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Infinite-Dimensional Decentralized Damping Control of Large-Scale
Manipulators with Hydraulic Actuation ⋆

J. Henikl a, W. Kemmetmüller a, T. Meurer b, A. Kugi a

aAutomation and Control Institute, Vienna University of Technology, Vienna, Austria

bChair of Automatic Control, Christian-Albrechts-University Kiel, Kiel, Germany

Abstract

The control design for decentralized active damping of large-scale manipulators with hydraulic actuation is considered in a distributed-
parameter framework. The concepts of modern light-weight construction enable the production of machines like mobile concrete pumps
or maritime crane systems with extended operating range and less static load. However, due to the reduced weight the elasticity of the
construction elements has a significant influence on the dynamic behavior of the boom. In this paper, a modular decentralized control
strategy is presented and the asymptotic stability of the closed-loop system is rigorously proven in the infinite-dimensional setting. The
proposed damping control strategy features a robust behavior since it is independent of the number and pose of the boom segments and of
the exact knowledge of the system parameters. At the end, the practical implementation of the control strategy is discussed and validated
by means of measurements on an industrial mobile concrete pump with four joints and an operating range of about 40 meters.

Key words: flexible link manipulator; hydraulic actuators; concrete pump; feedback control; distributed-parameter systems; passivity;
Euler-Bernoulli beams.

1 Introduction

Modern large-scale manipulators such as mobile concrete
pumps have a significantly reduced weight compared to clas-
sical designs. This is mainly caused by new materials and
techniques in construction and production and enables a
higher operating range as well as reduced static load. Since
at the same time the stiffness of these systems is reduced,
they are prone to vibrations, which make the operation more
difficult and may lead to the accelerated fatigue of the con-
struction material. For this reason, the development of mod-
ern control strategies for active vibration damping or trajec-
tory planning is a topic of current research.

In the literature, many contributions to the modeling of flex-
ible multi-body systems can be found. The existing methods
are well developed and are presented in several text books,
e.g., [2], [18] and many others. The modeling of flexible
structures in general leads to a mathematical description in
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form of partial differential equations, which are also referred
to as distributed-parameter systems. Most of the investiga-
tions related to control strategies for flexible multi-body sys-
tems deal with electromechanical actuation. In this context,
comprehensive literature can be found, which in part is sum-
marized for example in [20] and [21]. For such systems,
usually a cascaded control structure with fast current con-
trollers in the innermost control loop justify the assumption
that the joint torques serve as control inputs to the system. In
contrast, for large-scale manipulators like mobile concrete
pumps, hydraulic actuators comprising hydraulic cylinders
and valves are commonly used. Their dynamic behavior and
the nonlinear characteristics have to be considered in the
controller design. The combination of flexible multi-body
systems and hydraulic actuators has been studied, e.g., in
[6,11]. Therein the modeling of the flexible structure is typ-
ically based on a finite-dimensional approximation of the
beam deflection. This approach has the advantage that the
equations of motion can be derived in a straightforward
way by means of computer algebra programs. However,
the distributed-parameter nature of the system is lost in the
finite-dimensional model. In [23], a control design consid-
ering the infinite-dimensional model of a flexible turntable
ladder is presented. However, the considered system can be
described by only a single rotating beam and the proposed
approach is not designed for a multi-body system.
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This paper is motivated by the desire to design a modular
advanced damping control strategy for modern mobile con-
crete pumps as depicted in Figure 1. In particular in view of
the practical relevance, we strive for a control strategy that is
independent of the number and pose of the boom segments
and does not rely on the exact knowledge of the physical pa-
rameters. Basically, the design of the damping controller is
based on the linearization of the distributed-parameter sys-
tem around an arbitrary operating point. This is justified by
the fact that the movement of the boom, which is manually
controlled by the machine operator, is rather slow.

joints✘✘✘✘✘✘✘✾

◗
◗
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Fig. 1. Mobile concrete pump with four joints.

The control design for distributed-parameter systems is
commonly classified into two systematic approaches: In the
early lumping approach, the distributed-parameter system
is first approximated by a finite-dimensional model. Based
on this approximation, a controller is developed utilizing
well-established design techniques for finite-dimensional
systems. However, neglecting the distributed-parameter
nature can cause a reduced control performance or even
the destabilization of the system due to the well known
spillover-effects [1]. On the other hand, in the late lumping
approach the infinite-dimensional system dynamics are ex-
plicitly taken into account in the controller design, see, e.g.,
[4,14,17]. In particular, methods for vibration damping,
which passivate the closed-loop system, are quite effective,
see, e.g., [14]. In this context, the proportional output feed-
back ensures the dissipativity of the closed-loop system in
the case of a so-called actuator-sensor-collocation. Here,
the control inputs and the output variables build a dual
pair of power variables. Numerous results are available for
single rotating and clamped beams, see, e.g., [9], [13], [19]
and [14]. In particular, in [13] and [14] the feedback of
the beam flection in combination with a velocity controlled
servo motor is analyzed. Therein, the exponential stability
of the closed-loop system is shown. Since it is well known
that a velocity control for a hydraulic cylinder piston can
be simply realized by means of a servo compensation, this
is of special interest in the considered application.

For the damping control of flexible structures with more than
one beam, only a few results are available in the late lump-
ing setting. The main reason for this is that the derivation
of the associated, in general highly nonlinear, partial dif-
ferential equations is rather complex. An example is given
in [22], where the nonlinear infinite-dimensional model of
a flexible robot with two beams is considered. In [10], a
general approach for the infinite-dimensional modeling and
analysis of dynamic elastic multi-link structures is given.
Furthermore, the control of networks of serially connected
Euler-Bernoulli beams is studied in several papers, e.g., in
[3] and [16]. However, these contributions deal with control
inputs given by forces and torques, which is not suitable for
the systems under consideration.

In this paper, the linearized equations of motion for a planar
manipulator composed of a finite number of linked Euler-
Bernoulli beams in an arbitrary pose are systematically de-
rived. In order to constrain the complexity of the calcula-
tion, the linearization of the system is performed at an early
stage. For this purpose, a first order approximation is em-
ployed for the rotation matrices used for the description of
the kinematic relations. Furthermore, it is assumed that un-
derlying velocity controllers for the joint motion based on
a servo compensation for the hydraulic actuators are imple-
mented and thus the joint angle velocities can be considered
as control inputs to the system. Application of Hamilton’s
principle yields the linearized partial differential equations
describing the motion of the structure. In order to render
the closed-loop system passive, the temporal behavior of the
overall energy stored in the system is analyzed. With this, a
control law is proposed, which ensures the asymptotic sta-
bility of the closed-loop system. The feasibility of the pro-
posed control approach is demonstrated by means of mea-
surement results for an industrial mobile concrete pump.

The paper is organized as follows: In Section 2, the essen-
tial steps for the derivation of the mathematical model are
presented. The control law, detailed in Section 3, is based
on the equations of motion and the energy stored in the
overall system. In Section 4, the proof of the asymptotic
stability of the closed-loop system is given. The practical
implementation as a decentralized modular control law and
its validation by means of measurement results on a mobile
concrete pump are the content of Section 5 and 6. Finally,
a short conclusion is given in Section 7. The Appendices
A and B contain some derivations needed for the stability
proof. Note that preliminary results motivated by a single
rotational beam involving pure simulation results without a
stability proof are provided in [7].

2 Energy-based mathematical modeling

In the following, the essential steps for the derivation of
the linearized equations of motion of a planar manipulator
composed of N linked Euler-Bernoulli beams with lengths
Ln, n = 1, . . . ,N are presented. As shown in Figure 2 for
a two-link manipulator, the overall motion of the system
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is described with respect to the inertial frame 00x0z0. As
mentioned before, the system will be linearized around an
arbitrary equilibrium. For this reason, the local coordinate
frames 0nxnzn with n > 0 are defined by means of the oper-
ating points ψd

n of the joint angles. With this, the degrees of
freedom are given by the beam deflections wn(xn), which,
in addition to the elastic deformations of the beams, include
the deviations of the joint angles from their operating points
ψd

n . The joint movement can be controlled by means of hy-
draulic actuators comprising differential cylinders and servo
valves.

