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Surface-Based Path Following Control:
Application of Curved Tapes on 3D Objects

Christian Hartl-Nesic, Tobias Glück, and Andreas Kugi, Senior Member, IEEE

Abstract—In this work, a novel approach for versatile wrinkle-
free application of (curved) pre-cut adhesive tapes on freeform
3D surfaces is presented. Straight and curved tape application
paths are mapped onto the 3D object as geodesics and as lines
with imposed geodesic curvature, respectively. The proposed
surface-based path following control concept extends classical
path following control by a novel parallel contact frame and a
parallel projection operator. Using a static state feedback, the
robotic system is transformed into a system with linear input-
output behavior in the path coordinates. This allows to traverse a
path on a 3D object with a draping roll without turning around
the surface normal vector. The latter prevents distortions and
wrinkles of the applied tape. Experimental results with a KUKA
LBR iiwa 14 R820 demonstrate the feasibility of the proposed
approach.

Index Terms—Path Following Control, Parallel Vector Field,
Deformable Material, Tape Application, Impedance Control

I. INTRODUCTION

ROBOTIC handling of deformable materials like, e. g.
textiles, carbon and glass fiber fabrics, foils and paper,

has been a challenging task in the industry for a long time
[1], [2], and has received great attention in research recently
[3]. Flexible automation on a human level has not yet been
fully achieved for many handling tasks like, e. g., grasping,
de-stacking and draping. In this context, many specialized
mechatronic gripper solutions were implemented for grasping
and transporting, see, e. g., [4], [5], [6]. However, high-mix
and low-volume tasks require more flexible solutions.

In automated tape laying (ATL) and automated fibre place-
ment (AFP), a highly specialized application and consolidation
tool is used to mechanically place technical textiles on 3D
surfaces [3]. Due to the tool size and weight, high-payload
robots are required for the tool movement and the solution
is suitable for large and mostly convex surfaces only. These
solutions are limited to continuous material only and pre-cut
tapes cannot be processed. In a different approach, called
automated part placement (APP), two robots are used for
grasping and transporting a deformable (pre-cut) strip, while
a third robot consolidates the strip with a draping roll [7]. A
force-controlled application of strip-like materials is demon-
strated in [7] based on a collaborative path following control
concept on a three-arm gantry robot. The commercial solution
SAMBA PRO [8] is able to place small fiber patches using
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two position-controlled robots. While a 6-axis industrial robot
positions and orients the 3D object, a SCARA robot with a
soft gripper performs the patch placement. In this solution,
however, the patch size as well as the wrapping angle are
very limited. Additionally, two- and three-armed APP systems
have a limited flexibility since the workspaces of the individual
robots have to overlap.

This work presents a novel and flexible approach for
impedance-controlled wrinkle-free application of (curved) pre-
cut adhesive tapes on freeform 3D surfaces. The proposed
solution uses a single robot with the target 3D object mounted
on the end-effector and a stationary tape-application tool.
Thus, the approach provides high flexibility with respect to
the shape of the target 3D objects and the pre-cut tapes, as
well as the lay-up location.

From the viewpoint of industrial robotics and classical
automation, many processes require the movement of a robot-
mounted tool along a given path, whereas the a priori time
parametrization is an additional degree of freedom [9]. This
task is often called path following control or contouring control
[10], [11] and emerges in processes like, e. g., milling and
cutting. In path following control, the current position along
the path is determined using a projection operator and transver-
sal feedback linearization allows to linearize the (nonlinear)
system with respect to the (nonlinear) path [12], [13]. The
resulting system exhibits a linear input-output relation in the
path coordinates. Previous works use the FRENET-SERRET
frame [14], [15] or the parallel transport frame [16], [17], [18],
[19] for the coordinate transformation. Both frames are not
suitable to traverse surfaces, since they are derived from the
path directly and do not respect the normal vector field of an
underlying surface. On the contrary, surface following control
shown in [20] provides a distinct surface normal vector, but
the local coordinate frame is derived from the surface only
and does not take into account the path tangent vector.

For the application of curved tapes on 3D objects, a draping
tool has to traverse a path on the freeform 3D surface and
clearly both the surface normal vector and the path tan-
gent vector are required for a feasible control strategy. To
this end, a surface-based path following control concept is
developed in this work, which provides a local coordinate
frame based on the surface normal and the path tangent.
Additionally, the proposed parallel contact frame allows to
traverse curved paths without turning the draping roll around
the surface normal vector to prevent wrinkles in the ap-
plied tape. A video demonstrating the results is provided
at www.acin.tuwien.ac.at/52f5. Furthermore, the al-
gorithms and solutions emerging from this application also
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represent a solution for a more general robotic problem, i. e.
traversing a tool along a curved path on a freeform 3D surface
with defined kinematic constraints. The proposed solution
can be used for different applications in the production of
textiles, apparel and consumer goods, in the industry of fiber
reinforced plastics for the lay-up of technical textiles, and in
the packaging industry.

II. TAPE APPLICATION ON 3D OBJECTS

This section introduces the demonstrator setup and gives
an overview of the tape application process. Moreover, the
mathematical model of the robot used in this work is shortly
summarized.

A. Experimental Setup

The demonstrator setup, depicted schematically in Fig. 1,
consists of the robot KUKA LBR iiwa 14 R820, equipped with
the 6-axis force/torque (F/T) sensor ATI Mini 40, a desktop
computer and a passive, wall-mounted tape application tool
with a compliant draping roll. Additionally, a 3D object is
mounted on the tool side of the F/T sensor. The robot and
the F/T sensor are interfaced via two network interface cards
(NIC) using the ETHERCAT protocol. The controller is im-
plemented as MATLAB/SIMULINK model, which is executed
via the real-time automation software BECKHOFF TWINCAT.
The sampling time of the controller, the robot sensors and
actuators is Ts = 125 µs, whereas the F/T sensor is sampled
with Ts,F/T = 333 µs.

