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Modelling, simulation and identification of a mobile concrete pump

J. Henikl*, W. Kemmetmüller, M. Bader and A. Kugi

Automation and Control Institute, Vienna University of Technology, Vienna, Austria

(Received 30 September 2013; accepted 17 May 2014)

Due to the light-weight construction of modern large-scale manipulators used, e.g., in
mobile concrete pumps, the elasticity of the construction elements plays a significant
role in the dynamic behaviour of the system. Therefore, current research is concerned
with control strategies for active damping of elastic vibrations and trajectory planning.
For this purpose, tailored mathematical models are required. Apart from the mathe-
matical modelling, the identification of the model parameters constitutes a challenging
task. This is mainly due to the large number of parameters to be identified and,
considering the large scale, due to the fact that the boom movement cannot be
measured by means of standard sensors. This paper presents a systematic approach
for the mathematical modelling and identification of hydraulically actuated large-scale
manipulators. The feasibility of the overall approach is demonstrated by means of
measurement results of a mobile concrete pump.

Keywords: flexible multibody system; hydraulic cylinder; parameter identification;
machine vision

1. Introduction

New materials and improved construction and production methods enable the design of
large-scale manipulators which possess a significantly reduced weight compared to
classical designs. Although these new manipulators can carry the same load as traditional
constructions, the reduced stiffness makes the systems vulnerable to vibrations. Therefore,
the elasticity of the manipulators has to be systematically incorporated into the mathema-
tical modelling, the analysis and the controller design.

For the modelling of flexible multibody systems, well-developed methods exist in the
literature, see e.g., [1,2]. Most investigations in this field are related to flexible robot systems
with electromechanical actuators. In large-scale manipulators like mobile concrete pumps,
hydraulic actuators comprising hydraulic cylinders and valves are commonly used. Their non-
linear dynamic behaviour and the non-linear kinematics of the assembly lead to a complex
relationship between piston force and the resulting torque in the joint.Moreover, the dynamics
of the pressure in the cylinder chambers is coupled with the piston position and velocity and
thus with the motion of the cylinder assembling points on the flexible structure.

The combination of flexible multibody systems and hydraulic actuators has been
extensively studied in the literature in recent years, see e.g., [3–6]. Therein, different
strategies for modelling the elasticity of the boom are proposed. In [4] and [5], the elastic
beam elements are approximated by a number of rigid bodies which are connected via
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joints and spring elements. This leads to a well-known procedure for the derivation of the
equations of motion as it is common in robotic applications. The position of the additional
joints and the spring rates have, however, no direct relation to real physical parameters.

Another approach is to model the elastic segments in form of Euler–Bernoulli beams.
This leads to a distributed-parameter representation which has to be approximated by a
finite-dimensional model. In this context, the Ritz method is often used in order to obtain
a system of ordinary differential equations for the elastic system, see e.g., [7], [3] and [6].

In this work, the latter approach will serve as a basis for the mathematical modelling. In
order to ensure fast simulation times of the transient behaviour of the model and to simplify
the controller design, the dimension of the model should be kept as small as possible. The
right choice of the basis functions for the Ritz method turns out to be the crucial point to
achieve a high model accuracy when using only a small number of basis functions. In [7], the
eigenfunctions of a homogeneous Euler–Bernoulli beam are chosen as basis functions and [6]
recommends the use of Legendre polynomials. These approaches are all feasible, but they do
not account for the inhomogeneous structure of the beam elements of the considered
application. Therefore, a high number of basis functions are required to accurately describe
the beam deflection dynamics. In particular, the static bending of the beam elements cannot be
described with sufficient accuracy by a low number of eigenfunctions or polynomial func-
tions. In [3], a survey of the choice of the basis functions for hydraulically actuated large-scale
manipulators is given. Therein, the use of the static bending line of the homogeneous massless
beam with an external unity force is proposed as first basis function. In addition, it is also
suggested to utilize the numerically calculated eigenfunctions for inhomogeneous beams.

In this paper a set of two basis functions for each beam element is proposed, where the
numerically calculated static bending function is used as the first basis function and an
orthogonal polynomial serves as a second basis function. As will be shown in the paper,
this leads to an adequate approximation of both the static and the dynamic behaviour of
the elastic boom.

The choice of the elastic degrees of freedom of the boom also has an important
influence on the complexity of the resulting equations, which describe the interconnection
between the mechanical and the hydraulic part. For example, the model of [4] results in a
simple relationship among piston force, joint torque and the rigid body angle while in
contrast, the approach of [6] leads to a complex relationship of the generalized forces
depending on the elastic deformations. In the present contribution, an adequate formula-
tion of the static bending function combined with an orthogonal polynomial ensures a
simple kinematic relationship between the motion of the cylinder and the elastic boom. In
particular, it is shown that the suggested selection of the degrees of freedom results in a
cylinder piston position which solely depends on the rigid body angle. This is of special
interest, since this allows a simple incorporation of the static friction of the hydraulic
cylinders into the mathematical model.

