Φfc|
Afc

)
exp

(
k2

|Φfc|
Afc

)
+ k3

)−1

, (2)

with the constant parameters kj , j = 1, 2, 3. The equivalent

reluctance R of the overall system reads as

R(Φfc, s) = Rfc(Φfc) +
Rl (Rg(s) +Rfp)

Rl +Rg(s) +Rfp
. (3)

Using the magnetomotive force Θ = Ni of the coil, where

i is the current and N is the number of turns, the flux Φfc
through the coil is given in the form

Φfc =
Θ

R . (4)

Based on the flux linkage ψ = NΦfc of the coil, Faraday’s

law yields

d

dt
ψ = v −Ri, ψ(0) = ψ0 (5)

with initial condition ψ0, the electric resistance R and the ap-

plied voltage v. Moreover, the coil current i can be expressed

in terms of the flux linkage and the air gap in the form

i =
R(ψ, s)

N2
ψ. (6)

B. Mechanical Subsystem

Fig. 2b shows a schematic diagram of the forces acting on

the plunger of the fast-switching valve. Here, s is the plunger

position and w = ṡ is the plunger velocity. The mass of the

plunger is denoted by mv , the stiffness of the load spring by

cv, and the viscous damping coefficient due to the friction of

the housing and the sealing elements by dv . The plunger is

loaded by the magnetic force fm(ψ, s), the spring force fs(s)
and the friction force ff (w). Based on the magnetic energy

with (3) and (6), see, e.g., [7],

Wm(ψ, s) =

∫ ψ

0

i(ψ̃, s)dψ̃

=

∫ ψ

0

Rfc(ψ̃/N)

N2
ψ̃dψ̃

+
1

2N2

Rl (Rg(s) +Rfp)

Rl +Rg(s) +Rfp
ψ2

(7)

the magnetic force yields

fm(ψ, s) = −
(
∂

∂s
Wm

)
(ψ, s)

= − 1

2N2

R2
l

(Rl +Rg(s) +Rfp)
2

(
∂

∂s
Rg

)
(s)ψ2.

(8)

The spring force is modeled as

fs(s) = −cv (s− lc0) (9)

with the preload force cvlc0 . The friction force is assumed to

be composed of Coulomb friction and viscous friction, i.e.

ff (w) = −ffc sign(w) − dvw, (10)

where the Coulomb friction force is denoted by ffc and the

viscous damping coefficient by dv. Henceforth, the signum-

function in (10) is approximated by tanh
(
w
wc

)
≈ sign(w),

with wc ≪ 1, providing a continuously differentiable friction

force ff (w). The balance of momentum for the plunger and

Faraday’s law (5) with (6) and the reluctance model (3) results

in the mathematical model

d

dt
s = w, s(0) = s0, (11a)

d

dt
w =

1

mv

(
fm(ψ, s) + fs(s) + ff (w)

)
, w(0) = w0, (11b)

d

dt
ψ = v −R

R(ψ, s)

N2
ψ, ψ(0) = ψ0. (11c)
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III. TRAJECTORY OPTIMIZATION

The mathematical model (11) with the state vector x =[
s w ψ

]T
and with the constrained, affine input u = v ∈

U =
[
u−, u+

]
can be written in the form

d

dt
x = f(x) + bu, x(0) = x0, (12)

with the initial condition x0 =
[
s0 w0 ψ0

]T
, the vector

field f and the constant input vector b. The control objective

is to find an optimal control input that guarantees a minimal

transition time tf for a setpoint change

(u0,x0) → (uf ,xf), (13)

with

x(0) = x0, u(0) = u0 : 0= f(x0) + bu0,

x(tf ) = xf , u(tf )= uf : 0= f(xf ) + buf
(14)

and the terminal condition x(tf ) = xf . Therefore, the input-

constrained point-to-point optimal control problem

min
u∈U

J(u) = ϕ(tf ) +

∫ tf

0

l(u)dt

s.t.
d

dt
x = f(x) + bu, x(0) = x0, x(tf ) = xf ,

u ∈ U =
[
u−, u+

]
(15)

has to be solved. In the quasi-time-optimal case, the terminal

cost

ϕ(tf ) = tf (16)

assures the time optimality and the Lagrange density

l(u) =
1

2
ru2, (17)

with r > 0, serves as a regularization term in order to avoid

singular arcs. Introducing the Hamiltonian, see, e.g., [4],

H(x, u,λ) = l(u) + λT (f(x) + bu) , (18)

with the adjoint states λ, and applying a time transformation

t = t∗f τ that maps the time interval t ∈ (0, t∗f ) onto τ ∈ (0, 1),
the optimal control problem can be reformulated by means of