In the following, a few characteristics of the demonstrator
setup are given:
• In contrast to most works in the literature [3], the tool in

this work is stationary and the 3D object is moving. While
the relative motion between the tool and the workpiece is
kinematically equivalent, it allows to remove the complex
and heavy tape application tool [3] from the robot.
Additionally, the tape supply as well as a contouring
and separation mechanism can be incorporated into the
stationary tool.

• The F/T sensor is mounted on the robot flange, which is
industry standard and hence easy to integrate into a robot
system.

• As the 3D object is mounted on the robot end-effector, the
maximum size of the 3D object is given by the workspace
and the maximum payload of the robot.

• The non-actuated, compliant draping roll allows only to
impose normal forces throughout the tape application
process. While this is sufficient for many applications
[21], [22], adding an additional actuated clamping roll
also allows for tape tension forces during the process.

B. Process Overview

Using the previously described demonstrator setup, the tape
application process is illustrated in Fig. 2 and consists of the
following steps:

(a) 2D tape application path: A planar tape application path
is created on the shape of the planar tape (red line).

(b) 3D path mapping: The geometry and curvature of the
planar tape application path is mapped onto the CAD
model of the 3D object, which creates a 3D tape appli-
cation path. Thus, the planar and the 3D tape application
path represent a matching pair of target lines [23].

(c) Robot starting pose: In order to perform a single con-
tinuous draping motion on the 3D object, a suitable
robot starting pose needs to be determined for each
tape to be applied. In this work, the complete tape
application path is taken into account in this search by
simulating the tape application process for a discrete set
of feasible initial robot poses. Afterwards, each solution
is evaluated with regard to joint velocities (smoothness
of the motion), reserves to the joint limits, and collisions.
The optimal solution is then used for the experiment.
The determination of the robot starting pose is not
considered in detail in this work.

(d) Preparation and execution: The pre-cut tape is placed
in the required starting position on the feed of the
application tool and the robot performs the impedance-
controlled tape application process.

C. Mathematical Model

The demonstrator setup is described mathematically via the
kinematic relations between the coordinate frames and the
dynamic robot model of the KUKA LBR iiwa 14 R820.

1) Coordinate frames: The (right-handed) coordinate
frames in Fig. 1 are denoted by calligraphic letters. The robot
base frame B and the tool frame T reside stationary in the
inertial (world) reference frameW . The y-axis of T is aligned
with the draping roll axis. The target 3D object is described
in the object frame O. This frame coincides with the robot
end-effector frame E , which is attached to the tool side of the
F/T sensor. The contact frame C describes the position and
orientation of the contact point of the draping roll along the
path. The tape in the planar state is described in a separate
coordinate system A.

2) Robot model: The KUKA LBR iiwa 14 R820 is a
kinematically redundant light-weight robot, which is modeled
with elastic joints with constant stiffness. As shown in [24],
the singular perturbation approach is used in conjunction with
a static state feedback of the joint torques to obtain

M(q)q̈ + n(q, q̇) = τ m + τ e (1)

as the state model. Thus, the result is a standard rigid-body
model [25] for the robot link dynamics with the generalized
joint coordinates q. Note that M(q) in (1) is a modified
mass matrix, which includes the motor rotor inertias as well
as the gain matrices of the static state feedback, see [24].
The nonlinear function n(q, q̇) describes the Coriolis and
gravitational forces and τ m and τ e denote the motor torque
inputs and the external generalized torques, respectively.

III. PATHS ON SURFACES

Tape application paths on the 3D object are described
as paths on surfaces complemented with the surface normal
vector field. For the draping process, the robot motion must
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Fig. 1. Schematic drawing of the demonstrator setup and the corresponding (right-handed) coordinate frames.

(a) (b) (c) (d)

Fig. 2. Tape application process overview: (a) 2D tape application path, (b) 3D path mapping, (c) Robot starting pose, (d) Preparation and execution.

prevent turning of the draping roll around the surface nor-
mal vector to avoid wrinkles and distortions of the applied
tape. The basic terms to describe the geometric objects in a
differential geometric setting are summarized in this section
and the concepts of geodesics and curved paths are introduced.
Moreover, a novel parallel contact frame is derived to account
for the requirements of the tape application process.

A. Surfaces

In this work, a surface σ is described in the object frame
O and given by a regular C2 parametrization σ(s) : U ⊆
R2 7→ R3 with the parameter vector sT =

[
s1 s2

]
from an

open subset U ⊆ R2. The parametrization σ(s) of a surface
σ is called regular if (σs1 × σs2)(s̄) 6= 0 ∀s̄ ∈ U , where
σsi = ∂σ/∂si with i = 1, 2 are the surface tangential basis
vectors [26]. On each regular surface parametrization σ(s), a
unique unit normal vector field is defined as

σn(s) = σs1(s)× σs2(s)
‖σs1(s)× σs2(s)‖2

, (2)

i. e. the so-called GAUSS map [26].

B. Paths

A path π is given as a parametrized regular C3 curve
π(p) : I ⊆ R 7→ R3, described in the object frame O,

with the path parameter p from the interval I ⊆ R. For
a regular parametrization, π′(p̄) 6= 0 ∀p̄ ∈ I holds [26],
where the derivative w. r. t. the path parameter p is denoted
as (·)′ = ∂

∂p (·). Additionally, arc-length parametrization is
assumed on all paths, i. e. ‖π′(p)‖2 = 1 ∀p ∈ I .

C. Paths and Vector Fields on Surfaces

A surface-based path π is a path on a surface σ that is
assumed to be regularly parametrized by π(p) = σ(s(p)),
with s′(p) 6= 0 ∀p ∈ I .