In [8], it is shown that classically designed hydraulic systems used for the actuation of
mobile concrete pumps exhibit major weaknesses for the realization of high performance
controllers. For this reason, an alternative hydraulic set-up was proposed that fulfils both
the dynamic as well as the safety requirements. In this paper, the application of this
proposed hydraulic architecture is presumed. This yields a relatively simple mathematical
description of the hydraulic components. The identification of the model parameters turns
out to be a non-trivial task since the dynamic behaviour of the individual boom segments
is highly coupled. A systematic identification procedure is proposed, which is illustrated
for the boom of a mobile concrete pump shown in Figure 1. For this purpose, specific
static and dynamic experiments were performed, where inclination and pressure sensors,
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strain gauges and incremental encoders were utilized. However, the absolute movement of
the boom cannot be measured with this setting. Therefore, the use of non-contact
measurement principles like laser, infrared or ultrasonic sensors come into play, but
they are practically not feasible since a large number of sensors would be required.

This is why we decided to track the movement of particular spots at the boom by
means of a camera system by exploiting the methods of machine vision. Commercially
available solutions for visual 3D motion like VICON1 are able to track objects with a
precision of 50 μm at 357 Hz with multiple cameras in real time within a closed room as it
was used in [9] to control flying quadcopters. Considering, however, the price and the set-
up time, such a system would be far oversized, in particular in view of the fact that the
motion of the boom for the identification just takes place in a plane of the 3D space. Two
high-resolution cameras were used to capture the large working space of the boom. In
order to increase the precision, circular markers were attached at the spots to track the
boom.

This paper is an extended version of [10], where in addition to the derivation of the
mathematical model the identification by means of a tailored vision system and the
experimental validation is presented in detail.

The paper is organized as follows. In Section 2, the derivation of the equations of
motion for the elastic boom is shown. The mathematical description of the hydraulic
actuation and the friction model are discussed in Section 3. In Section 4, the proposed
modelling approach is applied to an industrial mobile concrete pump. For this, the
simplifications and assumptions used in the model are summarized, the identification
procedure of the model parameters is elaborated and the vision system used to measure
the boom movement is described. The simulation results of the mathematical model are
compared with measurements in Section 5. Finally, Section 6 gives a short conclusion.

2. Modelling of the mechanical subsystem

In this section, the general approach for the derivation of the equations of motion for a
large-scale elastic manipulator with multiple beam segments will be presented. Figure 2
illustrates the considered planar flexible manipulator with N ¼ 4 beams and the corre-
sponding hydraulic actuators. The degrees of freedom are the rigid-body angles φi and the
transversal deflections wi xið Þ of the beams,2 i ¼ 1; . . . ;N .

The overall motion of the system is described with respect to the inertial frame 00x0y0.
Furthermore, each beam is equipped with a local coordinate frame 0ixiyi, where the angle
φi describes the rigid body motion of the ith beam with respect to the beam (i−1). By
means of a suitable choice of the orientation of the local coordinate frames, the cylinder

Figure 1. Boom of a mobile concrete pump.
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piston position is solely a function of the respective rigid body angle φi. The inputs of the
mechanical part are the cylinder forces Fi.

For the derivation of the mathematical model, the kinetic and potential energy of the
system are required. For this, the positions and the velocities of each mass particle have to
be described in the inertial frame 00x0y0. The kinematic relations between the local and
the inertial coordinate frames are given by rotation matrices and translation vectors. The

inertial coordinates of a mass particle of the ith beam located at rii xið Þ ¼ xi;wi xið Þ½ �T ,
described in the ith local coordinate frame (subscript), can be calculated by

ri0 xið Þ ¼ Ri
0r

i
i xið Þ þ di0: (1)

The matrix Ri
0¼R1

0R
2
0 . . .R

i
iÀ1 with

R1
0¼

cos φ1ð Þ Àsin φ1ð Þ
sin φ1ð Þ cos φ1ð Þ

 !
(2)

and

Rjþ1
j ¼ 1 Àw0j Lj

À Á

w0j Lj
À Á

1

 !
cosðφjþ1Þ Àsinðφjþ1Þ
sinðφjþ1Þ cosðφjþ1Þ

 !
(3)

for j ¼ 1; . . . ;N À 1 describes the rotation of the local coordinate frame 0ixiyi with respect
to the inertial frame 00x0y0. The lengths of the corresponding beams are denoted by Lj.
Similar to [7] small deflections and thus

ϕ1

−ϕ2

ϕ3

−ϕ4

00 = 01

x0

y0 x1
y1

02

x2

y2

03
x3

y3

04

x4

y4

F1

F2 F3
F4

−w1 (x1)

−w2(x2)

−w3(x3)

w4(x4)

g

xm

Figure 2. Flexible manipulator with hydraulic actuation.
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arctan
@wi