Pontryagin’s maximum principle, see, e.g., [3], in form of a

two-point boundary value problem, i.e.

d

dτ

[
x∗

λ∗

]
= t∗f

[
f(x∗)

−
(
∂
∂xf

)T
(x∗)λ∗

]
+ t∗f

[
b
0

]
u∗ (19a)

u∗ = argmin
u∈U

H(x∗, u,λ∗) (19b)

with boundary conditions

x∗(0) = x0 and x∗(1) = xf (19c)

and the transversality condition

H(x∗, u∗,λ∗)|τ=1 = −1 (19d)

resulting from the free end time t∗f . Here, the superscript ∗

refers to optimal variables.

A. Solution of the Quasi-Time-Optimal Control Problem

Owing to the input affine system representation (12), the

first-order necessary condition arising from the minimization

problem (19b) reads in the unconstrained case as
(
∂

∂u
H
)(

x∗, u0,λ∗) = ru0 + (λ∗)T b = 0 (20)

and can be explicitly solved in the form

u0 = −1

r
(λ∗)T b. (21)

In the constrained case it can be easily seen that the optimal

control input takes the form

u∗ = ξ(λ∗) =





u− for u0 ≤ u−

u0 for u0 ∈ (u−, u+)

u+ for u0 ≥ u+
. (22)

Note that in the present case (λ∗)T b = λ∗3. Considering

the limit case r → 0 the optimal control input u∗ switches

between the limits u− and u+ whenever λ∗3 changes the sign.

Then, the solution of the optimal control problem (15) is a

bang-bang control.

In addition to (20), the second-order necessary optimality

condition, the so-called Legendre-Clebsch condition
(
∂2

∂u2
H
)
(x∗, u∗,λ∗) ≥ 0, (23)

is fulfilled, for r > 0.

B. Results of the Trajectory Optimization for Soft-Landing

For the opening and for the closing of the valve, respec-

tively, the point-to-point transitions

u0 = vu, x0 =



su
0
ψu




 →


uf = vl, xf =



sl
0
ψl






(24)

and
u0 = vl, x0 =



sl
0
ψl




 →


uf = vu, xf =



su
0
ψu






(25)

have to be performed within the normalized transition time τ ∈
(0, 1). Here, vl, ψl denote the resulting setpoint voltage and

flux linkage at the lower end stop sl and vu, ψu the setpoint

voltage and flux linkage at the upper end stop su, cf. (14).

C. Numerical Results of the Quasi-Time-Optimal Control

Problem

Numerical solutions of the two-point boundary value

problem (19) with (21) and (22) can be obtained by utilizing

the MATLAB function bvp5c, cf. [11]. The function bvp5c
implements a finite difference method, in particular a

collocation method, see [11], that controls a scaled residual
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and the true error, and adapts the mesh grid. The solver may

not find a solution if the initial guess does not adequately

represent the behavior of the system, see, e.g., [11]. As the

adequate initial guess is not easy to find, especially for the

adjoint variables, there is a need for a systematic solution

procedure. The two-point boundary value problem is therefore

numerically solved in a sequential procedure that can be

summarized as follows:

First, a uniform mesh of M = 30 grid points at the

time steps τk = kTk, k = 0, 1, . . . ,M, Tk = 1/M serve

as initial guess for the trajectories x∗(τk), λ∗(τk). A linear

interpolation is performed between the boundary conditions

(19c) of the states x with the setpoint from (24) for the

opening and (25) for the closing, and zero initial values of

the adjoint states λ are assumed. Then, the problem is solved

recurrently for a sequence of parameters r = rstart, . . . , rend,

cf. (17), using the previously received solution as new initial

guess.

Figures 3 and 4 show numerical results of the quasi-

time-optimal point-to-point transition for the opening

and for the closing scenario for decreasing parameters

r ∈ [10−1, 10−2, 10−3, 10−6]1/V2. Note that for all

numerical solutions outside the vertical dashed lines the

initial and final values are held constant for illustration

purposes only.