For clarity of presentation, the arguments of some functions
are omitted in the following. The covariant derivative of a
vector field along a surface-based path π(p) describes the rate
of change of this vector field v(p) projected onto the tangential
plane of the surface. If the vector field v(p) is a surface tangent
vector field, i. e. it is a linear combination of the local surface
tangential basis vectors in the form

v(p) = v1(p)σs1(s(p)) + v2(p)σs2(s(p)) , (3)

then the covariant derivative can be expressed in terms of the
surface as [26]
D
dpv =

[
v′1 + v1(s′1Γ1

11 + s′2Γ1
12) + v2(s′1Γ1

21 + s′2Γ1
22)
]
σs1

+
[
v′2 + v1(s′1Γ2

11 + s′2Γ2
12) + v2(s′1Γ2

21 + s′2Γ2
22)
]
σs2 ,

(4)
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with Γi
jk = Γi

kj = Γi
jk(s(p)), i, j, k = 1, 2 as the CHRISTOF-

FEL symbols of the surface σ in the parametrization σ(s). A
vector field v(p) is called parallel [26], if

D
dpv = 0 ∀p ∈ I . (5)

The above intermediate results are used throughout this
work to calculate the necessary geometric objects which
describe the motion of a draping roll along a (curved) path
on a freeform 3D surface.

D. Straight Paths: Geodesics

Geodesics are straight paths on surfaces which exhibit
no turns around the surface normal vector σn. Therefore, a
geodesic describes the desired motion of the draping roll in
contact with the surface [27]. A surface-based path π(p) is
called a geodesic if the path tangent field π′(p) is a parallel
vector field as defined in (5). With a given starting point s0 in
surface coordinates and a tangent direction t0, a geodesic can
be uniquely calculated according to the following theorem.

Theorem 1. [26] Given a starting point sT
0 = [s1,0 s2,0] on

the surface σ with the regular parametrization σ(s) and a
tangent direction t0 = s′1,0σs1 +s′2,0σs2 , the unique geodesic
π(p), with π(p0) = σ(s0) and π′(p0) = t0, is the solution
of the initial value problem

s′′1 = −s′21 Γ1
11 − 2Γ1

12s
′
1s
′
2 − s′22 Γ1

22 (6a)

s′′2 = −s′21 Γ2
11 − 2Γ2

12s
′
1s
′
2 − s′22 Γ2

22 , (6b)

with the initial conditions

s1(p0) = s1,0 s′1(p0) = s′1,0 (7a)

s2(p0) = s2,0 s′2(p0) = s′2,0 . (7b)

The validity of this theorem can be easily seen by applying
the covariant derivative (4) to the tangent vector field of the
path π′ = v = s′1σs1 + s′2σs2 . The linear independence of
σs1 and σs2 due to the regularity of σ(s) yields (6) and the
uniqueness can be proven by the PICARD-LINDELÖF theorem,
see [28] for more details.

An intuitive choice to construct a contact frame for the tool
motion are the (unit) tangent vector π′(p), the surface normal
vector σn(s(p)) and their cross-product [27]. This contact
frame is suitable for applications where the tool orientation
has to follow the path tangent, e. g. cutting or sewing, and
can also be used for surface-based path following control in
Section IV. However, in the tape application process of curved
tapes, this choice for the contact frame causes wrinkles and
distortions in the applied material, as the path tangent vector
π′(p) exhibits turns around the surface normal vector. To this
end, a new frame is introduced in the next section, which
solves these limitations for tape application.

E. Curved Paths

In this section, the relations above are extended to curved
paths. The geometric relationships of a draping motion along
a curved path π on a doubly-curved surface σ are illustrated
in Fig. 3 for multiple path positions p0 < p1 < p2. Instead

σ

π

π(p0)

π(p1)
π(p2)

C(p0)

C(p1) C(p2)

πl(p0)

πl(p1)
πl(p2)

Fig. 3. Evolution of the contact frame C for a draping process along a curved
path π on a doubly-curved surface σ.

πl(p)
ϕ(p)

πg(p)

x

y

πA(p)

A

κg(p)

Fig. 4. Geometric relations of the planar path πA(p) in the planar tape
coordinate system A.

of rotating the draping roll around the normal vector (blue),
which may cause wrinkles and distortions of the tape, the
roll is tilted around a particular surface tangent vector (red).
The corresponding surface tangent vector field is derived as a
parallel vector field of the parametrized surface σ(s), starting
from an initial contact frame C(p0). From this parallel vector
field and the surface normal vector field, a novel parallel
contact frame is constructed. This contact frame allows to
perform the tape application process for curved paths and
prevents wrinkles and lateral tensions in the tape. Moreover,
the simple contact frame mentioned in Section III-D emerges
as a special case of the parallel contact frame for straight paths.

First, the path geometry is extracted from the planar tape
application path πA(p) in the coordinate frame A according
to Fig. 4. Specifically, the geodesic curvature κg(p) and the
lateral and geodesic position πl(p) and πg(p) of the contact
point along the path are calculated. Second, the concept of
geodesics on surfaces according to Section III-D is generalized
to impose the geodesic curvature κg(p) locally on the path
for every p ∈ I , i. e. the surface-based curve is steered using
κg(p). This results in a parametrized path π(p) in the surface
coordinates s of the parametrized surface σ(s), i. e. π(p) =
σ(s(p)). Finally, the parallel contact frame C(p) is constructed
as moving frame along the path π(p) based on a parallel vector
field. This frame describes the contact point of the draping roll
on the surface. Additionally, the resulting frame is well defined
even when the path has vanishing second derivative π′′.
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1) Geodesic Curvature, Lateral and Geodesic Position:
The geometric relations in the planar tape coordinate system
A are depicted in Fig. 4. The arc-length parametrized planar
path πA(p), described in A, only exhibits a geodesic curvature
κg(p), which is calculated as [14]

κg(p) =
[
0 0 1

]
(π′A × π′′A) . (8)

The lateral position πl(p) and the geodesic position πg(p)
describe the position of the contact point in the tape coordinate
system A. Using the angle between the path tangent and the
x-axis in Fig. 4, given by [26]

ϕ(p) = arccos
([

1 0 0
]
π′A
)

=
∫ p

0
κg(p̄) dp̄ , (9)

the lateral and geodesic positions are given by

πl(p) =
∫ p

0
sin(ϕ(p̄)) dp̄ (10)

πg(p) =
∫ p

0
cos(ϕ(p̄)) dp̄ . (11)

The function πl(p) describes the position of the contact point
relative to the draping roll. The geometric relations remain
valid, when the underlying path is mapped with the same
curvature κg(p) on a freeform 3D surface.