@xi

����
xi¼Li

 !
% @wi

@xi

����
xi¼Li

¼ w
0
i Lið Þ (4)

are presumed. The displacement di0 between the local coordinate frame 0ixiyi and the
inertial frame 00x0y0 reads as

di0 ¼ RiÀ1
0 diiÀ1 þ diÀ10 ; (5)

with d10 ¼ 0; 0½ �T and djþ1j ¼ Lj;wj Lj
À ÁÂ ÃT

for j ¼ 1; . . . ;N.
Based on the kinematics of the system, the kinetic energy is given by T ¼PN

i¼1 Ti,
where Ti is the kinetic energy of the ith beam

Ti ¼
1

2

Z Li

0
σi xið Þ _ri0 xið Þ

À ÁT
_ri0 xið Þdxi (6)

and σi xið Þ denotes the position-dependent mass distribution.
Using the Euler–Bernoulli assumptions, the potential energy due to the beam deflec-

tion and gravitation can be described by V ¼PN
i¼1 Vi with

Vi ¼
Z Li

0
σi xið Þgri0;y xið Þdxi þ

1

2

Z Li

0
EIi xið Þ

@2wi xið Þ
@x2i

� �2

dxi; (7)

where g is the acceleration of gravity, E denotes Young’s modulus, Ii xið Þ is the position-
dependent second moment of inertia and ri0;y xið Þ is the component of ri0 xið Þ in the

direction of y0. Viscous damping of the beams is included by means of the Rayleigh
dissipation function

R ¼ 1

2

XN

i¼1
dφi _φ

2
i þ dwi

Z Li

0
_w2
i xið Þdxi

� �
; (8)

with the coefficients dφi > 0 representing the damping in the joints and dwi > 0 accounting
for the damping of the beam deflection movement.

Due to the distributed-parameter character of the beams, a mathematical description of
the system leads to a set of partial differential equations. To obtain a finite-dimensional
approximation, the Ritz method will be employed in the sequel. As already mentioned
before, the static bending profiles of the beams are used as first basis functions. The
benefit of this choice is the accurate approximation of the elastic deformations at static
loads already with the first basis functions alone. Thus, the number of basis functions
required for the simulation model can be kept small compared to other choices of the basis
functions, e.g., the eigenfunctions of a homogeneous Euler–Bernoulli beam. The shape of
the static bending line is determined by the mass distribution of the beam and its external
load, which can be represented by a transverse force and torque at the end of the beam.
For all beams with the exception of the last one, it can be assumed that the external load is
dominating in comparison to the self-weight. Due to the construction of the joints the
external load is mainly determined by the transverse forces. Hence, the static bending
profiles of the massless beams with position-dependent second moment of inertia Ii xið Þ
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and an external force at the free end "fL serve as basis functions. For the last beam, the
bending profile resulting only from its own mass distribution is used.

Thus, the static bending profiles "wi xið Þ, i ¼ 1; . . . ;N À 1 are determined by solving
the differential equations

@2

@x2i
EIi xið Þ

@2"wi xið Þ
@x2i

� �
¼ 0 (9)

for an Euler–Bernoulli beam in a left-side clamped configuration, see Figure 3. Due to the
assembling of the first hydraulic cylinder at x1 ¼ xm (cf. Figure 2), a supported config-
uration is considered for the first beam, see Figure 4. The boundary conditions for the
ordinary differential equations are given by

"w1 0ð Þ ¼ 0; (10a)

lim
x1!xmÀ

"w1 x1ð Þ ¼ 0; (10b)

lim
x1!xmþ

"w1 x1ð Þ ¼ 0; (10c)

lim
x1!xmÀ

@"w1 x1ð Þ
@x1

¼ lim
x1!xmþ

@"w1 x1ð Þ
@x1

; (10d)

xi

f̄L

Li

w̄i(xi)

Figure 3. Static bending profile: beam i ¼ 2; . . . ;N À 1.

x1

xm

f̄L

L1

w̄1(x1)

Figure 4. Static bending profile: beam 1.
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EI1ðx1Þ
@2"w1 x1ð Þ

@x21

� �����x1¼0 ¼ 0; (10e)

lim
x1!xmÀ

EI1 x1ð Þ @
2"w1 x1ð Þ
@x21

¼ lim
x1!xmþ

EI1 x1ð Þ @
2"w1 x1ð Þ
@x21

; (10f )

EI1ðx1Þ
@2"w1 x1ð Þ

@x21

� �����x1¼L1 ¼ 0; (10g)

@

@x1
EI1ðx1Þ

@2"w1 x1ð Þ
@x21

� �� �����x1¼L1 ¼ "f L (10h)

for the first boom segment and

"wi 0ð Þ ¼ 0; (11a)

@"wi xið Þ
@xi

� �����xi¼0 ¼ 0; (11b)

EIi xið Þ
@2"wi xið Þ
@x2i

� �����xi¼Li ¼ 0; (11c)

@

@xi
EIi xið Þ

@2"wi xið Þ
@x2i

� �� �����xi¼Li ¼ "f L (11d)

for the boom segments i = 2, . . . , N − 1. The geometric boundary conditions of the joints
and the clamped end are represented by Equations (10a–d) and (11a), (11b), respectively.
Equations (10e) and (10f) result from the torque-free joints and Equations (10g), (10h)
and (11c), (11d) are the boundary conditions for the free ends. For the external force, an
arbitrary value "fL�0 can be presumed. The value of "fL only scales the result and has no
influence on the shape of the bending line. The differential equation for the last beam is
given by

@2

@x2N
EIN xNð Þ @

2"wN xNð Þ
@x2N

� �
¼ ÀgσN xNð Þ (12)

and the boundary conditions, see Figure 5, read as

"wN 0ð Þ ¼ 0; (13a)