Remark 1 As already discussed in the introduction, the
joint angle velocities are supposed to be imposed by under-
lying controllers such that they may be considered as control
inputs to the system.

In order to derive the equations of motion, the extended
Hamilton’s principle, see, e.g., [15], will be applied,

ˆ te

t0
[δ (EK −EP)+ δENC]dt = 0, (1)

where δ denotes the variational operator, EK , EP and ENC
represent the kinetic and the potential energy stored in the
boom structure and the virtual work of non-conservative
forces due to damping, respectively.

00 = 01

ψd
1

x0

x1

z0z1
w1(x1)

02

ψd
2

z2

x2

w2(x2)

Fig. 2. Planar manipulator with two beams.

The calculation of the kinetic energy requires the know-
ledge of the velocity of each beam in the inertial frame. The
local coordinates rn

n = [xn, wn(xn)]
T of a mass particle on the

n-th beam can be transformed into the inertial frame using
rotation matrices and translation vectors. With the assump-
tion of small deflections, the rotation from the n-th local

coordinate frame to the inertial frame is given by

Rn
0 =

[
cos(θn+νn−1) −sin(θn+νn−1)

sin(θn+νn−1) cos(θn+νn−1)

]
, (2)

where θn = ∑n
k=1 ψd

k and νn = ∑n
k=1(∂xk wk)(Lk), ν0 = 0.

For the damping controller design, the system is linearized
around a general equilibrium defined by the constant joint
angles ψd

n . In this sense, the linear approximation of Rn
0

given by

R̄n
0 =

[
cos(θn)−sin(θn)νn−1 −sin(θn)−cos(θn)νn−1

sin(θn)+cos(θn)νn−1 cos(θn)−sin(θn)νn−1

]
(3)

is used for the further analysis. The translational displace-
ment between the n-th coordinate frame and the inertial
frame can be calculated as

d̄n
0 =

n−1

∑
k=1

R̄k
0dk+1

k , (4)

with the relative displacement dn+1
n = [Ln, wn(Ln)]

T for n =
1, . . . ,N and d1

0 = [0, 0]T . Hence, the inertial position of a
mass particle on the n-th beam is determined by

rn
0(xn) = R̄n

0rn
n(xn)+ d̄n

0. (5)

Introducing the variable

yn(xn) = xn

n−1

∑
k=1

(∂xk wk)(Lk)+wn(xn), (6)

the time derivative of (5) can be expressed as

ṙn
0(xn)=

[
−ẏn(xn)sin(θn)−∑n−1

k=1 ẏk(Lk)sin(θk)

ẏn(xn)cos(θn)+∑n−1
k=1 ẏk(Lk)cos(θk)

]
(7)

after some intermediate computations and based on the as-
sumption of small deflections, in particular ν j−1ẇ j(x j)≈ 0
and ν̇ j−1w j(x j)≈ 0 in (5) for j = 1, . . . ,n. Note that the in-
verse of (6) is given by

wn(xn) = yn(xn)− xn(∂xn−1yn−1)(Ln−1) (8)

for n = 1, . . . ,N and yn(xn) = 0 for n = 0. This can be easily
proven by induction starting with w1(x1).

Remark 2 For the sake of a compact presentation of the
equations, all variables and parameters referring to a beam
n with n < 1 or n > N, respectively, are equal to zero.

Henceforth, it will be shown that the transformation (6)
yields a compact formulation of the equations of motion.
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With this and the constant mass distribution µn the kinetic
energy of the overall boom is given by

EK =
N

∑
n=1

1
2

µn

ˆ Ln

0

(
ṙn

0
)T

(xn)ṙn
0(xn)dxn. (9)

Using the Euler-Bernoulli assumptions, see, e.g., [15], the
potential energy due to the beam deflection is determined by

EP =
N

∑
n=1

1
2

Λn

ˆ Ln

0

(
∂ 2

xn
yn(xn)

)2
dxn (10)

with the flexural rigidity Λn of the n-th beam. Furthermore,
viscous damping for the beams is considered in (1) in the
form

δENC =−
N

∑
n=1

γn

ˆ Ln

0
ẏn(xn)δyn(xn)dxn, (11)

with the damping coefficients γn > 0.

Remark 3 As will be shown in Section 4, the assumption
of viscous damping can be advantageously utilized for the
analysis of the closed-loop stability. Internal Kelvin-Voigt
or structural damping can be in principle also be taken into
account in the proposed approach but only at the cost of
more involved computations.

The interconnection of the N beam elements implies the
boundary conditions

yn(0) = wn(0) = 0 (12)

and according to Remark 1

(∂xnẇn)(0) = un, (13)

or equivalently (see (8))

(∂xn ẏn)(0)− (∂xn−1 ẏn−1)(Ln−1) = un. (14)

Note that un, n = 1, . . . ,N, correspond to the impressed joint
angle velocities, which serve as control inputs. Substituting
(9), (10) and (11) into (1), and utilizing (12) and (14), after
some lengthy but straightforward calculations and re-sort of
the finite sums with, e.g., (B.7), results in the system of
partial differential equations

µn

(
ÿn(xn)+

n−1

∑
k=1

ÿk(Lk)cos
(
θn−θk

))

+γnẏn(xn)+Λn∂ 4
xnyn(xn) = 0

(15a)

and boundary conditions

yn(0) = 0, (15b)
(∂xn ẏn)(0) = un +(∂xn−1 ẏn−1)(Ln−1), (15c)

Λn
(
∂ 2

xn yn
)
(Ln) = Λn+1

(
∂ 2

xn+1
yn+1

)
(0), (15d)

Λn
(
∂ 3

xn yn
)
(Ln) =

N

∑
k=n+1

µk

ˆ Lk

0

[
ÿk(xk)cos(θk−θn)

+
k−1

∑
j=1

ÿ j(L j)cos(θ j−θn)

]
dxk

(15e)

for n = 1, . . . ,N. The geometrical boundary conditions are
given by (15b) and (15c), which represent the joint velocities
imposed by the underlying controllers. The conditions (15d)
and (15e) denote the balance of torques and forces at the
boundaries.

3 Passivity-based control law

In the following, a control law is developed which ensures
the dissipativity of the closed-loop system. For this purpose,
the temporal behavior of the total energy H stored in the
system is analyzed in the first step. The time derivative of
H = EK +EP along a solution of (15) results in, after tedious
but straightforward calculations taking into account (B.7),

Ḣ =−
N

∑
n=1

γn

ˆ Ln

0
ẏ2

n(xn)dxn −
N

∑
n=1

Λn
(
∂ 2

xn
yn
)
(0)un. (16)

Equation (16) comprises the dissipation due to the viscous
damping and the collocated pairing of the angular velocities
and the beam flections 1 (∂ 2

xn
yn)(0) at the boundaries xn = 0,

n = 1, . . . ,N. Considering (9) and (10), all yn(xn) in form
of straight lines yn(xn) = cnxn with arbitrary cn yield H =
0. Thus, the total energy of the system H is only positive
semidefinite and does not directly qualify for a Lyapunov
functional. That is, the feedback of only the beam flection
(∂ 2

xnyn)(0) does not guarantee the asymptotic stability of
the closed-loop system. Therefore, an additional position
controller is necessary. The following extension (consider
(8)) of H,

He = H +
1
2

N

∑
n=1

αn
(
(∂xn yn)(0)−(∂xn−1yn−1)(Ln−1)

)2 (17)

with αn > 0 serves as a suitable Lyapunov functional candi-
date. It can be shown by recursive evaluation with yn(xn) =
cnxn starting at n = 1 that He = 0 implies cn = 0 for n =
1, . . . ,N. The time derivative of (17) with (16) and (14) re-

1 Note that the beam flections at the boundaries xn = 0 are pro-
portional to the respective joint torques.
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sults in

Ḣe =−
N

∑
n=1

γn

ˆ Ln

0
ẏ2

n(xn)dxn−
N

∑
n=1

[
Λn
(
∂ 2

xnyn
)
(0)

−αn
(
(∂xn yn)(0)−(∂xn−1yn−1)(Ln−1)

)]
un.

