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Swing-upControl of aTriplePendulumonaCartwith

ExperimentalValidation ⋆

Tobias Glück a, Andreas Eder a, Andreas Kugi a

aAutomation and Control Institute, Vienna University of Technology, Gusshausstr. 27-29, 1040 Vienna, Austria

Abstract

The swing-up control of a triple pendulum on a cart is presented, where the controller is based on a two-degrees-of-freedom
scheme consisting of a nonlinear feedforward controller and an optimal feedback controller. The point-to-point transition task
is treated as a nonlinear two-point boundary value problem with free parameters resulting from the suitably projected input-
output dynamics. The main focus of the paper is on the experimental realization of the triple pendulum swing-up maneuver.

Key words: triple pendulum; swing-up; two-degrees-of-freedom control; constrained feedforward control; optimal feedback
control.

1 Introduction

The inverted pendulum on a cart is a popular benchmark
problem in control theory. The main reason for this is
that it constitutes an underactuated system with a non-
linear, unstable and nonminimum-phase behavior and
thus reveals many interesting system-theoretic proper-
ties.

In older literature, several contributions deal with the
stabilization of single inverted pendulums, see, e.g., [2],
[13]. Besides the rather simple stabilization task, the
swing-up problem, where the pendulum is moved from
the lower to the upper pendulum configuration, has at-
tracted much attention, see, e.g., [19] and [20]. For dou-
ble and triple pendulum configurations the stabilization
task and even more the swing-up control is much more
involved, in particular due to the limited rail length for
the cart. In this context, most of the papers reported in
the literature are restricted to pure simulation studies,
see, e.g., [8] and [22], for the swing-up of an inverted dou-
ble pendulum; [3], [12] and [18] for the stabilization of the
inverted triple pendulum. In the last decade, the appli-
cation of new control concepts in combination with the

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author T. Glück. Tel. +43 1 58801-37678. Fax
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Email addresses: glueck@acin.tuwien.ac.at (Tobias
Glück), eder@acin.tuwien.ac.at (Andreas Eder),
kugi@acin.tuwien.ac.at (Andreas Kugi).

increasing computational power of the real-time hard-
ware made it possible to also provide experiments for
double and triple pendulum configurations. Thus, for in-
stance [7] and [14] demonstrated the swing-up control of
the double pendulum, and [6] presented the experimen-
tal verification of the side-stepping of an inverted triple
pendulum on a cart in the upper configuration.

This paper is concerned with the design and experi-
mental validation of the swing-up control of a triple
pendulum on a cart. A video of the swing-up maneu-
ver can be found on http://www.acin.tuwien.ac.at/
fileadmin/cds/videos/TP_Swing_up.wmv.
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(b) Schematics of the triple pen-
dulum on a cart.

Figure 1. Test bench.

A photograph of the test bench under consideration [17]
is depicted in Figure 1(a). Three pendulum arms are
mounted on a horizontallymovable cart. Incremental en-
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coders at each joint measure the different angles between
two adjacent arms and between the first arm and the
cart, respectively, with a resolution of 4.395× 10−2 ◦. In
order to keep the friction low, the signals are transmitted
contactless via an optical connection from the joints to
the control unit. The cart itself moves on a rail track and
is driven via a toothed belt by a synchronous motor. An
ideal subordinate angular speed controller is presumed,
impressing the angular speed up to a maximum value
of 3000 rpm. An additional incremental encoder on the
synchronousmotor is used to measure the position of the
cart with a resolution of 6.836× 10−5m. The task under
consideration is to design a controller with the angular
speed of the synchronous motor as the control input in
order to move the three pendulum arms from the down-
ward to the upward position. This is also referred to as
the swing-up maneuver of the triple pendulum on a cart.

In this paper, the control problem is accomplished by
means of a two-degrees-of-freedom control structure.
First, the mathematical model of the considered system
is derived in Section 2. A systematic parameter identifi-
cation procedure is carried out in Section 3. The devel-
opment of the two-degrees-of-freedom control concept
with a nonlinear feedforward controller, a time-variant
Riccati controller and a state observer in form of an
Extended Kalman Filter is demonstrated in Section 4.
The key challenge of the swing-up maneuver is the de-
sign of an appropriate feedforward controller. This is
realized by a reformulation of the systems’ dynamics
in input-output coordinates. A suitable projection of
the input-output dynamics allows to directly incorpo-
rate the given output constraints and an appropriate
input parametrization facilitates the solvability of the
resulting two-point boundary value problem with free
parameters. Experimental results, shown in Section 5,
demonstrate the performance of the overall control
strategy.