@"wN xNð Þ
@xN

� �����xN¼0 ¼ 0; (13b)

EIN xNð Þ @
2"wN xNð Þ
@x2N

� �����xN¼LN ¼ 0; (13c)
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@

@xN
EIN xNð Þ @

2"wN xNð Þ
@x2N

� �� �����xN¼LN ¼ 0: (13d)

Since the differential Equations (9)–(13a–d) can only be solved numerically, a polynomial
approximation of the static bending profile of each beam is performed, i.e.,

ηb1 x1ð Þ ¼
XNb

1

j¼2
ηb1;j x1 À xmð ÞxjÀ11 ; (14a)

ηbi xið Þ ¼
XNb

i

j¼2
ηbi;jx

j
i; i ¼ 2; . . . ;N ; (14b)

with the order of the polynomials Nb
1 and Nb

i , respectively. The coefficients ηb1;j and ηbi;j
are determined by minimizing the quadratic error between the numeric solutions of
Equations (9)–(13a–d) and the polynomial approximation (14a–b). The formulation of
ηb1 x1ð Þ and ηbi xið Þ has been chosen in such a way that the relative motion of the mounting
points of the hydraulic actuators on the beams can be solely described by the rigid body
angles φi. As a matter of fact, the polynomials (14) fulfil the geometric boundary
conditions (10a–d), (11a), (11b) and (13a), (13b).

In order to increase the model accuracy especially for the dynamical system behaviour
and to account for higher bending modes of the beams, polynomials of the form

ηo1 x1ð Þ ¼ x1 À xmð Þx21 þ ηo1;2 x1 À xmð Þx1 (15a)

ηoi xið Þ ¼ x3i þ ηoi;2x
2
i ; i ¼ 2; . . . ;N (15b)

are used as second basis functions. It can be easily seen that the polynomials (15) also
satisfy the geometric boundary conditions. To ensure the orthogonality to the first basis
functions (14), the coefficients ηo1;2 and ηoi;2 result from the orthogonality condition

Z Li

0
ηbi xið Þηoi xið Þdxi ¼ 0; i ¼ 1; . . . ;N : (16)

The approximated elastic beam deflections are defined as a superposition of the
introduced basis functions

wi ¼ hbi tð Þηbi xið Þ þ hoi tð Þηoi xið Þ; i ¼ 1; . . . ;N ; (17)

xN

g

LN

w̄N(xN)

Figure 5. Static bending profile: beam N.
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with the time-varying coefficients hbi tð Þ and hoi tð Þ. The overall degrees of freedom of
the mathematical model are composed of the rigid body angles φi and the elastic degrees
of freedom hbi , h

o
i , which are summarized in the vector

q ¼ φ1; . . . ; φN ; h
b
1; . . . ; h

b
N ; h

o
1; . . . ; h

o
N

Â ÃT
: (18)

The connection to the hydraulic part is given by the cylinder forces Fi, which serve as
inputs to the mechanical system. Due to the special choice of the local coordinate frames
0ixiyi, the cylinder piston positions sp;i are solely depending on the rigid body angles φi,

sp;i ¼ fi φið Þ; i ¼ 1; . . . ;N : (19)

The vector of the generalized forces Q can be calculated by means of d’Alembert’s
principle in the form

Q ¼ F1
@f1 φ1ð Þ
@φ1

; . . . ;FN
@fN φNð Þ
@φN

; 0; . . . ; 0; 0; . . . ; 0

 !T
: (20)

The functions fi φið Þare determined by the geometry of the joint construction and are
strictly increasing in φi in the operating range of the joints.

The application of the Euler–Lagrange equations

d

dt

@T

@ _q
À @T

@q
þ @V

@q
þ @R

@ _q
¼ QT (21)

finally yields the mathematical model of the mechanical part of the system. The resulting
equations of motion can be written in the compact form

M qð Þ€qþ c q; _qð Þ þ D _qþ g qð Þ ¼ Q; (22)

with the positive definite inertia matrix M(q), the vector of Coriolis and centrifugal forces
c q; _qð Þ, the damping matrix D and the vector of forces g(q) related to the potential energy.

3. Modelling of the hydraulic subsystem

As described in Section 1, large-scale manipulators are typically controlled by means of
hydraulic actuators. With the hydraulic architecture proposed in [8], the dynamic behaviour
of the hydraulic actuators only depends on the hydraulic cylinders and the proportional
directional control valves, see Figure 6. The related differential equations for the chamber
pressures p1 and p2 take the form

_p1 ¼
β

V01 þ A1sp
ÀA1vp þ q1
À Á

; (23a)

_p2 ¼
β

V02 À A2sp
A2vp À q2
À Á

; (23b)
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with the bulk modulus of oil β, the piston areas A1 and A2, the offset volumes V01 and V02,
and the velocity vp ¼ _sp. The volume flows q1 and q2 are determined by the valve position
sv and the pressure difference,

q1 ¼
α
ffiffi
2
ρ

q
Av1 svð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ps À p1
p

sv ! 0

α
ffiffi
2
ρ

q
Av1 svð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1 À pt
p

sv < 0;