(18)

By choosing a feedback law of the form

un = kn

(
Λn
(
∂ 2

xn
yn
)
(0)

−αn
(
(∂xn yn)(0)−(∂xn−1yn−1)(Ln−1)

)) (19)

with the control gains kn > 0, it follows that

Ḣe =−
N

∑
n=1

γn

ˆ Ln

0
ẏ2

n(xn)dxn−
N

∑
n=1

kn

[
Λn
(
∂ 2

xn
yn
)
(0)

−αn
(
(∂xnyn)(0)−(∂xn−1 yn−1)(Ln−1)

)]2

≤ 0.

(20)

This implies that He with (19) is an appropriate Lyapunov
functional.

4 Asymptotic stability of the closed-loop system

In the following, a rigorous proof of the asymptotic stability
of the closed-loop system is given. For the theoretical back-
ground on the analysis of the asymptotic stability of infinite-
dimensional systems, the reader is referred to, e.g., [14].

4.1 Abstract formulation

In order to represent the system as an abstract differential
equation in the form ẏ =A y with an operator A and a state
vector y, the equations of motion (15) have to be solved
for ÿ1(x1), . . . , ÿN(xN) and ÿ1(L1), . . . , ÿN−1(LN−1). For this,
ÿn(xn) is calculated from (15a) and inserted into the bound-
ary conditions (15e). After some lengthy but straightforward
calculations the resulting equations can be represented in
the form MÿL = b with ÿL = [ÿ1(L1), . . . , ÿN−1(LN−1)]

T , the
matrix M comprising the elements

Mn,k≤n =
N

∑
j=n+1

µ jL j
(
cos(θn −θk)

− cos(θ j −θn)cos(θ j −θk)
)
,

Mn,k>n =
N

∑
j=k+1

µ jL j
(
cos(θk −θn)

− cos(θ j −θn)cos(θ j −θk)
)
,

(21)

and the vector b with the components

bn =
N

∑
k=n+1

cos(θk−θn)

(
Λk

((
∂ 3

xk
yk
)
(Lk)−

(
∂ 3

xk
yk
)
(0)
)

+ γk

ˆ Lk

0
ẏk(xk)dxk

)
+Λn

(
∂ 3

xnyn
)
(Ln).

(22)

In Appendix A it is proven that the determinant of M is
given by

det(M) =
N

∏
n=2

µnLn sin2(θn −θn−1). (23)

Thus, the matrix M is invertible if no rigid body angle ψd
n =

θn − θn−1, n = 2, . . . ,N, is a multiple of π , i.e. ψd
n 6= mπ ,

m ∈ Z.

Remark 4 From a physical point of view, the singularity of
M for ψd

n =mπ can be explained by the fact that in this case
the forces before and after the joint n only differ by the sign.
This brings along two redundant equations in (15e). Thus,
no explicit representation of the system in the form ẏ = A y
can be found with ÿL being part of the state vector if M
is singular. This problem is caused by the lineariziation of
the system and the specific choice of the coordinate frames
and can be avoided by formulating the deflection of the n-
th beam in the coordinate frame 0n−1xn−1zn−1. With this,
ẅn−1(Ln−1) does not appear in the equations of motion so
that a regular matrix M can be formulated, see, e.g., the
partial differential equations of a system with N = 2 beams
and ψd

2 = 0. It seems that this is mainly a problem which
originates from the mathematical description and does not
restrict the practical imlementation of the control law (19).
However, a closed formulation of the equations of motion
as a differential equation in the form ẏ = A y that includes
all possible values for ψd

n is quite difficult to find. Therefore
in the following analysis, we will exclude these points.

By introducing the state vector

y = [y1,1, . . . ,y1,N ,y2,1, . . . ,y2,N ,y3,1, . . . ,y3,N−1]
T , (24)

with y1,n = yn(xn), y2,n = ẏn(xn) for n = 1, . . . ,N, and y3,m =
ẏm(Lm) for m = 1, . . . ,N −1 and the assumption of the reg-
ularity of M, (15) can be represented by an operator A in
the form

A y =
[
A1,1y, . . . ,A1,Ny,A2,1y,

. . . ,A2,Ny,A3,1y, . . . ,A3,N−1y
]T (25a)

with

A1,ny = y2,n

A2,ny =− γn

µn
y2,n−

Λn

µn
∂ 4

xny1,n−
n−1

∑
k=1

M̌kbcos(θn−θk)

A3,ny = M̌nb,

(25b)
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and M̌n corresponds to the n-th row of the matrix M̌ = M−1.
The domain of the operator reads as

D(A ) =
{
(y1,n,y2,n,y3,m)|y1,n ∈ H 4(0,Ln),

y2,n ∈ H 2(0,Ln),y3,m ∈R,y1,n(0) = 0,

Λn
(
∂ 2

xny1,n
)
(Ln) = Λn+1

(
∂ 2

xn+1
y1,n+1

)
(0),

(∂xn y2,n)(0) = (∂xn−1y2,n−1)(Ln−1)

+ kn

(
Λn
(
∂ 2

xn
y1,n
)
(0)−αn

(
(∂xn y1,n)(0)

− (∂xn−1y1,n−1)(Ln−1)
))

,y3,m = y2,m(Lm),

ΛN
(
∂ 3

xN
y1,N

)
(LN) = 0,

n = 1, . . . ,N,m = 1, . . . ,N − 1
}
.

(26)

The state vector y is defined in the real Sobolev space

Y = H 2
c (0,L1)× . . .×H 2

c (0,LN)×
L2(0,L1)× . . .×L2(0,LN)×RN−1,

(27)

with H 2
c (0,Ln) = {y1,n ∈H 2(0,Ln)|y1,n(0) = 0}, equipped

with the (energy) inner product 2

〈y,z〉Y =
N

∑
n=1

[
ˆ Ln

0

(
µn
(
ṙn

0
)T

(y)ṙn
0(z)+Λn∂ 2

xn
y1,n∂ 2

xn
z1,n
)
dxn

+αn
(
(∂xn y1,n)(0)−(∂xn−1 y1,n−1)(Ln−1)

)
×

(
(∂xn z1,n)(0)−(∂xn−1z1,n−1)(Ln−1)

)]

(28)

with y,z ∈ Y and, see (7),

ṙn
0(y) =

[
−y2,n sin(θn)−∑n−1

k=1 y3,k sin(θk)

y2,n cos(θn)+∑n−1
k=1 y3,k cos(θk)

]
. (29)

Due to the special choice of the inner product (28), (17)
corresponds to

He =
1
2
〈y,y〉Y =

1
2
‖y‖2

Y .

The proof that 〈y,y〉Y = 0 holds only for y = 0 can be done
by induction starting with the first beam.

Theorem 5 The operator A defined in (25) has the follow-
ing properties:

(i) A is the infinitesimal generator of a C0-semigroup
T (t) of contractions on Y .

2 Formally, the inner product should include complex conjugates
to allow for the spectral analysis of the operator. However, the
limitation to real spaces has no consequences for the results in this
paper and is therefore introduced for a more compact presentation.

(ii) The C0-semigroup T (t) is asymptotically stable.

The proof of the asymptotic stability of the closed-loop sys-
tem is performed in several steps. At first it is shown that
the operator A of (25) is dissipative. Secondly it is verified
with the Lumer-Philips theorem, see [12], that A is the in-
finitesimal generator of a C0-semigroup of contractions. In
order to apply LaSalle’s invariance principle, see [14], the
precompactness of the solution orbit has to be proven. Fi-
nally, it is shown that the largest positive invariant subset of
Ḣe(y) = 0 is the equilibrium y = 0 itself.

Lemma 6 The operator A defined in (25) is dissipative.