Remark 1. The admissible range for the lateral position
πl(p) is given by the initial lateral position πl(p0) and the
axial length of the draping roll. Beyond this range, a tape
application path is split into multiple parts and the draping
roll is repositioned on the surface for each individual part.

Remark 2. The geometry of the draping roll and its compliant
surface determine the maximum valley depth for laterally
concave areas on the 3D object.

Remark 3. Section III-E1 also poses a solution to the inverse
problem formulation: Given an arc-length parametrized path
π(p) on a 3D object, what is the shape of the corresponding
planar tape πA(p)? To this end, the geodesic curvature κg(p)
of the surface-based path π(p) is given by

κg(p) = σn(s(p)) · (π′(p)× π′′(p)) ,

and the shape of the arc-length parametrized planar path
πA(p) can be computed using equations (9)–(11).

2) Curved Paths on Surfaces: The geodesic curvature κg(p)
is imposed on the surface-based path π(p) in the object frame
O by generalizing the covariant derivative of the path tangent
π′ according to [26]

(
D
dpπ′

)
(p) = κg(p)

(
σn(s(p))× π′(p)

)
, (12)

of which the right hand side is expressed in terms of surface
variables as

κg(p)
(
σn(s(p))× π′(p)

)

= κg(p)
(

σs1 × σs2

‖σs1 × σs2‖2
× (s′1σs1 + s′2σs2)

)

= κs1(p)σs1 + κs2(p)σs2 ,

with

κs1(p) = −κg(p)
‖σs1 × σs2‖2

(s′1σs1 · σs2 + s′2σs2 · σs2) (13a)

κs2(p) = κg(p)
‖σs1 × σs2‖2

(s′1σs1 · σs1 + s′2σs2 · σs1). (13b)

Following the steps of Theorem 1, a new system of ordinary
differential equations can be derived

s′′1 = −s′21 Γ1
11 − 2Γ1

12s
′
1s
′
2 − s′22 Γ1

22 + κs1(p) (14a)

s′′2 = −s′21 Γ2
11 − 2Γ2

12s
′
1s
′
2 − s′22 Γ2

22 + κs2(p) , (14b)

with the initial values (7), which allows to steer the path locally
using the path curvature κg(p) via κs1(p) and κs2(p). The
solution of (14) is the planar curve πA(p) from the planar
tape coordinate system A mapped onto the surface σ in the
surface coordinates s(p) with a given starting point s0 and
tangent direction t0.

3) Parallel Contact Frame: The parallel contact frame is
constructed using the surface normal vector field πn(p) =
σn(s(p)) and a parallel vector field πt(p). Thus, using (4)
and (5) with v = πt(p) = t1σs1 + t2σs2 leads to the first-
order differential equations

t′1 = −t1(s′1Γ1
11 + s′2Γ1

12)− t2(s′1Γ1
21 + s′2Γ1

22) (15a)

t′2 = −t1(s′1Γ2
11 + s′2Γ2

12)− t2(s′1Γ2
21 + s′2Γ2

22) , (15b)

from which the parallel unit vector field πt(p) can be calcu-
lated. The initial conditions t1(p0) and t2(p0) are chosen such
that πt(p0) = π′(p0). The third unit vector field πb = πt×σn
completes the parallel contact frame (πt,πb,πn)(p), which is
also denoted as C(p). The resulting frame precisely describes
the motion of the draping roll along the path, i. e. it prevents
rotations around the surface normal vector field σn(p) while
performing tilting motions around the parallel unit vector field
πt(p) to traverse the contact point in lateral direction.

Remark 4. In contrast, the draping roll paths in [29]
originate from a surface-plane intersection strategy which
yields non-geodesic paths. Thus, the contact frame exhibits
turns around the surface normal vector. This introduces strain
into the applied material, which should be prevented for the
considered application. Similarly, [27] incorporates friction
forces when winding fibre strands to allow for so-called quasi-
geodesic paths.

IV. SURFACE-BASED PATH FOLLOWING CONTROL

In path following control, the robot motion is described by a
path π, which determines the geometry in space, and the path
parameter p, which specifies the position along the path. In
this section, surface-based path following control is proposed,
which extends the classical concepts of path following control,
see [17], [15], to paths with a given surface normal vector field.

The basic components and geometric objects of surface-
based path following control are summarized in Fig. 5. The
path parametrization π(p) = σ(s(p)) is complemented with
the surface normal vector field πn(p) = σn(s(p)), a parallel
tangent vector field πt(p) and a binormal vecor field πb(p)
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σ

π

π(p0)
πt(p0)

πn(p0)
=σn(s(p0))

π(p∗)

yp = hp(q)

ξ1

ξ2
ξ3

Ne1(p∗)

C(p∗)

P(yp)

Fig. 5. Geometric objects of surface-based path following control.

according to Section III-E3. The parallel contact frame C(p)
is constructed at each point p along the path using

(e1, e2, e3)(p) = (πt,πb,πn)(p) . (16)

The current path position p∗ is determined by a projection
operator P(yp), which is defined later in this section, from
the output position yp of the robotic system. Based on the
projected contact frame C(p∗), a coordinate transformation
and a static state feedback is derived. The resulting system
exhibits a linear input-output behavior in path coordinates and
serves as a basis for the design of the task space and nullspace
controllers.