8
<
: (24a)

q2 ¼
α
ffiffi
2
ρ

q
Av2 svð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 À pt
p

sv ! 0

α
ffiffi
2
ρ

q
Av2 svð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ps À p2
p

sv < 0;

8
<
: (24b)

where α denotes the contraction coefficient, ρ the oil density, ps the supply pressure, pt the
tank pressure and Av1 svð Þ and Av2 svð Þ are the opening areas of the valve to chamber 1 and
2, respectively. The resulting cylinder force F acting on the mechanical part of the system
reads as

F ¼ p1A1 À p2A2 À FR vp
À Á

; (25)

where the first part accounts for the pressure force generated by the cylinder and FR(vp)
summarizes the friction forces of the cylinder. It is well known that friction plays an
important role in hydraulic actuators. In particular a certain amount of static friction is
inevitable for the type of hydraulic cylinders typically used in the considered application.
In order to analyse the influence of friction on the dynamic behaviour and the control
performance, a static friction model is incorporated into the mathematical model. As can
be seen from Figure 7, the friction force is composed of a viscous part rVvp, a Coulomb
part rCsign(vp) and the static friction rS.

The static friction phenomenon leads to a switched system behaviour, i.e., if the piston
velocity is zero (vp = 0) and the absolute value of the sum of the forces on the piston is
smaller than rS, then the piston sticks and the whole system loses a degree of freedom.

sp

q1 q2

F

p1 p2

A1 A2

ps pt

Figure 6. Schematic diagram of the hydraulic actuator.
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Due to the special choice of the coordinate frame and the basis functions, the detection of
zero velocity vp;i ¼ 0 of the ith piston is equivalent to check for _φi ¼ 0. Furthermore, if
the ith cylinder is sticking, the equations of motion result from Equation (22) by using the
constraints _φi ¼ 0 and €φi ¼ 0. To verify the sticking condition and calculate the absolute
value of the sum of the forces acting on the piston, the force "Fi of the mechanical part is
calculated from the ith row of Equations (20) and (22)

"Fi ¼
XN

j¼1
M qð Þ i; j½ �€q j½ �þ c q; _qð Þ i½ �þ

XN

j¼1
D i; j½ � _q j½ �þ g qð Þ i½ �

 !
@fi φið Þ
@φi

� �À1
: (26)

Since the functions fi φð Þ are strictly increasing in the operating range, the invertibility
of @fi φið Þ=@φi is ensured. Summarizing, the ith piston is sticking if vp;i ¼ 0 and the
condition

p1;iA1;i À p2;iA2;i À "Fi

�� ��  rS;i; (27)

holds.

4. Parameter identification for a mobile concrete pump

In this section, the industrial mobile concrete pump with four joints according to Figure 1
with an operating range of about 40 m is considered. The mathematical model can be
derived along the lines of Sections 2 and 3 provided that the following assumptions hold:

● The concrete pump is considered as a planar manipulator. The rotational movement
and the lateral beam deflections are neglected.

● The truck’s movement due to the dynamic load of the boom is neglected.
● The boom segments are modelled as Euler–Bernoulli beams.
● The pumping of wet concrete is not considered.

However, in view of the last assumption it is worth noting that for the control
design the vibrations induced by the pumping are considered as disturbances acting on
the system. The model parameters are determined by means of data sheets, design
drawings and experimental measurements. In contrast to the parameters of the hydrau-
lic components, which are well known from data sheets, the parametrization of the

vp

rV vp

rC

rS

−rC

−rS

FR(vp)

Figure 7. Static friction model.
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boom model turns out to be more involved. Besides the geometrical data, the position-
dependent mass distribution and the second moment of inertia can be calculated from
design drawings. In this context, it is rather difficult to systematically account for
externally assembled components on the boom segments like hydraulic cylinders,
hydraulic lines and concrete delivery pipes. In particular, their influence on the
resulting stiffness of the overall system can hardly be determined analytically.
Furthermore, the damping coefficients are unknown and have to be identified by
dynamical measurements.

4.1. Experimental set-up

In the experimental set-up, in addition to the machine vision system, which will be
presented in Section 4.2, the following sensors were used:

● Inclination sensors at both ends of each boom segment.
● Two pressure sensors at each hydraulic cylinder.
● Incremental encoders to measure the cylinder piston movements.
● Strain gauges attached to the end of each boom segment where the hydraulic

actuator is located, in order to determine the beam flection.

The strain gauges measure the elongation of the surface of the boom segment. Using
the Euler–Bernoulli assumption, the relation between the elongation and the beam flection
is given by

εi xSG;i
À Á

¼ kSG;i
@2wi xið Þ
@x2i

����
xi¼xSG;i

þ bSG;i; (28)

with the gain kSG;i the bias bSG;i and the strain gauge position xSG;i. In the case of a
homogeneous beam, the gain coefficient kSG;i is given by the distance of the surface to the
symmetry line of the beam. However, in the case of an inhomogeneous beam it is difficult
to determine kSG;i analytically. Since in practice it is nearly impossible to attach the strain
gauge to a completely unbent boom segment, the strain gauge signal contains a bias
component bSG;i, which also depends on the temperature of the beam. Therefore, the gain
and bias coefficients have to be identified by means of measurements.