Proof In order to prove that the operator A is dissipative,
the validity of the inequality (see [12, Definition 1.1.1])

〈y,A y〉Y ≤ 0 (30)

has to be shown. The left-hand side of (30) is equal to the
time derivative of the Lyapunov functional He(y) according
to (17), which is rendered negative semidefinite by means
of the control law (19), see (20). Thus, inequality (30) is
satisfied. �

Lemma 7 The inverse operator ˇA = A −1 is given by

ˇA z =
[ ˇA1,1z, . . . , ˇA1,Nz, ˇA2,1z,

. . . , ˇA2,Nz, ˇA3,1z, . . . , ˇA3,N−1z
]T (31a)

with

ˇA1,nz =− 1
Λn

ˆ xn

0

ˆ ξn

0

ˆ ηn

0

ˆ εn

0

(
γnz1,n

+µnz2,n
)
dχndεndηndξn−

1
24

µn

Λn
x4

n

n−1

∑
k=1

z3,k cos(θn−θk)

+
1
6

1
Λn

C1,nx3
n +

1
2

1
Λn

C2,nx2
n +

1
Λn

C3,nxn,

ˇA2,nz = z1,n,

ˇA3,nz = z1,n(Ln),
(31b)

and the constants

C1,n = Mnz3 +

ˆ Ln

0

(
γnz1,n + µnz2,n

)
dξn

+ µnLn

n−1

∑
k=1

z3,k cos(θn −θk)

+
N

∑
k=n+1

cos(θk −θn)

[
ˆ Lk

0
µkz2,kdξk

+ µkLk

k−1

∑
j=1

z3, j cos(θk −θ j)

]
,

(31c)
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C2,n =
N

∑
k=n

{
ˆ Lk

0

ˆ ξk

0

(
γkz1,k + µkz2,k

)
dηkdξk

+
1
2

µkL2
k

k−1

∑
j=1

z3, j cos(θk −θ j)−C1,kLk

}
,

(31d)

C3,n = Λn

{ n

∑
k=1

{
C2,k

αk
− 1

kkαk

(
(∂xk z1,k)(0)

− (∂xk−1z1,k−1)(Lk−1)
)

− 1
Λk−1

(
ˆ Lk−1

0

ˆ ξk−1

0

ˆ ηk−1

0

(
γk−1z1,k−1

+ µk−1z2,k−1
)
dεk−1dηk−1dξk−1

+
1
6

µk−1L3
k−1

k−2

∑
j=1

z3, j cos(θk−1 −θ j)

− 1
2

C1,k−1L2
k−1 −C2,k−1Lk−1

)}
,

(31e)

with z3 = [z3,1, . . . ,z3,N−1]
T and z ∈ Y .

Proof For the determination of the inverse operator ˇA , the
unique solution y of A y = z has to be found for a known
state vector z∈Y . Here it can be directly seen that y2,n = z1,n
holds for n = 1, . . . ,N and consequently y3,n = z1,n(Ln) and
M̌nb = z3,n for n = 1, . . . ,N − 1. In order to calculate y1,n
for n = 1, . . . ,N, the elements A2,n(y) of (25) are integrated
four times with respect to xn

Λn∂ 3
xn y1,n =−

ˆ xn

0

(
γnz1,n + µnz2,n

)
dξn

− µnxn

n−1

∑
k=1

z3,k cos(θn−θk)+C1,n,

(32a)

Λn∂ 2
xn y1,n =−

ˆ xn

0

ˆ ξn

0

(
γnz1,n+µnz2,n

)
dηndξn

− 1
2

µnx2
n

n−1

∑
k=1

z3,k cos(θn−θk)+C1,nxn +C2,n,

(32b)

Λn∂xn y1,n =−
ˆ xn

0

ˆ ξn

0

ˆ ηn

0

(
γnz1,n

+ µnz2,n
)
dεndηndξn −

1
6

µnx3
n

n−1

∑
k=1

z3,k cos(θn−θk)

+
1
2

C1,nx2
n +C2,nxn +C3,n.

(32c)

The fourth integration with y1,n(0) = 0 yields (31b). Due to
the domain of the operator (26) the constant C1,N can be
directly identified at the position xN = LN in (32a). Since
bn = Mnz3 with z3 = [z3,1, . . . ,z3,N−1]

T represents a linear
combination of Λn∂ 3

xn
y1,n at xn = 0 and xn = Ln, see (22),

the integration constants C1,n for n = 1, . . . ,N −1 as well as
C1,N are given by (31c).

Considering (26) at xn = Ln in (32b), the relation

C2,n =C2,n+1+

ˆ Ln

0

ˆ ξn

0

(
γnz1,n+µnz2,n

)
dηndξn

+
1
2

µnL2
n

n−1

∑
k=1

z3,k cos(θn −θk)−C1,nLn

(33)

for the constants C2,n follows from C2,n+1 = 0 for n = N.
Starting at n = N the constants C2,n can be explicitly deter-
mined according to (31d).

With the evaluation of (32c) at xn = 0 and xn−1 = Ln−1 as
well as considering D(A ) and ∂xny2,n = ∂xnz1,n the implicit
relation for C3,n, n = 2, . . . ,N reads as

C3,n

Λn
=

C3,n−1

Λn−1
+

C2,n

αn
− 1

knαn

(
(∂xnz1,n)(0)

− (∂xn−1z1,n−1)(Ln−1)
)

− 1
Λn−1

(
ˆ Ln−1

0

ˆ ξn−1

0

ˆ ηn−1

0

(
γn−1z1,n−1

+ µn−1z2,n−1
)
dεn−1dηn−1dξn−1

+
1
6

µn−1L3
n−1

n−2

∑
k=1

z3,k cos(θn−1 −θk)

− 1
2

C1,n−1L2
n−1 −C2,n−1Ln−1

)
.

(34)

The recursive evaluation starting with

C3,1 =
Λ1

α1
C2,1 −

Λ1

k1α1
(∂x1 z1,1)(0) (35)

results in the explicit representation (31e). With this, the
inverse operator ˇA is clearly defined. �

It is shown in Appendix B that the inverse operator ˇA is
bounded. The boundedness of ˇA implies that 0 cannot be
an eigenvalue of A and is therefore an element of the re-
solvent set. With this, considering Theorem 1.2.4 in [12],
which follows directly from the Lumer-Philips theorem, A
is the infinitesimal generator of a C0-semigroup T (t) of
contractions on Y and thus (i) in Theorem 5 is shown.

The prerequisite for the application of the invariance prin-
ciple of LaSalle, see Theorem 3.64 in [14], is the precom-
pactness of the orbit, which is in general not ensured for
distributed-parameter systems.

Lemma 8 The orbit Ω(y) =
⋃

t≥0 T (t)y is precompact.

Proof Pursuant to Theorem 3.65 in [14], the precompact-
ness is given if 0 is an element of the resolvent set of A and
if there exists a λ > 0 for which the resolvent (λI −A )−1
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is compact. The bounded operator ˇA maps bounded sub-
sets from Y onto bounded subsets of D(A ). According to
the Sobolev embedding theorem bounded sets of D(A ) are
precompact in Y . Hence, ˇA maps bounded subsets of Y
onto precompact subsets of Y and in consequence the com-
pactness of the inverse operator ˇA follows. Therefore, con-
sidering Theorem 6.29 in [8, p. 187] the operator A has a
compact resolvent and has only discrete eigenvalues with fi-
nite algebraic multiplicity. Hence, there exists a λ > 0 such
that the resolvent (λI −A )−1 is compact. This implies the
precompactness of the orbit. �

Lemma 9 The largest positive invariant subset of {y|Ḣe(y)=
0} is given by y = 0.

Proof From Ḣe(y) = 0 (see (20)), it follows that

−
N

∑
n=1

γn

ˆ Ln

0
y2

2,ndxn −
N

∑
n=1

kn

(
Λn
(
∂ 2

xn y1,n
)
(0)

−αn
(
(∂xn y1,n)(0)−(∂xn−1y1,n−1)(Ln−1)

))2
=0.