In previous works, e. g., [17], [20], the coordinate transfor-
mation results from a parallel transport frame, which evolves
from a system of differential-algebraic equations along the
path. Thus, the surface normal vector can only be specified
at the initial position on the path, whereas surface-based
path following control presented in this paper allows to fix
the surface normal vector at each position along the path.
Similarly, the FRENET-SERRET frame used in [15] derives
from the path geometry directly and does not allow to specify
a surface normal vector.

A. Output Function

As shown in Fig. 1, the demonstrator setup uses a fixed tool
frame T , whereas the path is attached to the 3D object in the
object frame O, which moves with the end-effector frame E .
In terms of homogeneous transformations [25], the kinematic
relations are described as

HTO(q) = HEOHBE (q)HWB HTW , (17)

where HYX is the homogeneous representation of the coordi-
nate frame Y with respect to X , expressed in X . In this setup,
E = O and thus, HEO is equal to the identity matrix. Based
on (17), the output y ∈ R6 of the system (1) is chosen as
Cartesian position yp ∈ R3 and orientation yo ∈ R3 of the
tool frame T with respect to the object frame O

y =
[
yp
yo

]
=
[
hp(q)
ho(q)

]
= h(q) . (18)

Thus, h(q) is a sufficiently smooth function of the generalized
coordinates q. Note that yo is a minimal representation for the
orientation, e. g. EULER angles, and a suitable convention has
to be chosen to avoid representation singularities. The first and
second derivative of (18) are computed using the Jacobian

J(q) =
(
∂h
∂q

)
(q) =

[
Jp(q)
Jo(q)

]
(19)

as

ẏ = J(q)q̇ , (20)

ÿ = J̇(q, q̇)q̇ + J(q)q̈ . (21)

B. Parallel Projection Operator

The parallel projection operator P(yp) used in this work
determines the current position p∗ on the path while respecting
the parallel contact frame given in (16). In this way, the
draping roll orientation and the lateral contact point motion
πl(p) are taken into account. The operator P(yp) projects the
output position yp onto that point π(p∗) on the path where the
plane Ne1(p∗) = {x ∈ R3 | x − π(p∗) ⊥ e1(p∗)} intersects
the path, i. e. the condition

(yp − π(p∗))Te1(p∗) = 0 (22)

is fulfilled, see Fig. 5. In case multiple solutions exist, the
one with the smallest distance ‖yp − π(p∗)‖2 is chosen.
In contrast, projection operators in previous works project
by a minimum-distance criterion only [17]. Taking the time
derivative of the constraint (22) and solving for ṗ∗ leads to

ṗ∗ = β(yp)eT
1 (p∗)Jp(q)q̇ , (23)

with

β(yp) = 1
eT

1 (p∗)π′(p∗)− (yp − π(p∗))Te′1(p∗)
. (24)

C. Coordinate Transformation

Using the parallel contact frame (16) and the parallel
projection operator P(yp) with (22), the system output y is
uniquely transformed to new path-based coordinates

ŷ =
[
ξp
ξo

]
=



ξ1
...
ξ6


 , (25)

where ξp ∈ R3 denotes the position w. r. t. the path π(p)
and ξo ∈ R3 is the orientation relative to the contact frame
C(p∗). In the following, the new coordinates ŷ, organized
in the tangential, transversal and orientation subsystem, are
derived.

1) Tangential Subsystem: The tangential coordinate ξ1 is
chosen as the geodesic position πg(p∗) along the path, i. e. in
terms of surface geometry this is

ξ1 =
∫ p∗

p0

(π′(p̄))Te1(p̄) dp̄ , (26)

with the time derivative, see (23)

ξ̇1 = (π′(p∗))Te1(p∗)ṗ∗

= (π′(p∗))Te1(p∗)β(yp)eT
1 (p∗)Jp(q)q̇ . (27)
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2) Transversal Subsystem: As shown in Fig. 5, the transver-
sal coordinates ξ2 and ξ3 are calculated as projections of the
parallel distance vector yp − π(p∗) onto the coordinate axes
e2(p∗) and e3(p∗), respectively, i. e.

ξi = eT
i (p∗)(yp − π(p∗)) , i = 2, 3 . (28)

The corresponding velocities read as

ξ̇i =
(
αi(yp)eT

1 (p∗) + eT
i (p∗)

)
Jp(q)q̇ , (29)

with

αi(yp) = β(yp)
(
(e′i(p∗))T(yp − π(p∗))− eT

i (p∗)π′(p∗)
)

for i = 2, 3. Note that the parallel transport frame used in [17]
prevents twists of e2(p) and e3(p) around the path tangent
vector, which allows for further simplifications in (29) due
to the geometric relations of the frame, i. e. αi(yp) = 0. In
contrast, the surface-based parallel contact frame (16) allows
for twists around the tangent vector and, thus, no further
simplifications can be made.

3) Orientation Subsystem: The three coordinates of the
orientation ξo are chosen as deviation of the output orientation
yo from the orientation of the parallel contact frame (16),
denoted by πo(p∗), as

ξo = yo − πo(p∗) = ho(q)− πo(p∗) , (30)

and the corresponding time derivative yields

ξ̇o = ẏo − π′o(p∗)ṗ∗

=
(
Jo(q)− π′o(p∗)β(yp)eT

1 (p∗)︸ ︷︷ ︸
Λ(yp)

Jp(q)
)
q̇ . (31)

4) Coordinate Transformation: The above relations are
assembled into a new virtual output ŷ and its time derivative
˙̂y using the transformed coordinates

ŷ =




ξ1
ξ2
ξ3
ξo


 =




(26)
(28)|i=2
(28)|i=3

(30)


 (32)

˙̂y =




ξ̇1
ξ̇2
ξ̇3
ξ̇o


 =




(π′(p∗))Te1(p∗)β(yp)eT
1 (p∗) 0

α2(yp)eT
1 (p∗) + eT

2 (p∗) 0
α3(yp)eT

1 (p∗) + eT
3 (p∗) 0

−Λ(yp) I




︸ ︷︷ ︸
L(q)

[
Jp(q)
Jo(q)

]

︸ ︷︷ ︸
J(q)

︸ ︷︷ ︸
Ĵ(q)

q̇ .