4.2. Vision system

The parameters of the mathematical model of the boom, in particular the mass distribu-
tion, the stiffness and damping coefficients and the strain gauge coefficients, could be
identified based on static measurements at several configurations of the boom and
dynamic experiments with a prescribed excitation of the system. However, due to the
large scale of the boom there was the desire to also validate the absolute movement of the
boom segments, which cannot be captured by the standard sensors installed. Therefore, a
tailored vision system was developed which allows to measure the absolute movement of
particular spots on the boom. For this purpose, markers placed at the end of each boom
segment and the slewing gear, see Figure 8, were recorded by cameras, and their location
in the work space was calculated by means of the respective pixel coordinates on the
images.
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In order to capture the large work space of the boom, two 5-mega-pixel greyscale
image FireWire cameras3 were used. The 2452 × 2054 pixel resolution and a frame rate of
15 Hz allow for measurements within a working space of 20 m with an average pixel
precision of about 0.01 m/pixel. The open source framework ROS4 [11] for robotics
applications was utilized to record synchronized camera images and to visualize the
measurements. After comparing various marker types, including [12–14], circular markers
without encoded identifiers were selected. The detection of the circles and their projected
elliptical shapes was done by using the standard computer vision library OpenCV.5 With
the algorithm presented in [15] and [12], the precision of the marker position estimation
can be increased up to sub-pixel level. This enables the detection of boom movements of
even 2 mm. In addition to the markers on the boom, further markers located at fixed
positions were used for offline estimation of static camera poses. In order to start the
tracking algorithm, all measurement points must be initialized in the camera image.

4.2.1. Feature detection

In order to speed up the marker detection process, the algorithm has an initial feature
location and predicts the next location throughout the process. For this reason, the marker
detection has to be applied only to a small window around the predicted feature location.
During the initialization phase, pixel locations and the estimated size of the circular
feature have to be defined. The detection algorithm then detects multiple ellipse hypoth-
eses in each predicted search window. For this purpose, a function which uses the
estimated location and the expected radius sorts all detected ellipses within the search
window and places the most likely one first. This ellipse is then used as the basis for the
next search window. Figure 9 shows multiple search windows with the most likely ellipse
in red.

4.2.2. 3D data generation

The geometric relation between the marker position in the workspace and their projected
image coordinates are given in this section. The transformation of a point

pW ¼ ½pW;x; pW;y; pW ;z�T , defined in the workspace coordinate frame 0WxWyW zW , to the

M3

M3

M4

M1

M1

M2

M2

M4M0

M0

Figure 8. Markers placed on the boom.

192 J. Henikl et al.

D
ow

nl
oa

de
d 

by
 [J

oh
an

ne
s 

H
en

ik
l]

 a
t 1

0:
35

 0
9 

Fe
br

ua
ry

 2
01

5 

Post-print version of the article: J. Henikl, W. Kemmetmüller, M. Bader, and A. Kugi, “Modeling, simulation and identification of a mobile
concrete pump”, Mathematical and Computer Modelling of Dynamical Systems, vol. 21, no. 2, pp. 180–201, 2015. doi: 10.1080/13873954.
2014.926277
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1080/13873954.2014.926277
http://dx.doi.org/10.1080/13873954.2014.926277


respective coordinates pC ¼ ½pC;x; pC;y; pC;z�T in the camera coordinate frame 0CxCyCzC ,

which is defined by the camera centre, is given by the translation vector dWC 2 R3Â1 and

the rotation matrix RW
C 2 R3Â3,

pC ¼ RW
C pW þ dWC : (29)

In the literature, this transformation is typically described by the so-called external camera
matrix, see e.g., [16].

Assuming a pinhole camera model, the projection of the point pC onto the 2D image
frame 0I uI vI is given by

pI ¼
pI ;u
pI ;v

 !
¼

Àfu pC;x
pC;z
þ ou

Àfv pC;ypC;z
þ ov

" #
; (30)

with the internal camera parameters fu ¼ f =su; fv ¼ f =sv; ou and ov . This projection is
typically referred to as intrinsic camera matrix, see e.g., [16]. The focal length f describes
the distance of the camera centre to the sensor chip or the image frame, respectively, su
and sv represent the effective physical dimensions of one pixel on the camera chip and the
distance between the image centre and the origin of the image frame is given by ou and ov .

In order to compensate for lens distortions and to be able to use a simple pinhole
camera model, every frame captured has to be preprocessed first to get an undistorted
image before it is further used in any detection process, see e.g., [16].