2 Mathematical Model

At first, the systematic derivation of the equations of
motion of the triple pendulum on a cart by means of the
Lagrange formalism is shown. A schematic diagram of
the triple pendulum on a cart is sketched in Figure 1(b).
The cart position s and the angles ϕi, i = 1, 2, 3 between
the pendulum arms and the vertical axis are chosen as
generalized coordinates and summarized in the vector
qT = [ϕ1 ϕ2 ϕ3 s] = [q1 q2 q3 q4]. The distance of the cen-
ter of gravity of each pendulum arm to the corresponding
joint is denoted by ai, i = 1, 2, 3. Furthermore, mc de-
scribes the mass of the cart and the pendulum arms have
the lengths li, the massesmi and the moments of inertia
Ji. The synchronous motor generates the motor moment
M which results in a control force τ = M/R acting on
the cart by neglecting the elasticity of the toothed drive
belt. Here, R denotes the radius of the toothed belt disk.

2.1 Equations of motion

The equations of motion are derived by means of the
Lagrange formalism, see, e.g., [15],

d

dt

∂

∂q̇k
L− ∂

∂qk
L+

∂

∂q̇k
R = τ δk4, k = 1, . . . , 4, (1)

with the Lagrangian L = T − V as the difference be-
tween the kinetic energy T and the potential energy V ,
the Rayleigh dissipation function R accounting for the
viscous friction and the external control force τ . Fur-
thermore, δij = 1 for i = j and δij = 0 for i 6= j denotes
the Kronecker-Delta. The vector from the origin of the
inertial frame (x0 y0) to the center of gravity of the in-
dividual pendulum arms take the form

pc1 =

[
s− a1 sinϕ1

a1 cosϕ1

]
,pc2 =

[
s− l1 sinϕ1 − a2 sinϕ2

l1 cosϕ1 + a2 cosϕ2

]
,

pc3 =

[
s− l1 sinϕ1 − l2 sinϕ2 − a3 sinϕ3

l1 cosϕ1 + l2 cosϕ2 + a3 cosϕ3

]
. (2)

Thus, the kinetic energy T consists of the transla-
tional part of the cart Tc = 1

2mcṡ
2 and the trans-

lational and rotational part of the pendulum arms
Tp = 1

2

∑3
j=1mjṗ

T
cjṗcj + 1

2

∑3
j=1 Jjω

2
j with the an-

gular velocities ωi = ϕ̇i, i = 1, 2, 3. The poten-
tial energy V due to the gravitational field reads as
V = g (m1pc1,2 +m2pc2,2 +m3pc3,2), with the accel-
eration of gravity g. Rayleigh’s dissipation function R
is used to incorporate the viscous friction of the joints
R = 1

2d1ω
2
1 +

1
2d2 (ω2 − ω1)

2 + 1
2d3 (ω3 − ω2)

2, with the
viscous friction coefficients di, i = 1, 2, 3. The friction
of the cart is neglected since the cart dynamics will be
simplified, as will be shown in Section 2.2, due to the
assumption of an ideal subordinate angular velocity
controller of the synchronous motor. In vector notation,
the equations of motion due to (1) read as

D(q)q̈+C(q, q̇)q̇+Gq̇+ g(q) = τ , (3)

with the positive definite mass matrixD(q), the Coriolis
matrix C(q, q̇), the damping matrix G, the vector of
gravity g(q) and the control force τT = [01×3 τ ].

2.2 Subordinate angular velocity controller

As already mentioned before, the synchronous motor is
controlled by a subordinate angular velocity controller,
which is assumed to be ideal. Therefore, the reaction of
the pendulum arms on the cart can be neglected and
the acceleration of the cart s̈ is chosen as the new con-
trol input u. This brings about that the last row in the
equations of motion (3) must be replaced by s̈ = u. For
implementation purposes, u is integrated with respect

2
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to time in order to obtain the reference cart velocity ṡd
which in turn serves as the input for the subordinate an-
gular velocity controller. Thus, the equations of motion
(3) with the ideal subordinate velocity controller take
the form

Ďϕϕ(ϕ)ϕ̈ =− Ďϕs(ϕ)s̈− Čϕϕ(ϕ, ϕ̇)ϕ̇,

− Ǧϕϕϕ̇− ǧϕϕ(ϕ),

s̈ =u,

(4)

with the matrices and vectors Ďϕϕ, Ďϕs, Čϕϕ, Ǧϕϕ,
ǧϕϕ and ϕT = [ϕ1 ϕ2 ϕ3]. By introducing the state vec-
tor xT = [q q̇] the equations of motion of the triple pen-
dulum may be written in the input-affine system repre-
sentation