Note that in ˙̂y the geometry of the path and the surface appear
in form of an additional transformation matrix L(q) in Ĵ(q),
cf. (20).

Remark 5. At points where the tape application path π(p) has
in-plane turns the path tangent π′(p) lies in the (e2, e3)-plane
of the parallel contact frame C(p) and becomes orthogonal to
the geodesic direction e1 ⊥ π′. Thus, the regularity of L(q) is
lost at turning points. Such paths have to be split into multiple
separate segments to exclude turning points.

In the absence of turning points (see Remark 5), the trans-
formation matrix L(q) is nonsingular, which ensures a unique
transformation from the system output y to the new path-based
coordinates ŷ. The considered robot KUKA LBR iiwa 14 R820
exhibits seven degrees of freedom, i. e. dim(q) = 7, and thus
the transformed system has a six-dimensional task space ŷ and
a one-dimensional nullspace.

D. Feedback Linearization

The state feedback

τ m = M(q)
(
Ĵ†(q)

(
v− ˙̂J(q, q̇)q̇

)
+ vn

)
+ n(q, q̇)− τ e

(33)
with the new system input vT =

[
vT

p vT
o
]

=
[
v1 . . . v6

]

transforms the system (1) into a system with linear input-
output behavior in the new path-based coordinates

¨̂y = v . (34)

Due to the kinematic redundancy of the robot, the
right pseudoinverse of the Jacobian matrix Ĵ†(q) =
ĴT(q)

(
Ĵ(q)ĴT(q)

)−1
is used in (33). The second system

input vn of (33) acts on the nullspace of the non-square
Jacobian matrix Ĵ(q) and will be detailed in Section IV-F.

E. Task Space Controller

For the interaction task between the 3D object and the
draping roll an impedance controller is implemented

v = ¨̂yd +
(
Md)−1(f̂e −Dd ˙̂e−Kdê

)
, (35)

with the desired diagonal mass matrix Md =
diag(md

1 , . . . ,m
d
6), the damping matrix Dd =

diag(dd
1 , . . . , d

d
6) and the stiffness matrix Kd =

diag(kd
1 , . . . , k

d
6 ). Additionally, the control error ê = ŷ − ŷd

w. r. t. the desired trajectory ŷd =
[
ξd

1 . . . ξd
6
]T

and the
external forces in the contact point f̂T

e = τ T
e Ĵ†(q) are

introduced. The linear task space controller (35) acts on the
input-output linearized system (34) with the virtual input v.
The closed-loop system is stable for md

i > 0, kd
i > 0, dd

i > 0,
i = 1, 2, . . . , 6.

The chosen control scheme is robust against errors in the
tangential and lateral position, as well as in the orientation
using the impedance controller. The tape application path
is traversed with a suitable trajectory for ξd

1 . The desired
trajectory ξd

3 specifies the draping roll motion along the surface
normal vector and allows to approach the 3D object, establish
and release the contact with the 3D object. Additionally, the
tape application normal force is adjusted using the impedance
parameters md

3 , kd
3 and dd

3 of the coordinate ξ3. Finally, the
draping roll axis is – in the absence of control errors –
aligned to the e2-axis of the contact frame C(p∗), see Fig. 3.
Thus, choosing ξd

2 = −πl(p∗) for the lateral motion of the
draping roll (see Fig. 4) correctly takes into account the lateral
movement of the contact point and prevents a lateral sliding
motion of the draping roll. Instead, the roll is tilted parallel to
the e2-axis of the contact frame and the contact point traverses
in lateral direction appropriately.
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F. Nullspace Controller

The one-dimensional nullspace of the redundant robot,
i. e. the elbow position, is stabilized using a complementary
projection matrix and a simple PD controller [24], reading as

vn =
(
I− Ĵ†(q)Ĵ(q)

)(
−Dnq̇ −Kn(q − q0)

)
, (36)

with the positive definite controller gain matrices Kn and Dn
and a virtual equilibrium joint position q0. The stability prop-
erties of (hierarchical) projection-based nullspace controllers
are given in [30] and the references therein.

For the application at hand, the cylindrical shape of the
draping roll provides additional redundancy in the output
space of the robot. During the tape application process, the
contact point on the draping roll may move freely on the
circumference of the roll. Thus, trajectory planning for a
draping motion can exploit this redundancy and steer the
contact point to provide more flexibility w. r. t. the shapes of
the paths and the 3D objects.

Alternatively, the aforementioned redundancy in the output
space of the robot allows to transfer this degree of freedom
from the task space to the nullspace, which increases the
nullspace dimension by one. This two-dimensional nullspace
can be controlled by a hierarchical nullspace controller [30].
This way, the contact point between the target 3D object and
the draping roll as well as the robot elbow position can be
adjusted automatically by the nullspace controller. The desired
robot motion in the nullspace is then specified by suitable
nullspace objective functions [25] and the respective controller
parameters. Thus, trajectory planning for the tape application
process is reduced to finding a feasible robot starting pose as
described in Section II-B. Note that the details of the nullspace
control are beyond the scope of this paper.

V. IMPLEMENTATION

In this section, the proposed control approach is applied
to the demonstrator setup depicted in Fig. 1. The controllers
are implemented as MATLAB/SIMULINK modules, which are
executed via the real-time automation software BECKHOFF
TWINCAT on a desktop computer.

For the practical implementation, a spatial discretization of
the 3D objects must be performed and the control algorithms
have to be implemented in discrete time with the sampling
time Ts. In the following, the index k of a quantity refers to
the time t = kTs, k = 0, 1, 2, . . . , i. e. ξk = ξ(t)|t=kTs

. In this
section, discrete-space paths and surfaces are introduced first
and based on this, the discrete-time version of the surface-
based path following control is derived.