The optimal state trajectories for opening the valve are given

in Fig. 3a. Fig. 3c shows the corresponding optimal input volt-

age v∗, which converges for smaller parameters r → 0 towards

a bang-bang control. Fig. 4 shows analogous numerical results

for the closing scenario of the valve. Note that in this case the

solution of the optimal control problem is not purely bang-

bang. Whenever λ∗3 vanishes, i.e. approximately for the time

interval Is =
[
τ1, τ2

]
≈

[
0.3, 0.4

]
, u∗ vanishes as well. This

happens if f∗
m vanishes, implying that only the spring force

accelerates the plunger. Parameter studies have shown that this

singular arc can be avoided with a smaller plunger mass mv,

a smaller damping coefficient dv, a larger spring stiffness cv
or a larger preload force cvlc0 .

IV. CHAMBER AND PNEUMATIC VALVE MODEL

In the considered application, a half bridge comprising

two fast-switching valves is used for pressure control in a

chamber, see Fig. 5. The chamber can be described by two

independent variables, the temperature ϑ and the pressure p,

and the governing model equations may be derived from the

conservation of mass and energy, see, e.g., [10]. Stipulating an

isentropic process, the change of internal energy U̇ is equal

to the sum of the enthalpy flow Ḣ = ṁinhin − ṁouthout and

the applied heat flow Q̇ = Aβ(ϑamb − ϑ), that is

d

dt
U = ṁinhin − ṁouthout +Aβ(ϑamb − ϑ), (26)

P

P
ϑ, p

ṁinṁout

psup, ϑsupp0, ϑ0

pamb, ϑamb

Fig. 5: Setup with pneumatic half bridge.

with mass flow ṁj , specific enthalpy hj , j ∈ {in, out}, heat

transfer coefficient β, chamber surface A and ambient air

temperature ϑamb. Subsequently, it is assumed that the air

obeys the ideal gas law pV = Rsϑm, with mass m, pressure

p, volume V and specific gas constant Rs. In addition, the

caloric state equations for the ideal gas duj = cvdϑj and

dhj = cpdϑj , with specific internal energy uj = Uj/m,

specific enthalpy hj = Hj/m and the constant, specific heat

capacities cv and cp hold. With Rs = cp−cv and the constant

isentropic exponent κ = cp/cv, the temperature differential

equation can be directly inferred form (26) using the mass

balance (29)

d

dt
ϑ =

(κ− 1)ϑ

pV

(
ṁin (cpϑin − cvϑ)− ṁout (cp − cv)ϑ

+Aβ(ϑamb − ϑ)
)
,

(27)

with initial temperature ϑ(0) = ϑ0. The change of the gas

temperature at the inflow valve can be approximated according

to an isentropic change

ϑin = ϑsup

(
psup
p

) 1−κ
κ

, (28)

where the index sup refers to the supply variables. The

consideration of the mass balance

d

dt
m =

d

dt
(ρV ) = ṁin − ṁout (29)

with ρ in (29) ρ = p/(Rsϑ) according to the ideal gas law

in combination with (27) gives rise to the pressure differential

equation

d

dt
p =

κRs
V

(
ṁinϑin − ṁoutϑ

)
+
κ− 1

V
Aβ(ϑamb − ϑ),

(30)

with initial pressure p(0) = p0. The adiabatic lossless flow

through a throttle valve, according to ISO [2], is given by

ṁj = Cj(sj)pjρ0

√
ϑ0
ϑj

Ψ(Πj), j ∈ {in, out}, (31)
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Fig. 3: Numerical results of the quasi-time-optimal control problem for the opening motion (su → sl).
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Fig. 4: Numerical results of the quasi-time-optimal control problem for the closing motion (sl → su).
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with technical density ρ0 = 1.1845kg/m3 and technical tem-

perature ϑ0 = 293.15K. The position-dependent pneumatic

conductances Cj are assumed to be affine in the valve position

sj and read as Cj(sj) = γ(su − sj) with constant γ > 0 and

upper limit su for j ∈ {in, out}. The flow-through function

Ψ(Πj) in (31) is described by [2]

Ψ(Πj) =





√
1−

(
Πj−Πc

1−Πc

)2

for Πj > Πc

1 for Πj ≤ Πc

(32)

with pressure ratios Πin = psup/p, Πout = p/pamb and

respective constant, critical pressure ratios Πc > 0.