ẋ = f(x) + g(x)u, x(0) = x0, (5)

with fT(x) =
[
q̇T FT

0 (ϕ, ϕ̇) 0
]
, gT(x) =

[
01×4F

T
1 (ϕ) 1

]
and

F0(ϕ, ϕ̇) =− Ď−1
ϕϕ(ϕ)

(
Čϕϕ(ϕ, ϕ̇)ϕ̇+Ǧϕϕϕ̇+ǧϕϕ(ϕ)

)
,

F1(ϕ) =− Ď−1
ϕϕ(ϕ)Ďϕs(ϕ). (6)

2.3 Equilibrium points

The triple pendulum model (5) exhibits in total eight
equilibrium points for a fixed cart position ssp = 0 and
control input usp = 0. The equilibrium points can be
simply calculated from (4) by setting gϕϕ(ϕ) = 0. In the
following, the swing-up maneuver is only concerned with
the setpoint transition from the stretched out pendulum
arm in the downward position ϕT

0 = [π π π] to the up-
ward position ϕT

T = [0 0 0]. At this point it is worth not-
ing that the control approach being subsequently pre-
sented in principle also applies to the setpoint transition
between other equilibrium points.

3 Parameter identification

One of the sticking points for a successful realization of
the swing-up maneuver is the exact parametrization of
the model. Even a small parameter mismatch will have
an immense influence on the calculation of the feedfor-
ward trajectory and thus on the overall performance.
The direct determination of 15 parameters, five param-
eters (mi, li, ai, di, Ji) for each pendulum arm, is quite
difficult. The identification task, however, is significantly
simplified if, in a first step, the parameters of the pendu-
lum arms are individually determined. Afterwards, in a
second step, the friction coefficients di, i = 1, 2, 3 have
to be identified once again. This is necessary because in
the triple pendulum configuration the normal forces act-
ing on the bearings are different. Summarizing, the iden-
tification strategy can be subdivided into three steps:

(i) Five parameters (mi, li, ai, di, Ji) have to be identi-
fied for each pendulum arm. The massmi, the pendulum
arm length li and the distance ai of the center of gravity
to the corresponding joint are directly measurable. They
are determined as m1 = 0.876kg,m2 = 0.938kg,m3 =
0.553kg, a1 = 0.215m, a2 = 0.269m, a3 = 0.226m,
l1 = 0.323m, l2 = 0.419m and l3 = 0.484m. (ii) The
parameters Ji and di are determined by a parametric
linear Least-Squares identification for each single pen-
dulum. The equation of motion of the single pendulum
for fixed cart position and zero input, i.e. u = 0, is given
by, see, e.g., [21],

ω̇ = θa sin(ϕ) + θbω, ω(0) = ω0. (7)

with parameters θa = miaig
mia2

i
+Ji

and θb =
−di

mia2
i
+Ji

. Thus,

(7) constitutes a parametric linear identification prob-
lem of the form y = sTθ1 with output y = ω̇, regres-
sor sT = [ω sin (ϕ)] and parameter vector θT

1 = [θa θb].
Hence, N measurements yield the overdetermined lin-
ear system of equations y = Sθ featuring the optimal

solution θ̂1 =
(
STS

)−1
STy in the Least-Squares sense,

see, e.g., [11]. Based on the knowledge of the parameters
mi, li and ai, the remaining parameters Ji and di from

(7) are calculated by Ji = −mi ai (θa ai−g)
θa

and di =

− θb mi ai g
θa

. Each pendulum armwasmounted on the cart
and separately identified. For this a test by free oscilla-
tions in the time interval t ∈ [0, Tm] in the lower pen-
dulum configuration for a fixed cart position was per-
formed. The identification results of the individual pen-
dulum arms are depicted in Figure 2. (iii) Finally, a para-
metric nonlinear Least-Squares identification

min
θ2

J(θ2) =
1

Tm

Tm∫

0

3∑

i=0

(ϕi(t; θ2)− ϕi,m)2 dt

s.t. ẋ = f(x; θ2) + g(x; θ2)u, x(0) = x0,

θT
2 = [d1 d2 d3] , di ≥ 0, i = 1, 2, 3,

(8)