A. Discrete Paths and Surfaces

A discrete surface consists of a set of triangles, which
are interconnected by common edges and vertices. Given a
starting point σ(s0) on the surface and a tangent direction t0,
Algorithm 1 maps the planar path from the tape coordinate
system A (see Fig. 4) to the 3D object, as illustrated in
Fig. 6. Each triangle has a distinct normal vector σn and is
equipped with local coordinates. By piecewise integration of

σn

π Integration of (14)

method2b

Fig. 6. Triangle mesh surface with surface normal field σn and path π. The
path π is calculated by piecewise integration of (14) and using method2b
[31].

Algorithm 1 Map curved path on discrete surface
1: Initialize π(p0) = σ(s0)
2: Initialize π′(p0) = t0
3: Find initial triangle containing π(p0)
4: for all p ∈ I do
5: s0 ← Current position π(p) in triangle coordinates
6: s′0 ←Current tangent π′(p) in triangle coordinates
7: Integrate (14) using κg(p) until an edge or vertex is

reached at p = pe
8: π(pe)← σ

([
s1 s2

]T)

9: π′(pe)← s′1σs1 + s′2σs2

10: Transition to adjacent triangle using method2b [31]
11: end for

(14), a continuous tape application path is calculated on each
triangle. At the edges and vertices, the adjacent triangle and the
corresponding starting point and tangent direction are found
using method2b [31]. Note that the accuracy of the computed
tape application path significantly depends on the tessellation
tolerance, with which the discrete surface is generated [31].
A smaller tessellation tolerance yields more accurate discrete
surfaces and tape application paths. The integration of (14) is
performed on the triangles of the discrete surface, which are
essentially planes. Thus, the relations Γi

jk = 0 ∀i, j, k = 1, 2
and σsi

· σsj
= δij hold with the KRONECKER delta δij and

(14) simplifies to two double integrators driven by the terms
κs1(p) and κs2(p). Hence, high accuracy for the integration
of (14) can be achieved using higher-order integration algo-
rithms, e. g., the explicit RUNGE-KUTTA (4,5) formula [32].
Additionally, as the discrete surface and, thus, the resulting
path are of class C0 due to the vertices and edges between the
triangles, the path has to be further smoothed before applying
the control strategy.

B. Discrete Surface-Based Path Following Control

The path is sampled equidistantly with a grid spacing
of ∆p and the sampled points are interpolated using C3

B-splines [33] to satisfy the smoothness requirements for
the control strategy. To interpolate the corresponding normal
vectors, quaternions in the cumulative form [34] are used. In
this form, quaternions are composed of an initial quaternion
and a sequence of angular rotations, which are activated
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smoothly and sequentially by real-valued basis functions. The
resulting path π(p) and the normal vector field πn(p) are
used to construct the parallel contact frame. In this work, the
implementation of the task space and nullspace controllers use
quaternions to parametrize the orientation. Thus, the geometric
Jacobian matrix is used in (33) and in the subsequent equations
[25]. Moreover, discretized implementations for the projection
operator P(yp) with the condition (22), the parallel contact
frame (16) and the integral (26) are developed in the following
to be solved in real time.

1) Surface-Based Orthonormalized Frame: As the path
π(p) and its surface normal vector field πn(p) are interpo-
lated independently using B-splines, the orthogonality between
πn(p) and the path tangent π′(p) is lost. To recover this prop-
erty, a surface-based orthonormalized frame (ẽ1, ẽ2, ẽ3)(p) is
introduced

ẽ1(p) = π′(p) (37a)

ẽ3(p) = πn(p)− πT
n (p)ẽ1(p)ẽ1(p)

‖πn(p)− πT
n (p)ẽ1(p)ẽ1(p)‖2

(37b)

ẽ2(p) = ẽ3(p)× ẽ1(p) , (37c)

which adjusts and normalizes the normal vector field πn(p) ac-
cordingly. Note that the assumption of arc-length parametrized
paths π(p) was used in (37a) and the orthonormalized frame
(37) is of class C2 due to the C3-smoothness of π(p).

2) Discrete-time Parallel Contact Frame: The frame C(p)
from Section III-E3 describes the contact frame for the
draping roll. This specific frame was introduced to prevent
any rotations of the draping roll around the surface normal
vector. The unit vector field e1(p) is a parallel vector field
w. r. t. the surface σ. According to (5), the derivative of this
parallel vector field e1(p) only exhibits a component normal
to the surface. Similarly, the parallel transport frame of a
path prevents rotations around the path tangent vector and
the derivatives of the two path normal vectors are scalar
multiples of the path tangent vector [17]. Hence, the discrete-
time implementation for the parallel transport frame according
to [17] can be adapted to the parallel contact frame introduced
in this work. The discrete-time tangent vector field e1,k, with
a suitable initial tangent vector e1,0 = ẽ1(p0), is calculated
from the normal vector field e3,k using [17], [35]

e3,k = ẽ3(pk) (38a)

e1,k =
e1,k−1 − eT

3,ke1,k−1e3,k√
1−

(
eT

3,ke1,k−1

)2
(38b)

e2,k = e3,k × e1,k . (38c)

Note that, compared to the parallel transport frame in [17],
[35], the roles of the tangent and normal vector in (38b) are
interchanged. It is further worth noting that the integration of
(15) is not required, as the discrete-time parallel contact frame
can be computed online using (38).