(36)

For (36) to hold, the following conditions

Λn
(
∂ 2

xn
y1,n
)
(0)

−αn
(
(∂xny1,n)(0)−(∂xn−1y1,n−1)(Ln−1)

)
= 0,

y2,n = 0
(37)

have to be fulfilled for n = 1, . . . ,N. Considering the con-
straints (37) as well as y3,n = y2,n(Ln), the partial differential
equation (15a) with (19) results in

Λn∂ 4
xn y1,n = 0 (38a)

with the boundary conditions

y1,n(0) = 0, (38b)

Λn
(
∂ 2

xn y1,n
)
(Ln) = Λn+1

(
∂ 2

xn+1
y1,n+1

)
(0), (38c)

Λn
(
∂ 3

xn y1,n
)
(Ln) = 0. (38d)

By integration of (38a) four times with respect to xn, the
equations

Λn∂ 3
xn

y1,n=C̄1,n, (39a)

Λn∂ 2
xny1,n=C̄1,nxn+C̄2,n, (39b)

Λn∂xny1,n=
1
2

C̄1,nx2
n+C̄2,nxn+C̄3,n, (39c)

Λny1,n=
1
6

C̄1,nx3
n+

1
2

C̄2,nx2
n+C̄3,nxn+C̄4,n (39d)

are given. From (38b) and (38d), it directly follows that
C̄4,n = C̄1,n = 0, n = 1, . . . ,N. A recursive evaluation of the
boundary condition (38c) with (39b) beginning at n = N

entails C̄2,n = 0, n = 1, . . . ,N. With these results and (37)
the relation

(∂xny1,n)(0) = (∂xn−1y1,n−1)(Ln−1) (40)

holds, and thus C̄3,n = 0, n = 1, . . . ,N can be deduced by
recursive evaluation of (40) with (39c) beginning at n = 1.
Therefore, y1,n = 0, n= 1, . . . ,N, is the only possible solution
of (38a). With this result, Lemma 9 is shown and thus the
asymptotic stability of T (t) respectively the closed-loop
system is proven. ✷

Remark 10 It should be noted that for the determination of
the largest positive invariant subset the assumption of vis-
cous damping γn > 0, n = 1, . . . ,N, is essential to avoid un-
necessary difficulties in the derivation. Without these non-
conservative forces, the proof would be significantly more
involved. We are quite sure that this assumption is only of
technical nature and that the above results are also valid
for systems without viscous damping as well as for systems
with internal Kelvin-Voigt or structural damping. However,
since some amount of viscous damping could be assumed in
all real technical systems, this is no restriction at all.

5 Decentralized modular realization of the control law

The control law (19) is implemented as a decentralized con-
trol strategy for each joint of the planar manipulator. Con-
sidering (∂xnyn)(0)− (∂xn−1yn−1)(Ln−1) = (∂xn wn)(0) and
∂ 2

xnyn(xn) = ∂ 2
xnwn(xn) and introducing the absolute joint an-

gle ψn = ψd
n + (∂xnwn)(0), the corresponding control law

(19) for the joints of the boom reads as

uc
n = kd,n

∂ 2wn(xn)

∂x2
n

∣∣∣∣
xn=0

− kp,n

(
ψn −ψd

n

)
, (41)

with the controller parameters kd,n = knΛn and kp,n = knαn.

In the following, a possible realization of the control strategy
for implementation, e.g., to control the boom of a mobile
concrete pump, is given. The beam flection (∂ 2

xnwn)(0) and
the absolute joint angle ψn can be measured by means of
strain gauges and rotary encoders or inclination sensors, re-
spectively. Due to gravity, the stationary beam flection is in
general different from zero and has to be subtracted from the
measurement signal prior to feeding it to the damping con-
troller. Due to limited model accuracy, e.g. the exact amount
and weight of wet concrete in the pipes is not known, a re-
liable calculation of the stationary beam flection is not pos-
sible. Therefore, the use of a first order high-pass filter is
proposed for the elimination of the stationary part of the sig-
nal. According to the lowest eigenfrequencies of the system,
the cutoff frequency of the filter has to be adjusted such that
the dynamic part of the signal remains widely unchanged
without noticable phase-lead. Figure 3 illustrates the block
diagram of the control strategy for a single boom segment
with the index n. The system is represented by the boom and

8

Post-print version of the article: J. Henikl, W. Kemmetmüller, and A. Kugi, “Infinite-dimensional decentralized damping control of large-
scale manipulators with hydraulic actuation”, Automatica, vol. 63, pp. 101–115, 2016. doi: 10.1016/j.automatica.2015.10.024
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.automatica.2015.10.024


the hydraulic actuator HAn. The beam flection (∂ 2
xn

wn)(0) is
filtered by a high-pass filter HPn. The resulting control input
un = ud

n +uc
n consists of the desired angular velocity ud

n , pro-
vided by the operator, and the feedback part uc

n according to
(41). The corresponding valve position sv,n is obtained by a
subordinate velocity controller VCn. During a movement of
the joint by the operator, the activation of the position con-
troller is not reasonable. For this reason, the desired joint
angle is set to the actual measurement ψd

n = ψn in the case
of ud

n 6= 0 and the position controller has no influence on the
system. Hence, for ud

n = 0 the desired joint angle ψd
n is de-

termined by the position ψn where the operator stopped the
movement of the particular joint.

VCn HAn Boom

Plant

HPn

unud
n

uc
n

sv,n

kd,n

kp,n

(∂ 2
xn wn)(0)

ψn

ψd
n

Fig. 3. Control structure for the n-th beam.

Remark 11 Although the theoretical results allow to choose
the controller coefficients kd,n and kp,n arbitrarily high with-
out destabilizing the system, this is not true in reality. In
practice, the dynamic behavior of the actuators (here es-
pecially the hydraulic actuators of the underlying velocity
controllers) as well as of the sensors always constitutes a
limiting factor. In addition the control inputs are always
bounded in reality. However, even in the case of theoreti-
cally ideal actuators and sensors it is probably necessary
to limit the controller coefficients in order to avoid a poor
closed-loop performance due to the so-called overdamping
phenomenon, see, e.g., [5]. It has to be noted that the result
of the stability proof gives no information about the decay
rate of oscillations. Nevertheless, it yields a powerful tool
for the engineers to adjust a reasonable damping ratio tai-
lored to the respective application that guarantees a high
robustness against model uncertainties and varying boom
configurations if the assumptions of the control strategy are
essentially fulfilled.

6 Experimental results

A typical industrial mobile concrete pump according to Fig-
ure 1 with four joints and an operating range of about 40 m
serves as a test system for the application of the presented
control strategy. Since the hydraulic systems typically used
for the actuation of mobile concrete pumps have fundamen-
tal weaknesses concerning the realization of an active damp-
ing control, an alternative hydraulic concept was developed
for the actuation of the particular joints. In particular, the

control valves are mounted directly on the hydraulic cylin-
ders in order to avoid the dynamic influence of the long
hydraulic lines. Furthermore, a controlled constant pressure
system is installed instead of the conventional load-sensing
system. With this, a feedforward control of the joint angular
velocities is realized by means of a servo compensation. A
detailed discussion about the disadvantages of the classical
system and the proposed hydraulic architecture as well as
the implemented algorithms is given in [7].

In the experimental setup, the following sensors were used
for the measurement of the system variables required for the
feedback controller and the velocity controller:

• Inclination sensors at both ends of each beam in order to
determine the joint angles ψn.

• Strain gauges for the measurement of the beam flections
(∂ 2

xn
wn)(0).

• Two pressure sensors at each hydraulic cylinder required
for the velocity controllers.

In order to validate the proposed control strategy, the system
has been excited by means of a sudden release of a 75 kg
load at the end of the boom at several poses. This load relates
to the mass of wet concrete fitting in the end hose. For all
experiments, the same controller parameters were chosen
for all joints, kd = kd,n and kp = kp,n for n = 1, . . . ,4. The
parameters were manually tuned by increasing of kd and kp
until the boom exhibited the desired damping behavior and
an appropriate position control performance.