where ϕi,m are the measurements of the angles ϕi over
the time interval Tm, was carried out in order to cap-
ture the viscous friction in the triple pendulum config-
uration. Here, f and g are identical to (5), just with a
little abuse of notation the argument (·; θ2) should ex-
plicitly indicate the dependence on the parameter vector
θ2. The identification procedure was performed inMat-
lab by means of the function fmincon using the sequen-
tial quadratic programmingmethod in combinationwith
the ordinary differential equations solver ode15s. Fig-
ure 3 shows the identification results obtained frommea-
surements of the side-stepping in the lower triple pen-
dulum configuration. Summarizing, the last two identi-
fication steps provide the remaining model parameters
J1 = 0.013Nms2, J2 = 0.024Nms2, J3 = 0.018Nms2,
d1 = 0.215Nms, d2 = 0.002Nms and d3 = 0.002Nms.
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Figure 2. Comparison of the simulation and measurement
results of the parametric linear identification by means of
free oscillation tests of the individual pendulum arms.
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Figure 3. Comparison of the simulation and measurement
results of the parametric nonlinear identification by means of
measurements of the uncontrolled side-stepping in the lower
triple pendulum configuration.

4 Control strategy for the swing-up maneuver

The swing-up control strategy is based on the two-
degrees-of-freedom control structure shown in Figure 4.

4.1 Two-degrees-of-freedom control structure

The key benefit of this design structure is the possibility
to separately adjust the tracking and the disturbance be-
havior. A trajectory generator provides the desired out-
put trajectory y∗(t) for calculating the feedforward con-
trol u∗(t). Deviations of the real system from the refer-
ence trajectory x∗ due to model uncertainties or distur-
bances are suppressed by means of a feedback controller.
The control input u(t) = u∗(t)+∆u consists of the feed-
forward part u∗(t) and the feedback part ∆u, whereas
the quantities ym are made available by measurements.
Non-measurable states may be reconstructed by means
of an observer.

Trajectory
generator

Feedforward
controller

controller
Feedback Plant

Observer

u∗

∆u u ym

y∗

x∗

x̂

Figure 4. Two-degrees-of-freedom control structure.

4.2 Feedforward controller design

The mathematical model (5) of the triple pendulum,
with the cart position y = s as the output and the corre-
sponding relative degree r = 2 can be written in Byrnes-
Isidori normal form, see [9],

ÿ = u, (9a)

η̈ = F0(η, η̇) + F1(η)u, (9b)

where ηT = ϕT = [ϕ1 ϕ2 ϕ3] and η̇T = ϕ̇T = [ω1 ω2 ω3]
represent the state variables of the internal dynamics
andFi, i = 0, 1 is according to (6). The swing-upmaneu-
ver performed in a finite transition time T corresponds
to a point-to-point motion from the initial setpoint

y(0) = s0 = 0, ẏ(0) = 0, (10a)

ηT(0) = ηT
0 = [π π π] , η̇(0) = η̇0 = 0, (10b)

to the terminal setpoint

y(T ) = sT = 0, ẏ(T ) = 0, (11a)

ηT(T ) = ηT
T = [0 0 0] , η̇(T ) = η̇T = 0. (11b)

The output and its time-derivatives up to the order r = 2
have to satisfy the box-constraints

y(i)(t) ∈
[
y−i , y

+
i

]
, i ∈ {0, 1, 2} (12)

with y−i < 0 < y+i and−y−i = y+i . The differential equa-
tions (9) in combination with the boundary conditions
(10) - (11) and the constraints (12) form a nonlinear,
constrained two-point boundary value problem for the
states y(t), ẏ(t) and η(t), η̇(t) depending on the input
u(t). The determination of the desired trajectories y∗(t),
ẏ∗(t), η∗(t), η̇∗(t) and the corresponding control input
u∗(t) is the main objective of the feedforward control
design.

4.2.1 Output-constrained feedforward control design

The design approach presented here follows [5]. The ba-
sic idea is the successive incorporation of the output con-
straints in a new, projected system representation by

4
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introducing saturation functions. The constraints of the
desired output trajectory y∗ are considered by introduc-
ing the saturation function, see Figure 5(a),

y∗ = ψ1(ξ1, ψ
±
1 ), (13)

with the new state ξ1. Differentiating (13) once and twice
with respect to the time yields

ẏ∗ =
∂ψ1

∂ξ1
ξ̇1 and ÿ∗ =

∂2ψ1

∂ξ21
ξ̇21 +

∂ψ1

∂ξ1
ξ̈1. (14)

With this, the new saturation functions ψ2 and ψ3 are
introduced

ξ̇1 = ψ2

(
ξ2, ψ

±
2 (ξ1)

)
and ξ̇2 = ψ3

(
v, ψ±

3 (ξ1, ξ2)
)
, (15)

with another new state ξ2 and the new input v. Now, the
system (15) represents a new, projected system fulfilling
the output constraints (12).