3) Discrete-time Projection Operator: The constraint of the
projection operator P(yp) in (22) is solved numerically with
the NEWTON iteration

pk,i = pk,i−1 −
f(pk,i−1)
f ′(pk,i−1) , (39)

TABLE I
CONTROLLER PARAMETERS

Symbol Value Unit
kd

1 , kd
2 , kd

4 , kd
6 900 N/m

dd
1 , dd

2 , dd
4 , dd

6 60 N s/m
md

1 , . . . , md
6 1 kg

kd
3 400 N/m
dd

3 40 N s/m
kd

5 0 N/m
dd

5 4 N s/m
Kn diag(

[
1, 1, 1, 1, 1, 1, 1

]
) N/m

Dn diag(
[
2, 2, 2, 2, 2, 2, 2

]
) N s/m

with i = 1, 2, . . . , and f(pk,i) = (yp − π(pk,i))Te1,k.
The iteration is initialized with the path parameter of the
previous time step, i. e. pk,0 = p∗k−1 and terminates with
|pk,i − pk,i−1| < ε, ε > 0. The resulting path parameter,
denoted by p∗k, indicates the projected position on the path.
Note that due to Remark 5 a surface-based path π can only
exhibit one solution of (22). Thus, for this case, the minimum
distance criterion ‖yp − π(p∗)‖2 is not considered. Finally,
the integral in (26) is solved numerically using the explicit
EULER method

ξ1,k = ξ1,k−1 + (p∗k − p∗k−1)(π′(p∗k))Te1,k . (40)

VI. EXPERIMENTAL RESULTS

The surface-based path following control concept from
Section IV is demonstrated on a 3D-printed object, as
shown in Fig. 7: The paths of the pre-cut tapes in (a)
are mapped onto the discrete surface of the 3D object
in (b). The tape application result is depicted in (c).
A video of the complete demonstration can be found at
www.acin.tuwien.ac.at/52f5.

In this work, the tape application paths computed using
Algorithm 1 are sampled with a grid of ∆p = 4 mm.
Nevertheless, the absolute errors of the interpolated B-splines
are below 0.1 mm for positions and below 50 mrad for the
orientation of the surface-based orthonormalized frame, which
is computed from (37). These small deviations are admissi-
ble for the considered process and are compensated by the
compliant draping roll. Note that smaller sampling grids ∆p
lead to smaller absolute errors, but also to paths with higher
curvatures.

In the following, the application of a single pre-cut tape
with a curved path, depicted in Fig. 8, is described in more
detail. The measured force and torque signals of the F/T sensor
are used to verify the interaction forces only and are not used
for feedback in these experiments. To obtain a quasi-static
estimate for f̂e, the gravitational force of the 3D object is
subtracted from the tool-side F/T measurement and the net
force is transformed into the current contact frame C(p∗) [25].
The relevant signals of the tape application process are shown
in Fig. 9, whereas all controller parameters are listed in Tab. I.
The graphs in Fig. 9 are subdivided into three phases 1 - 3 :

1 Contact establishment: Due to the control concept and
the chosen contact frame, the coordinate ξ3 corresponds to
the movement normal to the surface. Using a C2-trajectory
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(a) (b) (c)

Fig. 7. Experimental results of the tape application process on a 3D-printed object: (a) Pre-cut tapes (b) Projected paths on 3D object (c) Completed tape
application.

x

y
A

Fig. 8. Tape (blue) and curved tape application path (red) for the experimental
results shown in Fig. 9.

from ξ3 = 30 mm to ξ3 = 14 mm, the 3D object approaches
the draping roll and comes into contact. The surface normal
contact force f̂e,3 is approximately 3 N, while the other forces
and torques remain close to zero.

2 Impedance-based tape application: In the second phase,
the tape application is performed using the surface-based path
following controller (33), (35) and (36). In path coordinates
ŷ, the contact point moves from ξ1 = 0 mm to ξ1 = 322 mm
with a velocity of ξ̇1 = 30 mm/s using a C2-trajectory.
The lateral motion along the draping roll axis is given by
ξd

2 = −πl(p), which correctly takes into account the lateral
movement of the contact point, as illustrated in Fig. 8, cf.
Fig. 3. While the control errors ê1 and ê2 of the geodesic
direction ξ1 and the lateral direction ξ2 stay below 1.2 mm,
the controller adjusts the position ξ3 along the surface normal
according to the impedance model. Thus, the control strat-
egy is able to comply with uncertainties related to the 3D
object and with the position errors of the robot manipulator.
Throughout the process, the surface normal force f̂e,3 remains
the dominant component. While the surface tangent forces f̂e,1
and f̂e,2 are mostly below 1 N, the estimated torques f̂e,4, f̂e,5
and f̂e,6 stay well below 150 mN m.

3 Contact release: Finally, the contact between draping roll
and 3D object is released by moving the 3D object from ξ3 =
14 mm to ξ3 = 30 mm again. Note that after release, minor
estimated torques f̂e,4, f̂e,5 and f̂e,6 remain due to imperfect
compensation of the payload mass.

VII. CONCLUSIONS AND OUTLOOK

In this work, a surface-based path following control concept
was introduced for the application of (curved) pre-cut adhesive
tapes on freeform 3D objects. For this, a novel parallel contact
frame with a parallel projection operator was developed to
prevent rotations of the draping roll around the surface normal

axis, which is required for a wrinkle-free tape application
result. The (curved) surface-based tape application paths are
calculated as solutions to an initial value problem in the sur-
face coordinates with a given starting point, tangent direction
and local geodesic curvature along the path. In this way, the 2D
tape application paths are mapped onto the freeform 3D object.
Moreover, details on the discrete-time implementation using
discrete-space surfaces are given. Measurement results on an
experimental setup show a good performance and demonstrate
the practical relevance of the proposed approach.

Future work aims at improving the passive tape application
tool to automatically feed the pre-cut tapes to the required
starting position for the first contact with the 3D object.
Additionally, using collision-free trajectory planning, the robot
can move the 3D object to the corresponding starting position
without user intervention. Finally, automatic handling of the
single-axis redundancy, which is present due to the cylindrical
shape of the draping roll, can be incorporated into the control
concept in the future. This type of redundancy occurs in many
other industrial processes like, e. g., laser cutting, painting and
polishing.
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ê 1
,ê
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