V. PNEUMATIC PULSE-WIDTH MODULATED PRESSURE

CONTROL

The usage of a pulse-width modulated valve opening area

and likewise conductance C results in a pulse-width mod-

ulation of the mass flow ṁ, which allows to control the

chamber pressure. Since the valve dynamics is reasonably

Cmax

Cj

t

Tpwm χjTpwm

Fig. 6: Pulse-width modulated conductance.

fast compared to the temperature and pressure dynamics, the

instantaneous switching of the valves may be assumed in the

following. Using a suitable control strategy for the two valves

of the half bridge as has been discussed in Section IV, either

the maximum conductance Cmax or the minimum conductance

Cmin = 0 of the individual valves j ∈ {in, out} can be

prescribed. The pulse-width modulated conductancesCj(t) for

t = kTpwm with k ∈ Z read as

Cj(t) =

{
Cmax for kTpwm < t ≤ (k + χj)Tpwm

0 for (k + χj)Tpwm < t ≤ (k + 1)Tpwm

,

(33)

where 0 ≤ χj ≤ 1 are the duty ratios and Tpwm is the fixed

modulation period, cf. Fig. 6. Obviously, the average values

C̄j =
1

Tpwm

∫ kTpwm

(k−1)Tpwm

Cj(t) dt = Cmaxχj (34)

of the conductances Cj can be directly determined by means

of the pulse ratios χj . However, the value of the duty ratios χj
can be solely set at the beginning of each modulation period.

Hence, only the mean value p̄ of the pressure and the mean

value of the mass flow ¯̇m can be controlled via the duty ratios

χj . For the controller design it is assumed that the overall gas

temperature is constant, i.e. ϑ = ϑin = ϑ0 = ϑsup. Then, the

dynamics of the mean value p̄ of the pressure

p̄ =
1

Tpwm

∫ t

t−Tpwm

p(τ) dτ (35)

can be directly deduced from (30) in the form

d

dt
p̄ =

κRs
V

ϑ0

(
¯̇min − ¯̇mout

)
, (36)

with the mass flow mean values

¯̇mj =
1

Tpwm

∫ t

t−Tpwm

ṁj(τ) dτ (37)

and ṁj in accordance to (31). The interconnection of the fast-

switching valves with ṁin ≥ 0 and ṁout ≥ 0 suggests to

introduce the virtual control input

α = ξ ¯̇m = ξ
(
¯̇min − ¯̇mout

)
, (38)

whit the abbreviation ξ = κRsϑ0/V . Thus, the control law

α = ˙̄pd − η1ep̄ − η0ep̄,I , (39)

with the pressure error ep̄ = p̄− p̄d and a sufficiently smooth

desired trajectory p̄d of the mean value of the pressure renders

the linear error dynamics

ëp̄ + η1ėp̄ + η0ep̄ = 0. (40)

The dynamics can be arbitrarily assigned by means of the posi-

tive control parameters η1, η0 > 0. The conditional integration

ep̄,I =

∫ t

0

ep̄,c dτ with

ep̄,c =





0 if (χ ≥ χmax) ∧ (ep̄ > 0)

0 if (χ ≤ χmin) ∧ (ep̄ < 0)

ep̄ else

(41)

is introduced in order to prevent control windup induced by

the limits χmin ≤ χ ≤ χmax. According to (38), the mass

flows read as

¯̇min =

{
α
ξ for α > 0

0 for α ≤ 0
, ¯̇mout =

{
0 for α ≥ 0
α
ξ for α < 0

.

(42)

Since the supply and ambient pressure, psup and pamb, are

assumed to be constant, the mass flow mean value (37) may

be written in the form

¯̇mj =
ρ0
Tpwm

∫ t

t−Tpwm

Cj(sj)Γ(pj) dτ, (43)

with the pressure-dependent term Γ(pj) = pjΨ(Πj). More-

over, for small pressure variations ∆pj from the mean values

p̄j the following approximation

Γ(pj) ≈ Γ(p̄j) +O(|∆pj |), (44)
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with the Landau-symbol O(·), see, e.g., [15], is utilized. The

combination of the this approximation with (34) and (43)

finally yields the duty ratios

χj =
1

ρ0Γ(p̄j)Cmax

¯̇mj , j ∈ {in, out}, (45)

which can be directly translated into closing times of the

respective valves.