Determination of the saturation limits

Obviously, the constraint y∗ ∈
[
y−0 , y

+
0

]
is satisfied if the

saturation limits are chosen as

ψ±
1 = y±0 . (16)

In order to determine the saturation limits ψ±
i , i = 2, 3,

the constraints diy∗/dti ∈
[
y−i , y

+
i

]
, i = 1, 2 have to be

satisfied. It will be assumed in the subsequent consider-
ation that the saturation functions ψi(ξi, ψ

±
i ), i = 1, 2,

are strictly monotonically increasing, i.e. ∂ψi/∂ξi > 0.
The inequalities y−i ≤ diy∗/dti ≤ y+i , i = 1, 2 in combi-
nation with (14) and (15) may be rearranged in the form

y−1 ≤ ∂ψ1

∂ξ1
ψ2 ≤ y+1 , (17a)

y−2 ≤ ∂2ψ1

∂ξ21
ψ2
2 +

∂ψ1

∂ξ1

[
∂ψ2

∂ξ2
ψ3 +

∂ψ2

∂ξ1
ψ2

]
≤ y+2 , (17b)

and thus the limits of the saturation function ψ2 and ψ3

can be calculated as

ψ±
2 (ξ1) = y±1

[
∂ψ1

∂ξ1

]−1

, (18a)

ψ±
3 (ξ1, ξ2) = y±2

[
∂ψ1

∂ξ1

∂ψ2

∂ξ2

]−1

−
[
∂2ψ1

∂ξ21
ψ2
2 +

∂ψ1

∂ξ1

∂ψ2

∂ξ1
ψ2

][
∂ψ1

∂ξ1

∂ψ2

∂ξ2

]−1

.

(18b)

It is clear from (18) that ψ±
i , i = 2, 3 not only depend

on y±i , i = 1, 2 but also on the new states ξi, i = 1, 2.

Calculation of the boundary values

The boundary values of the state ξ1 are obtained by
inverting the sigmoid saturation function (13)

ξ1,0 = ψ−1
1 (s0, ψ

±
1 ) and ξ1,T = ψ−1

1 (sT , ψ
±
1 ). (19)

The remaining boundary conditions ξ2,0 and ξ2,T are de-
termined from stationary considerations. Since the out-
put y approaches a constant value in steady state and
thus its time derivatives vanish, the system can be de-
scribed by the stationary equation

0 = ψ2

(
ξ2, ψ

±
2 (ξ1)

)
(20)

which, for symmetric constraints, i.e.
∣∣ψ−

2 (ξ1)
∣∣ =∣∣ψ+

2 (ξ1)
∣∣, yields the boundary conditions

ξ2,0 = ψ−1
2

(
0, ψ±

2 (ξ1,0)
)
= 0 (21a)

ξ2,T = ψ−1
2

(
0, ψ±

2 (ξ1,T )
)
= 0, (21b)

since the saturation function (20) passes through the
origin.

Saturation functions

As previously mentioned, the first r = 2 saturation func-
tions ψi(ξi, ψ

±
i ), i = 1, 2 are assumed to be strictly

monotonically increasing, i.e. ∂ψi/∂ξi > 0, i = 1, 2.
An appropriate sigmoid setup function, depicted in Fig-
ure 5(a), is proposed in [5], i.e.

ψi(ξi, ψ
±
i ) = ψ+

i − ψ+
i − ψ−

i

1 + exp (mξi)
, i = 1, 2. (22)

The parameter m adjusts the slope at ξi = 0 and is set
to m = 4/(ψ+

i − ψ−
i ) in order to assure ∂ψi/∂ξi = 1

at ξi = 0. According to the procedure presented above,
the last saturation function ψ3(v, ψ

±
3 ) need not fulfill
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any differentiability requirements, which is why a ramp-
shaped saturation function, see Figure 5(b),

ψ3

(
v, ψ±

3

)
=





ψ+
3 for v > ψ+

3

v for v ∈
[
ψ−
3 , ψ

+
3

]

ψ−
3 for v < ψ−

3

(23)

may be used.