In the following, the achieved damping of the system is il-
lustrated by means of the strain gauge measurements at three
different configurations of the boom presented in Figure 4. In
the first configuration (I), the boom was sprawled, which is a
pose with low rigidity. Configuration (II) is a typical config-
uration at a construction site and the third configuration (III)
possesses a high rigidity. The initial states of the joint an-
gles are identical to the desired values, i.e. ψn(0) = ψd

n . For
comparison, the experiments were performed for the nomi-
nal set of parameters with kd = k̄d , kp = k̄p, which achieves
a good overall behavior of the system, a set of parameters
with a lower damping ratio kd = k̄d/4, kp = k̄p and the sys-
tem without any active control kd = 0, kp = 0. It can be seen
in the figures 5, 6 and 7 that the vibrations of the system
can be reduced very effectively with the proposed control
concept in all boom configurations with identical controller
parameters. Even the very rigid configuration with higher
natural harmonics is well damped by the controller. Fur-
thermore, the figures illustrate that the damping ratio can
be proportionally adjusted by the coefficients kd,n. In Figure
8, the control inputs for the experiment with the sprawled
boom configuration (I) and the nominal set of parameters
are shown. It can be seen that for the damping of the overall
structure only low angular velocities are required. The noise
of the input variables are caused by the measurement sig-
nals of the inclination sensors. It has no negative influence
on the control performance.
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Configuration (I)

Configuration (II)

Configuration (III)

Fig. 4. Boom configurations.

 

 

kd = k̄dkd = 1
4 k̄dkd = 0

ε 4
[µ

m
/m

]

t [s]

ε 3
[µ

m
/m

]

t [s]

ε 2
[µ

m
/m

]

ε 1
[µ

m
/m

]

0 5 10 150 5 10 15

0

100

200

0

50

100

0

50

100

150

0

50

100

Fig. 5. Strain gauge measurements: boom-configuration (I).

The experimental results demonstrate that the controllers for
the particular joints are very easy to parameterize. The per-
formance of the particular position controllers is directly re-
lated to the coefficients kp,n whereas the damping ratio can
be proportionally adjusted by the coefficients kd,n. Due to
the fact that the control law is modular and independent of
the number and the pose of the boom segments as well as
the exact knowledge of the system parameters this control
concept proved to be very effective and robust for the indus-
trial use. Furthermore, the practical experiences show that
the system could also be damped very effectively if only a
few joints are used for the active control. This makes the
implementation of this system very flexible and fail safe.

Remark 12 Considering Remark 4, the joint angles of the
boom-configuration (I) are close to the values ψn = 0 for
n = 2, . . . ,N at which the matrix M gets singular. Since the
operating range of the joints 2 and 3 of the considered mobile
concrete pump is approximately limited by ψ2,ψ3 ∈ [−π ,0],
a reasonable test at exactly these positions is not possible.
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Fig. 6. Strain gauge measurements: boom-configuration (II).
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Fig. 7. Strain gauge measurements: boom-configuration (III).

However, the experimental results support the assertion that
the singularity of M is rather a problem of the mathemati-
cal formulation and has no consequence for the controller
design or the closed-loop performance.

7 Conclusions and outlook

In this paper, a control strategy for the damping of the elastic
vibrations of large-scale manipulators with hydraulic actua-
tion based on an infinite-dimensional model was presented.
The linearized partial differential equations with boundary
conditions for a boom with a general number of beams in an
arbitrary pose was derived by means of Hamilton’s principle.
Thereby, an ideal subordinate velocity controller for the hy-
draulic actuators was presumed and thus the joint angle ve-
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Fig. 8. Control inputs: boom-configuration (I).

locities serve as input variables to the system. It was shown
that a modular decentralized feedback of the beam curvature
in combination with a position controller renders the closed-
loop system dissipative. Furthermore, it was proven that the
closed-loop system is asymptotically stable. The proposed
control strategy was validated by means of measurements
for a typical industrial mobile concrete pump with a modi-
fied hydraulic actuation design. For the measurement of the
required beam curvature strain gauges were used. The re-
sults demonstrate that with the proposed approach the sys-
tem can be damped in a very effective way independent of
the pose of the boom and the number of boom segments.

Although strong and general statements about the stability
of planar manipulators composed by serially linked Euler-
Bernoulli beams are given in this paper, the theoretical re-
sults show the way for further improvements: A stronger
theoretical result could be obtained if the largest positive
invariant subset can be determined without any damping
model. Moreover, the extension of the stability proof to sys-
tems with internal Kelvin-Voigt damping or structural damp-
ing also constitutes an interesting topic of research. Further-
more, due to the proof of asymptotic stability no informa-
tion about the decay rate of the oscillations is given. In this
context, the proof of exponential stability of the closed-loop
system is of interest for the considered systems. However,
due to the model complexity, this is much more involved
for systems with an arbitray number of serially connected
beams. In fact, typically used techniques to prove the expo-
nential stability for single beam structures as described e.g.
in [14] are hard to apply or generalize to multi-beam struc-
tures. Finally, it was already indicated in the paper that the
oscillations of the industrial concrete pump could also be
damped if only a few joints are used for the active control.
Since this is of strong interest to the practitioners, the exten-
sion of the stability proof to systems with a subset of active
controllers seems worth striving for.

A Determinant of the matrix M

In the following, the determinant of the matrix (21) will be
calculated by means of Gaussian elimination. A closer look
at (21) reveals that the elements of the main diagonal can
be simplified to

Mn,n =
N

∑
j=n+1

µ jL j sin2(θ j −θn) (A.1)

and that M is symmetric. Since the number of summation
elements decreases with a higher row and column index, the
Gaussian elimination is getting started at the last column.
Assuming θN −θN−1 6=mπ , m ∈Z, the first step is given by

L1M=




1 . . . 0 − MN−1,1
MN−1,N−1

...
. . .

...
...

0 . . . 1 −MN−1,N−2
MN−1,N−1

0 . . . 0 1







M1,1 . . . MN−1,1
...

. . .
...

MN−2,1 . . . MN−1,N−2

MN−1,1 . . . MN−1,N−1




=




M̄1,1 . . . M̄N−2,1 0
...

. . .
...

...

M̄N−2,1 . . . M̄N−2,N−2 0

MN−1,1 . . . MN−1,N−2 MN−1,N−1



,

(A.2a)

with

M̄n,n = Mn,n −
M2

N−1,n

MN−1,N−1
, (A.2b)

M̄n,k = Mn,k −
MN−1,nMN−1,k

MN−1,N−1
. (A.2c)

Inserting (21) into (A.2b) yields

M̄n,n =
N

∑
j=n+1

µ jL j sin2(θ j−θn)−
(
cos(θN−1−θn)

− cos(θN−θn)cos(θN−θN−1)
)2 µNLN

sin2(θN−θN−1)
.

Utilizing the equivalence

(
cos(θN−1−θn)−cos(θN−θn)cos(θN−θN−1)

)2

= sin2(θN−θN−1)sin2(θN−θn),

M̄n,n, n = 1, . . . ,N − 2, reads as

M̄n,n =
N−1

∑
j=n+1

µ jL j sin2(θ j −θn). (A.3)
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Analogously, the matrix elements M̄n,k for n = 1, . . . ,N − 2
and k = 1, . . . ,N−3 follow from (A.2c) with (21) in the form

M̄n,k =
N

∑
j=n+1

µ jL j
(
cos(θn−θk)−cos(θ j−θn)cos(θ j−θk)

)

−
(
cos(θN−1−θn)−cos(θN−θn)cos(θN−θN−1)

)
×(

cos(θN−1−θk)−cos(θN−θk)cos(θN−θN−1)
)
×

µNLN

sin2(θN−θN−1)
.

The second term on the right-hand side can be simplified to

(
cos(θN−1−θn)−cos(θN−θn)cos(θN−θN−1)

)
×(

cos(θN−1−θk)−cos(θN−θk)cos(θN −θN−1)
)

=sin2(θN−θN−1)
(
cos(θn−θk)−cos(θN−θn)cos(θN−θk)

)

by exploiting the product-to-sum identities of trigonometric
functions. Finally, this yields

M̄n,k =
N−1

∑
j=n+1

µ jL j
(
cos(θn−θk)−cos(θ j−θn)cos(θ j−θk)

)
.