VI. IMPLEMENTATION

After the successful testing of the pulse-width modulated

control strategy in several simulations, it was implemented on

a test bench, see Figures 5 and 7 for the setup. The test bench

Fig. 7: Photograph of the test bench.

consists of two fast-switching valves and a chamber of volume

V = 0.4 l. The real-time system DSPACE 1005 was used for

data processing with a sampling time of Ts = 10µs and a

modulation period of Tpwm = 10ms. Two pressure sensors

measure the chamber and the supply pressure, p and psup,

respectively. The latter was controlled by means of a pressure-

control valve to a constant value of psup = 7bar. The pressure

mean value (35) is approximated by

p̄(kTpwm) ≈
1

Npwm

kNpwm−1∑

l=(k−1)Npwm

p(lTs), (46)

with Npwm = Tpwm/Ts. The integral part (41) is realized by

the Euler-method, see, e.g., [15].

Experimental results of the trajectory optimization for soft

landing were presented in [8]. They show that it is possible

to open and close the valve in minimal time with almost zero

velocity at the end stops, see [8]. These optimized trajectories

are used as feedforward control within the presented pneu-

matic pulse-width modulation.

A. Parameter Identification

Some parameters of the controller design model (36) are

unknown, which is why the nonlinear dynamic least-squares

identification task

min
θ

J(θ) =
1

Tm

Tm∫

0

(
p̄(t; θ)− p̄m

)2
dt

s.t.
d

dt
p̄ = fp̄

(
p̄(t; θ)

)
, p̄(0) = p̄0,

θ =
[
Πc Cmax

]T ≥ 0,

(47)

with fp̄
(
p̄(t; θ)

)
according to (36), is performed for mea-

surements pm during the time interval t ∈ (0, Tm). Just

with a little abuse of notation the additional argument should

explicitly indicate the dependence on the parameter vector θ.

The identification procedure was performed in MATLAB by

means of the function fmincon using the sequential quadratic

programming method in combination with the ordinary differ-

ential equations solver ode15s. Fig. 8 shows identification

results for the charging ( ¯̇min > 0 and ¯̇mout = 0) and

discharging ( ¯̇min = 0 and ¯̇mout > 0) of the chamber. The

results show a good agreement between measurements and

simulations, which imply that the model approximations are

reasonable.
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4
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(b) Discharging.

Fig. 8: Identification results of the pressure mean model.

B. Measurement Results

Fig. 9 shows measurement results of the pulse-width mod-

ulated control strategy for a sinusoidal desired trajectory of

the pressure mean value p̄d = p̄a sin(2πft) + p̄o. In Fig. 9a,

the parameters are chosen as p̄o = 3bar, p̄a = 0.1 bar
and f = 5Hz, whereas in Fig. 9b depicts the results for

p̄o = 5bar, p̄a = 0.1 bar and f = 7Hz. In both cases, a

good control performance can be achieved with the presented

control strategy.

C. Noise Reduction

To illustrate the noise reduction achieved by the optimized

trajectories of the valve, a comparison of the Fast-Fourier

transformation of sound recordings from pulse-width modu-

lated pressure control with a simple and with the trajectory

optimized valve actuation are depicted in Fig. 10. With the

simple switching valve actuation only the maximum voltage

to open and the minimum voltage to close is applied to the
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(a) Sinusoidal reference trajectory with p̄a = 0.1 bar, p̄o = 3bar, f =
5Hz.
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(b) Sinusoidal reference trajectory with p̄a = 0.1bar, p̄o = 5bar, f =
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Fig. 9: Measurement results of the pulse-width modulated

pressure control for different sinusoidal desired reference

trajectory of the pressure mean value p̄d = p̄a sin(2πft)+ p̄o.

valves. The results in Fig. 10 reveal a significant reduction in

the frequency range 0− 6Hz.

VII. CONCLUSION

In this work, pulse-width modulated pressure control with

fast-switching valves arranged in a half bridge is presented.

The fast-switching valves are driven by optimized feedforward

trajectories which facilitate soft landing and time optimality.

For this, a point-to-point quasi-time-optimal control problem

is formulated by means of Pontryagin’s maximum principle

and numerically solved by a direct approach. The derivation

of a mean value chamber model and the identification of its

parameters form the starting point for the design of a nonlinear

pressure controller. Measurement results on an experimental

test bench show the applicability of the proposed pressure
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(a) Simple valve actuation.
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(b) Trajectory optimized valve actu-
ation.

Fig. 10: Fast-Fourier transformation of sound recordings from

a simple and from the trajectory optimized valve actuation for

a sinusoidal desired trajectory with a frequency of f = 5kHz.

control and demonstrate the achievable noise reduction of the

pulse-width modulated pressure control in combination with

the optimized switching strategy. Future work addresses the

extension of the control strategy to pneumatic piston actuators.
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