Setup function

The projected input-output dynamics (15) in combina-
tion with the internal dynamics (9b) and the boundary
conditions (10b), (11b), (19) and (21) form the new two-
point boundary value problem which is over-determined
with n = 8 first-order differential equations for the 2n =
16 boundary conditions. Using the trigonometric setup
function

v = Φ(t,p) =

n∑

i=1

pi sin

(
hiπt

T

)
(24)

for the new input v with n = 8 free parameters p =
(p1, . . . , p8) and hi ∈ N+\{0}, i = 1, . . . , n for hi 6=
hj , ∀i 6= j which satisfies the boundary conditions

Φ(0,p) = Φ(T,p) = 0, (25)

the problem is transformed into a well-defined two-point
boundary value problem. The choice of the setup func-
tion Φ(t,p) and of the transition time T is a crucial point
within this design methodology, because it somehow re-
stricts the space of possible solutions.

Resulting two-point boundary value problem

The determination of the feedforward control u∗ requires
the solution of the internal dynamics (9b) augmented
with the projected input-output dynamics (15)

ξ̇1 = ψ2

(
ξ2, ψ

±
2 (ξ1)

)
,

ξ̇2 = ψ3

(
Φ(t,p), ψ±

3 (ξ1, ξ2)
)
,

η̈∗ = F0(η
∗, η̇∗) + F1(η

∗)u∗,

(26)

with the inverse of the input-output dynamics u∗ = ÿ∗,
cf. (9a). Here, it is simply the second time-derivative of
the output according to (14),(15)

u∗ =
∂2ψ1

∂ξ21
ψ2
2

+
∂ψ1

∂ξ1

[
∂ψ2

∂ξ1
ψ2 +

∂ψ2

∂ξ2
ψ3

(
Φ(t,p), ψ±

3 (ξ1, ξ2)
)]
,

with the setup function Φ(t,p) from (24) depending on
the free parameters. Furthermore, a solutionmust satisfy

the boundary conditions (10b), (11b), (19) and (21) with
the saturation limits from (16) and (18). The desired
output trajectory y∗(t) and its time-derivative ẏ∗(t) are
determined by the algebraic equations (13)-(15).

4.2.2 Numerical solution of the two-point boundary
value problem

The numerical solution of the nonlinear two-point
boundary value problem with free parameters (26) is
performed inMatlab bymeans of the solver bvp5c. The
function bvp5c implements a finite difference method, in
particular a collocation method, see [10], that controls a
scaled residual and the true error and adapts the mesh
grid. The function bvp5c is able to solve, due to its alge-
braic solution technique, both stable and unstable sets
of differential equations in a numerically stable manner.
As has already been noted, any setup function Φ(t,p)
and transition time T fulfilling the boundary conditions
could have been used. However, the particular choice
restricts the space of possible solutions. The setup func-
tion with its free parameters, the transition time and
the constraints have to define a nonempty set of possi-
ble solutions. If this is not the case, the numerical solver
will not converge to a solution. Furthermore, the func-
tion bvp5c requires an initial guess for the solution and
an initial mesh grid. The solver may not find a solution
if the initial guess does not adequately represent the
behavior of the system, see, e.g., [10]. As the adequate
initial guess is not easy to find, there is a need for a
systematic solution procedure. The two-point boundary
value problem (26) is therefore numerically solved in a
sequential procedure that can be summarized as follows:
A linear interpolation between the boundary conditions
(10) and (11) on a uniform mesh of N = 200 grid points
at the time steps tj = jTj , j = 0, 1, . . . , N, Tj = T/N
serves as initial guess for the trajectories y∗(tj), ẏ∗(tj),
η∗(tj) and η̇∗(tj). The initial guess for the parameters
is set to p = 0. Then the problem is solved for

(i) a sequence of setup functions (24) with hi ∈
{1, . . . , γ}, γ ∈ N+\{0}, i = 1, 2, . . . , n for hi 6=
hj, ∀i 6= j and

(ii) a uniform sequence of transition times
T ∈ {Tstart, . . . , Tend} with Tstart < Tend

monitoring the Jacobian and the true error.The comput-
ing time is decreased by using the Parallel Toolbox
from Matlab. Figure 6 shows a solution for the swing-
up maneuver following this procedure for the output
constraints y+0 = −y−0 = 0.7m, y+1 = −y−1 = 3m/s and
y+2 = −y−2 = 22m/s2. The transition time is T = 3.5 s
and the setup function (24) with coefficients hi = i for
i ∈ {2, 3, 4, 5, 6, 7, 8, 9}was found. In order to illustrated
this motion, Figure 7 shows time-discrete snapshots of
the pendulum for this swing-up maneuver.
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Figure 6. Numerical results for the swing-up maneuver with a transition time of T = 3.5 s.
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Figure 7. Swing-up maneuver with the transition time T = 3.5 s.

4.3 Feedback controller and observer design

The previous sectionwas concernedwith the feedforward
control design. This section presents the development of
a stabilizing state feedback controller.