(A.4)

Comparing (A.4) with (21) shows that the matrix L1M
has the identical structure as the matrix M. Therefore, on
the assumption that θn − θn−1 6= mπ , m ∈ Z, the elimi-
nation step (A.2a) can be successively repeated until the
matrix M is transformed into the triangular matrix M∆ =
LN−2 . . .L2L1M. Since the main diagonal elements of M∆

are given by

M∆
n,n = µn+1Ln+1 sin2(θn+1 −θn) (A.5)

for n = 1, . . . ,N − 1, the determinant of M∆ and thus of M
reads as

det(M) =
N

∏
n=2

µnLn sin2(θn −θn−1). (A.6)

B Proof of boundedness of the inverse operator

In order to prove the boundedness of the inverse operator
ˇA , the existence of a constant C has to be shown such that

the inequality
∥∥ ˇA z

∥∥≤C‖z‖ holds. The square of the norm
of ˇA z, given by

∥∥ ˇA z
∥∥2

=
N

∑
n=1

[
ˆ Ln

0

{
µn
(
r̄n

0
)T

(z)r̄n
0(z)

+Λn

(
− 1

Λn

ˆ xn

0

ˆ ξn

0

(
γnz1,n + µnz2,n

)
dηndξn

− µn

2Λn
x2

n

n−1

∑
k=1

z3,k cos(θn −θk)+
C1,n

Λn
xn +

C2,n

Λn

)2}
dxn

+αn

(
C3,n

Λn
+

1
Λn−1

ˆ Ln−1

0

ˆ ξn−1

0

ˆ ηn−1

0

(
γn−1z1,n−1

+ µn−1z2,n−1
)
dεn−1dηn−1dξn−1

+
µn−1

6Λn−1
L3

n−1

n−2

∑
k=1

z3,k cos(θn−1 −θk)−
C1,n−1

2Λn−1
L2

n−1

− C2,n−1

Λn−1
Ln−1 −

C3,n−1

Λn−1

)2]

with, see (7),

r̄n
0(z) =

[
−z1,n sin(θn)−∑n−1

k=1 z1,k(Lk)sin(θk)

z1,n cos(θn)+∑n−1
k=1 z1,k(Lk)cos(θk)

]
, (B.1)

can be simplified by substituting the constants C3,n from
(31e)

∥∥ ˇA z
∥∥2

=
N

∑
n=1

[
ˆ Ln

0

{
µn
(
r̄n

0
)T

(z)r̄n
0(z)

+Λn

(
− 1

Λn

ˆ xn

0

ˆ ξn

0

(
γnz1,n + µnz2,n

)
dηndξn

− µn

2Λn
x2

n

n−1

∑
k=1

z3,k cos(θn −θk)+
C1,n

Λn
xn +

C2,n

Λn

)2}
dxn

+αn

(
C2,n

αn
− 1

knαn

(
(∂xn z1,n)(0)−(∂xn−1z1,n−1)(Ln−1)

))2
]
.

(B.2)

In the following, some useful inequalities and finite sums
are introduced.

• Cauchy-Schwarz inequality: In the space of the square-
integrable functions, the inequality

[
ˆ L

0
x(z)y(z)dz

]2

≤
ˆ L

0

(
x(z)

)2dz
ˆ L

0

(
y(z)

)2dz (B.3)

holds with x(z),y(z) ∈ L2(0,L). Furthermore, in the Eu-
clidean space RN we have

(
N

∑
n=1

an

)2

≤ N
N

∑
n=1

a2
n. (B.4)

• Poincaré inequality: Let x(z) ∈C (0,L), then the follow-
ing inequalities hold:

ˆ L

0

(
x(z)

)2dz ≤ 2L
(
x(0)

)2
+ 4L2

ˆ L

0

(
∂zx(z)

)2dz, (B.5)
ˆ L

0

(
x(z)

)2dz ≤ 2L
(
x(L)

)2
+ 4L2

ˆ L

0

(
∂zx(z)

)2dz. (B.6)
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• Finite sums:

M

∑
m=1

am

m−1

∑
n=1

bncm,n =
M

∑
m=1

bm

M

∑
n=m+1

ancn,m (B.7)

M

∑
m=1

am

m

∑
n=1

bncm,n =
M

∑
m=1

bm

M

∑
n=m

ancn,m (B.8)

M

∑
m=1

am

m−1

∑
n=0

3nbm−n =
M

∑
m=1

bm

M

∑
n=m

3n−man (B.9)

M

∑
m=k

am

M

∑
n=m+1

bn =
M

∑
m=k

bm

m−1

∑
n=k

an (B.10)

M

∑
m=k

am

m−1

∑
n=0

3nbm−n =
k

∑
m=1

bm

M

∑
n=k

3n−man+
M

∑
m=k+1

bm

M

∑
n=m

3n−man

(B.11)
M

∑
m=k+1

am,k

m−1

∑
n=1

bncn,m=
k

∑
m=1

bm

M

∑
n=k+1

an,kcm,n+
M

∑
m=k+1

bm

M

∑
n=m+1

an,kcm,n

(B.12)
M

∑
m=k+1

am

M

∑
n=m+1

bn =
M

∑
m=k+1

bm

m−1

∑
n=k+1

an (B.13)

Lemma 13 Let z2,n ∈L2(0,Ln) and z3,m ∈R with z1,n(0) =
z2,n(0) = z3,m(0) = 0 for n = 1, . . . ,N and m = 1, . . . ,N −1.
Then the inequality

(
z2,n +

n−1

∑
k=1

z3,k cos(θn −θk)

)2

≤
(
ṙn

0
)T

(z)ṙn
0(z) (B.14)

holds.

Proof With (7), the substitutions

ζs,n =
n−1

∑
k=1

z3,k sin(θk),

ζc,n =
n−1

∑
k=1

z3,k cos(θk)

(B.15)

and the addition and subtraction theorems of trigonometry,
inequality (B.14) simplifies to

(
z2,n + cos(θn)ζc,n + sin(θn)ζs,n

)2

≤
(
z2,n sin(θn)+ ζs,n

)2
+
(
z2,n cos(θn)+ ζc,n

)2
.

Further evaluation yields

(
sin(θn)ζc,n − cos(θn)ζs,n

)2 ≥ 0,

and thus the validity of (B.14) is shown. �

Lemma 14 Let z2,n ∈L2(0,Ln) and z3,m ∈R with z1,n(0) =
z2,n(0) = z3,m(0) = 0 for n = 1, . . . ,N and m = 1, . . . ,N −1.
Then the inequality

[(
z2,k +

k−1

∑
j=1

z3, j cos(θk −θ j)

)
cos(θk −θn)

+
k−1

∑
j=1

z3, j sin(θk −θ j)sin(θk −θn)

]2

≤ 2
(
ṙk

0
)T

(z)ṙk
0(z)

(B.16)

holds.

Proof Considering the addition and subtraction theorems of
trigonometry, the inequality

((
z2,k + cos(θk)ζc + sin(θk)ζs

)
cos(θk −θn)

+
(
sin(θk)ζc − cos(θk)ζs

)
sin(θk −θn)

)2

≤2
(
z2,k+cos(θk)ζc+sin(θk)ζs

)2
+2
(
sin(θk)ζc−cos(θk)ζs

)2

(B.17)

is satisfied for the left side of (B.16) with (B.15), (B.4) and
0 ≤ sin2(θk −θn) ≤ 1 and 0 ≤ cos2(θk −θn) ≤ 1. Utilizing
the identity

2
(
z2k+cos(θk)ζc+sin(θk)ζs

)2
+2
(
sin(θk)ζc−cos(θk)ζs

)2

= 2
(
z2k sin(θk)+ζs

)2
+ 2
(
z2k cos(θk)+ζc

)2

in (B.17) directly shows the validity of Lemma 14. �

Lemma 15 Let z1,n ∈H 2(0,Ln) and n= 1, . . . ,N. Then the
inequality

ˆ Ln

0
(∂xn z1,n)

2dxn ≤ 4Ln

n−1

∑
k=0

3k
[(
(∂xn−k z1,n−k)(0)

− (∂xn−k−1z1,n−k−1)(Ln−k−1)
)2

+Ln−k

ˆ Ln−k

0

(
∂ 2

xn−k
z1,n−k

)2dxn−k

]
(B.18)

holds.