The parameters for the compensation of the lens distortions as well as the internal
camera parameters were estimated by means of an offline calibration procedure. The
calibration was done using a checker-board pattern of known size and the ROS camera
calibration node.6 For the estimation of the three linearly independent quantities parame-
trizing the rotation matrix RW

C and the three coefficients of the translation vector dWC , an
iterative method based on the Levenberg–Marquardt [17] optimization was utilized, which
is implemented in the before mentioned OpenCV library. For this purpose, the workspace
coordinates of at least three known reference points pW and their visual appearance in the
image frame coordinates pI are required. Thus, with the transformation (29) and the
projection (30), six non-linear equations are given to determine the six unknown coeffi-
cients for RW

C and dWC . With the use of additional reference points, the error due to the
measurement uncertainty of the reference coordinates could be minimized. In Figure 10,
five reference points peW ;j for j ¼ 1; . . . ; 5, used for the estimation of the camera pose, are

shown. The coordinates were measured manually by a laser distance sensor. The reference

(a)

M0 M1 M2 M2 M3 M4

(b)

Figure 9. Search windows with detected edges in green, ellipses in yellow and the most likely
marker ellipse in red. (a) Left camera. (b) Right camera.
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points peW ;l for l ¼ f1; 2; 3; 4g and peW ;r for r ¼ f1; 2; 3; 5g were used for the left and the

right camera, respectively.
With these results, the relation of the coordinates of a marker centre pmW described in

the workspace coordinate frame and the respective coordinates pmI is given. The goal here
is, however, the inverse problem. A 3D point linked to a 2D image point has to be found.
This can be done by creating a straight line, see e.g., [18] that intersects the camera centre
and the image frame at the respective 2D image point. Considering Equation (29) and
pcC ¼ 0, the camera centre described in the workspace frame is given by

pcW ¼ À RW
C

À ÁÀ1
dWC : (31)

With Equation (30) and pC;z ¼ f , the 2D image point at the image frame in front of the

camera, defined by the pixel coordinates of the marker centre pmI ¼ ½pmI ;u; pmI ;v�T , is

located at

p̂mC ¼
À 1

fu
pmI ;u À ou
� �

f

À 1
fv

pmI ;v À ov
� �

f

f

2
664

3
775 (32)

and

p̂mW ¼ ðRW
C ÞÀ1p̂mC À ðRW

C ÞÀ1dWC ; (33)

respectively. With this and Equation (31), the direction of the line is given by

vW ¼ p̂mW À pcW ¼ f RW
C

À ÁÀ1
À 1

fu
pmI ;u À ou
� �

À 1
fv

pmI ;v À ov
� �

1

2
664

3
775 ¼ f "vW (34)

and thus, the line could be described by the equation

pe
W,3

pe
W,2

pe
W,1

pe
W,5pe

W,4

Figure 10. Reference points.
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plW ðλÞ ¼ pcW þ λvW (35)

for λ 2 R. The final 3D marker location pmW can be computed under the assumption that
the boom and the marker moves only in the plane defined by

nTÆpW ¼ λÆ; (36)

with the normal vector nTÆ to the plane and a scalar λÆ defining the position of the plane.
The normal vector nTÆ and the scalar λÆ were determined by means of the reference points
lying in the plane, see Figure 10. With this, the scalar λτ has to be found that defines the
intersection of the line (35) with the plane (36), pcW þ λτvW ¼ pmW . Considering
nTÆðpcW þ λτvW Þ ¼ λÆ; λτ is given by

λτ ¼
λÆ À nTÆp

c
W

nTÆvW
; (37)

and therefore pmW reads as

pmW ¼ pcW þ
λÆ À nTÆp

c
W

nTÆvW
vW ¼ pcW þ

λÆ À nTÆp
c
W

nTÆ"vW
"vW : (38)

4.3. Identification procedure

Due to the model complexity and the high number of system parameters, the identification
has to be performed in several steps. The following procedure was applied to the
simulation model of the mobile concrete pump.

First, a fine tuning of the mass distribution was obtained by means of static experi-
ments. For this purpose, the cylinder forces respectively the chamber pressures and the
inclination at the beginning of each boom segment were measured at different angles
φ1 ¼ "φ1;m of the first joint and a sprawled boom, i.e., φ2 ¼ φ3 ¼ φ4 ¼ 0. For the pre-
scribed constant angles "φ1;m, the corresponding measured cylinder forces and inclinations
are referred to as "Fi;mð"φ1;mÞ and "ψb;i;m "φ1;m

À Á
; i ¼ 1; . . . ;N . In order to compare the

measurement results with the simulation model, the stationary solution of Equations
(20) and (22) is determined, i.e., gð"qÞ ¼ "Q and, given φ2 ¼ φ3 ¼ φ4 ¼ 0, solved for
"hb1; . . . ; "h

b
N ;

"ho1; . . . ; "h
o
N and "F1; . . . ; "FN as a function of "φ1. In general, the inclination at the

beginning of the boom segment reads as

ψb;i ¼
Xi

n¼1
φnþ

XiÀ1

n¼1
w0nðLnÞ: (39)

Thus, for φ2 ¼ φ3 ¼ φ4 ¼ 0 and wn(xn) according to Equation (17), the stationary
relation of Equation (39) takes the form