4.3.1 State space formulation and linearization

For the subsequent controller design, the system (5)
is linearized along the desired trajectory (x∗)T(t) =[
q∗(t) q̇∗(t)

]
. In this context, a trajectory of the system

(5) for an input u∗(t) with initial condition x∗
0 = x∗(0)

will be denoted by x∗(t). For sufficiently small devia-
tions from the desired nominal trajectory x(t) = x∗(t)+

∆x(t), y(t) = y∗(t)+∆y(t) and u(t) = u∗(t)+∆u(t), the
system (5) can be described by the linear, time-variant
state space formulation

∆ẋ = A(t)∆x+ b(t)∆u, ∆x(t0) = ∆x0

∆y = cT∆x,
(27)

with ∆x0 = x0−x∗
0 and system matrix and input vector

A(t) =
∂

∂x
(f(x) + g(x)u)

∣∣∣∣
x=x∗(t),u=u∗(t)

, (28a)

b(t) = g(x∗(t)). (28b)
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A simple numerical integration by means of the Euler-
method, see, e.g., [16], is utilized to calculate the time-
discrete system representation (29) for the sampling time
Ta in the form

∆xk+1 = Φk∆xk + Γk∆uk, ∆x(t0) = ∆x0,

∆yk = cT∆xk,
(29)

with ∆xk = ∆x(kTa), ∆uk = ∆u(kTa), ∆yk =
∆y(kTa), Φk = I8×8 + Ta A(kTa) and Γk =
Ta b(kTa), k ∈ Z.

4.3.2 Time-variant Riccati Controller

In order to compensate for constant perturbations and
parameter mismatches, a state controller with integral
part

∆xI,k+1 = ∆xI,k +
(
y∗k − cTxk

)
, ∆xI(0) = ∆xI,0,

∆uk = kT
k∆xe,k, (30)

with the extended state vector ∆xT
e,k =

[
∆xT

k ∆xI,k
]

and the time-variant gain kT
k =

[
kT
x,k kI,k

]
was designed.

Augmenting the state space formulation (29) with the
integrator state from (30) gives rise to the extended sys-

tem matrix Φ̃k, the extended input vector Γ̃k and the
extended output vector c̃T. With this, the discrete Ric-
cati equation, see, e.g., [4],

Pk =
(
Q+ Φ̃T

kPk+1Φ̃k

)
+
(
Γ̃T
kPk+1Φ̃k

)T

kT
k , (31a)

kT
k = −

(
ρ+ Γ̃T

kPk+1Γ̃k

)−1

Γ̃T
k Pk+1Φ̃k (31b)

with PN+1 = Λ was solved to calculate the time-variant
gain kT

k ∈ R9, k = 0, . . . , J with J = T/Ta. Herein,
Pk ∈ R9×9 is symmetric and positive definite,Q ∈ R9×9

denotes the positive definite weighting matrix of the ex-
tended states ∆xe,k and ρ > 0 is the scalar input weight-
ing factor. The solution Ps of the discrete algebraic Ric-
cati equation (Pk+1 = Pk = Ps) was used as the termi-
nal condition Λ in (31). The controller design parame-
ters are chosen as Q = diag (q̆1 q̆2 q̆1 q̆2 q̆1 q̆2 500 20 0.01)
with q̆1 = 900, q̆2 = 100 and ρ = 1000.

4.4 Observer design

As only the three pendulum angles ϕi, i ∈ {1, 2, 3} and
the cart position s are measurable, a nonlinear observer
was designed to estimate the non-measurable states.
Therefore, the design of an Extended Kalman Filter is
carried out. For this, again the Euler-method is applied
to (5) to obtain the time-discrete model representation

xk+1 = xk + Ta
(
f(xk) + g(xk)uk

)
≈ F(xk, uk). (32)

Taking into account additive zero-mean Gaussian mea-
surement and process noise,wk and vk, with the associ-
ated positive definite covariance matrices S ∈ R8×8 and
R ∈ R4×4, respectively, the following time-discrete non-
linear model

xk+1 = F(xk, uk) +wk, x(0) = x0,

ym,k = Cmxk + vk
(33)

serves as a basis for the observer design. The measured
states are collected in an output vector yT

m = [ϕ1 ϕ2 ϕ3 s]
with associated output matrix Cm ∈ R4×8. The al-
gorithm of the discrete Extended Kalman Filter, see,
e.g., [1], consists of a prediction and correction step. The
a posteriori estimate of xk, taking into account the mea-
surements up to the time kTa, is denoted by x̂+

k and the
a priori estimate of xk, taking into account the mea-
surements up to the time (k − 1)Ta, is denoted by x̂−

k .
In the correction step

L̂k = P̂−
k C

T
m

(
CmP̂−

k C
T
m +R

)−1

, P̂(0) = P̂0,

x̂+
k = x̂−

k + L̂k

(
ym,k −Cmx̂−

k

)
, x̂(0) = x̂0,

P̂+
k =

(
I8×8 − L̂kCm

)
P̂−

k

(34)

the gainmatrix L̂k is computed and the a posteriori state
vector x̂+

k and the positive definite covariance matrix

of the estimation error P̂k is updated by means of the
current measurement ym,k. The prediction step

Φk =
∂

∂xk
F (xk, uk)

∣∣∣∣
xk=x̂+

k

,

x̂−
k+1 = F

(
x̂+
k , uk

)
, P̂−

k+1 = ΦkP̂
+
k Φ

T
k + S

(35)

estimates the a priori state vector x̂−
k+1 and the covari-

ance matrix of the estimation error P̂−
k+1 at the time in-

stant (k+1)Ta. The observer design parameters are cho-
sen as S = diag (s1 s2 s1 s2 s1 s2 s1 s2) with s1 = 50 and
s2 = 500,R = diag (5 5 5 4),P0 = 100I8×8 and x̂0 = x0.

5 Experimental results

Prior to its implementation, the overall swing-up strat-
egy was verified in several simulation studies in Mat-
lab/Simulink. The control strategy was then im-
plemented on the real-time measurement and control
system dSPACE DS1103 with a sampling time of
Ta = 1ms. The desired nominal trajectories y∗(t), ẏ∗(t),
η∗(t), η̇∗(t) and the feedforward control u∗(t) = ÿ∗(t)
were calculated offline, interpolated at a time grid
tk = kTa, k = 0, 1, . . . , J and stored in look-up tables.
The same procedure was carried out for the controller
gain kk. Figure 8 shows the experimental results and
the nominal trajectories as well as the overall control
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Figure 8. Measurement results for the swing-up maneuver with a transition time of T = 3.5 s.

of the swing-up maneuver with a transition time of
T = 3.5 s. The time interval t ∈ [0, T ] corresponding to
the swing-up trajectory is highlighted in gray. The de-
viations of the angles and angular velocities from their
nominal trajectories are very small. As can be seen from
Figure 8, even these small tracking errors result in a
position over-shoot of approximately 0.6m, which illus-
trates the high sensitivity of the system with respect to
control errors. Nonetheless, the cart position, velocity
and acceleration comply with their physical constraints
and the swing-up maneuver can be successfully accom-
plished. As already mentioned in the introduction, a
video of exactly this swing-up maneuver is made avail-
able on http://www.acin.tuwien.ac.at/fileadmin/
cds/videos/TP_Swing_up.wmv

6 Conclusion

The presented work deals with the swing-up of the triple
pendulum on a cart. The swing-up maneuver is accom-
plished within a two-degrees-of-freedom control scheme
consisting of a nonlinear feedforward controller and an
optimal feedback controller. Based on a precise mathe-
matical model, the feedforward controller was obtained
by solving a nonlinear two-point boundary value prob-
lem with free parameters. A time-variant Riccati Con-
troller was developed in order to stabilize the system
along the nominal trajectory and an Extended Kalman
Filter was used to estimate the non-measurable states.
The overall control strategy for the swing-up maneuver
was successfully implemented and tested on an experi-
mental test bench. Up to the authors’ knowledge, this is
the first contribution so far providing numerical and ex-
perimental results of the swing-up maneuver for a triple
pendulum on a cart.
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[14] J. Rub́ı, Á. Rubio, and A. Avello. Swing-up control
problem for a self-erecting double inverted pendu-
lum. In Proc. of the IEE Control Theory & Appli-
cations, volume 149(2), pages 169–175, 2002.

[15] M. Spong and M. Vidyasagar. Robot dynamics and
control. John Wiley & Sons, New York, 1989.

[16] J. Stoer and R. Burlisch. Introduction to Numerical
Analysis. Springer, New York, 2002.

[17] Hasomed GmbH. www.hasomed.de, Access:
10.02.2012.

[18] V. A. Tsachouridis. Robust control of a triple in-
verted pendulum. In Proc. of the IEEE Interna-
tional Control Applications Conference, volume 2,
pages 1235–1240, Denver, USA, Sept. 28-30, 1235–
1240.

[19] M. Wicklund, A. Kristenson, and K.J. Åström. A
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