"ψb;i ¼ "φ1 þ
XiÀ1

n¼1
"hbn ηbn
À Á0

Lnð Þ þ "hon ηon
À Á0

Lnð Þ
� �

: (40)
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With Equation (40), the stationary cylinder forces "Fi; i ¼ 1; . . . ;N , can be parame-
trized in terms of the respective inclination, i.e., "Fið"ψb;iÞ. Now the nominal mass distribu-
tion of the boom segments σiðxiÞ; i ¼ 1; . . . ;N is scaled with a multiplicative constant
�i; i ¼ 1; . . . ;N , which serves as a parameter to be identified. For this, the least squares
problem

min
�i

"Fið"ψb;i;mÞ À "Fi;mð"ψb;i;mÞ
À Á2

(41)

has to be recursively solved beginning at the last boom segment i = N.
In order to identify the stiffness and the damping behaviour of the boom, dynamic

experiments with a defined excitation of the system were performed in the next step. With
the measurements of the cylinder forces, the strain gauges and the marker movements of
the machine vision system, the mean equivalent Young’s modulus E as well as the
damping coefficients dφi and dwi were determined such that the simulation model matches
the occurring oscillation frequencies and the decay of the envelopes. The strain gauge
coefficients kSG;i and bSG;i were also identified by means of static measurements, where a
similar procedure as for the adjustment of the mass distribution was employed.

5. Experimental results

The following subsection presents the validation of the simulation model by means of
experimental results. The numerically calculated basis functions (14) and (15), employed
in the simulation model, are illustrated in Figure 11. In Figure 12, the results of static
measurements in comparison to the simulation model are given. The cylinder forces and
beam flections have been measured at different angles φ1 of the first joint and a sprawled
boom with joint angles φ2, φ3 and φ4 close to 0. The cylinder forces are normalized to the
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Figure 11. Basis functions of the boom segments normalized to the beam length and to the
maximum function value.
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maximum forces, which are determined by the supply pressure and the piston
area, Fi;N ¼ psA1:i.

In order to validate the dynamic system behaviour, the system was excited by a
sudden release of a 90 kg load at the end of the boom. In Figure 13, the comparison of
the measured and simulated response of the normalized cylinder forces, the strain gauge
signals and relative movements of the cylinder pistons at a typical boom configuration on
the construction site is shown, see Figure 1. The stationary deviations of the strain gauge
signals can be explained by thermal expansion due to different experiment days.7

Finally, in Figure 14 the measurement results of the machine vision system are
presented.8 The simulated and tracked movement of the markers, described in the inertial
frame, is illustrated. It can be seen that the amplitudes of the oscillations agree very well.
With this, an essential requirement for the mathematical model, which serves as a basis for
the design of active damping control strategies, is fulfilled. Looking at the absolute
deviations to the inertial frame, one has to bear in mind that already small deviations of
the angle w01ðL1Þ at the end of the first boom segment have a big influence on the absolute
marker positions. Furthermore, due to lens distortions at the outer image section as well as
the restricted validity of the assumption that all markers move in the same plane, the
precision of the absolute machine vision measurements is limited. However, considering
the size of the boom, the biggest vertical and horizontal deviations of about 60 cm for ym,4
and 15 cm for xm;3 can be considered small in relation to the horizontal range of 27 m.
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Figure 12. Static measurements at a sprawled boom: cylinder forces normalized to the maximum
forces and strain gauge measurements as a function of the first joint angle.
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Since in view of the envisaged controller design the main goal of the model is to capture
the essential dynamic behaviour of the mobile concrete pump, the impreciseness in terms
of the absolute deviations is of minor importance.

Figure 14 shows the relatively high resolution and low noise level of the signals,
taking into account the large work space. Figure 15 depicts the relative vertical movement
of a marker attached to the slewing gear. It can be seen that the vision system is even able
to capture the 2 mm amplitude of the reaction of the truck caused by the sudden release of
the load. With the use of the effective ellipse search algorithm, the image processing time
for each frame is far lower than the sampling time defined by the frame rate. Hence, it
would even be possible to use this system for real-time applications.
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Figure 13. Load release at the end-effector: cylinder forces, strain gauge signals and cylinder
piston movements.
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6. Conclusions

In this paper, a systematic approach for the mathematical modelling of large-scale light-
weight manipulators with hydraulic actuation was proposed. It was shown that a
suitable choice of the basis functions for the approximation of the elastic bending of
the beams has significant advantages for the incorporation of static friction into the
model. Furthermore, simulation and measurement results of a mobile concrete pump
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show the accuracy and the feasibility of the proposed modelling approach already for a
small number of basis functions. A procedure for the identification of the uncertain
model parameters is given. For this purpose, a tailored machine vision system was
presented for the measurement of the absolute boom movement. It was demonstrated
that this system enables the tracking of motions with amplitudes of approximately 2 mm
even for a large observation area.
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Notes
1. VICON: http://www.vicon.com
2. For the sake of readability, the time dependence of the degrees of freedom is not explicitly

stated in this paper.
3. Allide Vision: Pike F-505, http://www.alliedvisiontec.com
4. ROS (Robot Operating System): http://www.ros.org
5. OpenCV (Open Source Computer Vision): http://opencv.willowgarage.com/wiki/
6. ROS Camera Calibration: www.ros.org/wiki/camera_calibration
7. With the linear thermal expansion coefficient for steel of αT ;Steel % 11 . . . 13Â 10À6KÀ1 a

temperature difference over night of 10 K yields an expansion of about 110 . . . 130 μm=m:
8. A video illustrating the capturing of the vertical motion of the markers is available on http://

www.acin.tuwien.ac.at/fileadmin/cds/videos/Motion_Capturing_Mobile_Concrete_Pump.mp4
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