Proof By the use of Poincaré’s inequality (B.5), the relation

ˆ Ln

0
(∂xn z1,n)

2dxn ≤ 2Ln
(
(∂xnz1,n)(0)

)2

+ 4L2
n

ˆ Ln

0

(
∂ 2

xn
z1,n
)2dxn,
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is given. Hence, with the addition and subtraction of
∂xn−1z1,n−1 at xn−1 = Ln−1 as well as (B.4) the inequality

ˆ Ln

0
(∂xn z1,n)

2dxn≤4Ln
(
(∂xn z1,n)(0)−(∂xn−1z1,n−1)(Ln−1)

)2

+ 4L2
n

ˆ Ln

0

(
∂ 2

xn z1,n
)2dxn + 4Ln

(
(∂xn−1z1,n−1)(Ln−1)

)2

holds. Considering

(∂xn−1z1,n−1)(Ln−1)=

ˆ Ln−1

0
∂ 2

xn−1
z1,n−1dxn−1

+(∂xn−1z1,n−1)(0),

a further addition and subtraction of ∂xn−2z1,n−2 at xn−2 =
Ln−2 as well as the use of the inequality of Cauchy-Schwarz
(B.3) and (B.4) results in

ˆ Ln

0
(∂xnz1,n)

2dxn≤4Ln
(
(∂xn z1,n)(0)−(∂xn−1z1,n−1)(Ln−1)

)2

+ 4L2
n

ˆ Ln

0

(
∂ 2

xn
z1,n
)2dxn

+ 12Ln
(
(∂xn−1z1,n−1)(0)− (∂xn−2z1,n−2)(Ln−2)

)2

+ 12LnLn−1

ˆ Ln−1

0

(
∂ 2

xn−1
z1,n−1

)2dxn−1

+ 12Ln
(
(∂xn−2z1,n−2)(Ln−2)

)2
.

With the recursive application of the above steps the validity
of Lemma 15 can be shown. �

Lemma 16 Let z1,n ∈ H 2(0,Ln) with z1,n(0) = 0 and n =
1, . . . ,N. Then the inequality

ˆ Ln

0
z2

1,ndxn ≤ 16L3
n

n−1

∑
k=0

3k
[(
(∂xn−k z1,n−k)(0)

−(∂xn−k−1z1,n−k−1)(Ln−k−1)
)2

+Ln−k

ˆ Ln−k

0

(
∂ 2

xn−k
z1,n−k

)2dxn−k

]
(B.19)

holds.

Proof Considering Poincaré’s inequality (B.5) as well as
z1,n(0) = 0, the inequality

ˆ Ln

0
z2

1,ndxn ≤ 4L2
n

ˆ Ln

0

(
∂xnz1,n

)2dxn

is given and thus the validity of (B.19) can be shown by
means of Lemma 15. �

Lemma 17 Let z1,n ∈ H 2(0,Ln) with z1,n(0) = 0 and n =
1, . . . ,N. Then the inequality

N

∑
n=1

ˆ Ln

0
µn
(
r̄n

0
)T

(z)r̄n
0(z)dxn ≤

N

∑
n=1

{
K1,nΛn

ˆ Ln

0

(
∂ 2

xn
z1,n
)2dxn

+K2,nαn
(
(∂xnz1,n)(0)−(∂xn−1 z1,n−1)(Ln−1)

)2
}

(B.20a)

holds with

K1,n = 8
Ln

Λn

N

∑
k=n

3k−nL2
k

(
4µkLk+

N

∑
j=k+1

( j− 1)µ jL j

)
,

K2,n = K1,n
Λn

Lnαn
.

(B.20b)

Proof With (B.1), the left side of (B.20a) is given by

N

∑
n=1

ˆ Ln

0
µn
(
r̄n

0
)T

(z)r̄n
0(z)dxn

=
N

∑
n=1

ˆ Ln

0
µn

[(
−z1,n sin(θn)−

n−1

∑
k=1

z1,k(Lk)sin(θk)

)2

+

(
z1,n cos(θn)+

n−1

∑
k=1

z1,k(Lk)cos(θk)

)2
]

dxn.

Considering (B.4), the inequality

N

∑
n=1

ˆ Ln

0
µn
(
r̄n

0
)T

(z)r̄n
0(z)dxn

≤
N

∑
n=1

ˆ Ln

0
2µn

[
z2

1,n +(n− 1)
n−1

∑
k=1

z2
1,k(Lk)

]
dxn

holds. With the evaluation of the integral for the terms in-
dependent of xn and considering z1,k(0) = 0 we may write

N

∑
n=1

ˆ Ln

0
µn
(
r̄n

0
)T

(z)r̄n
0(z)dxn

≤
N

∑
n=1

2µn

[
ˆ Ln

0
z2

1,ndxn+Ln(n−1)
n−1

∑
k=1

(
ˆ Lk

0
∂xk z1,kdxk

)2
]
.

Furthermore, application of (B.7) and the inequality of
Cauchy-Schwarz (B.3) yields

N

∑
n=1

ˆ Ln

0
µn
(
r̄n

0
)T

(z)r̄n
0(z)dxn ≤

N

∑
n=1

2

[
µn

ˆ Ln

0
z2

1,ndxn

+Ln

ˆ Ln

0
(∂xn z1,n)

2dxn

N

∑
k=n+1

(k− 1)µkLk

]
.
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Finally, utilizing Lemma 15 and 16 in combination with
a rearrangement of the sums according to (B.9) shows the
validity of Lemma 17. �

Lemma 18 The constants C1,n comply with the inequality

C2
1n ≤ 48L4

nγ2
n

n−1

∑
k=0

3k
{(

(∂xn−k z1,n−k)(0)

− (∂xn−k−1z1,n−k−1)(Ln−k−1)
)2

+Ln−k

ˆ Ln−k

0

(
∂ 2

xn−k
z1,n−k

)2dxn−k

}

+ 3Lnµ2
n

ˆ Ln

0

(
ṙn

0
)T

(z)ṙn
0(z)dxn

+ 6(N − n)
N

∑
k=n+1

µ2
k Lk

ˆ Lk

0

(
ṙk

0
)T

(z)ṙk
0(z)dxk.

(B.21)

Proof In the first step, the constants C1,n according to (31c)
will be represented in a more convenient form. The constants
contain the term Mnz3 given by

Mnz3 =
n−1

∑
k=1

N

∑
j=n+1

µ jL j

(
cos(θn−θk)

− cos(θ j−θn)cos(θ j−θk)
)

z3,k +
N

∑
j=n+1

µ jL j sin2(θ j−θk)z3,n

+
N

∑
k=n+1

N

∑
j=k+1

µ jL j

(
cos(θk−θn)−cos(θ j−θn)cos(θ j−θk)

)
z3,k.

(B.22)

Furthermore, with (B.12) the identity

N

∑
k=n+1

cos(θk −θn)µkLk

k−1

∑
j=1

z3, j cos(θk −θ j)

=
n−1

∑
k=1

N

∑
j=n+1

µ jL j cos(θ j −θk)cos(θ j −θn)z3,k

+
N

∑
j=n+1

µ jL j cos2(θ j −θn)z3,n

+
N

∑
k=n+1

N

∑
j=k+1

µ jL j cos(θ j −θk)cos(θ j −θn)z3,k.

holds. With this, see (B.22), the constants C1,n due to (31c)
can be simplified to

C1,n =
n−1

∑
k=1

cos(θn−θk)z3,k

N

∑
j=n+1

µ jL j + z3,n

N

∑
j=n+1

µ jL j

+
N

∑
k=n+1

cos(θk−θn)z3,k

N

∑
j=k+1

µ jL j +

ˆ Ln

0

(
γnz1,n + µnz2,n

)
dxn

+µnLn

n−1

∑
k=1

z3,k cos(θn−θk)+
N

∑
k=n+1

cos(θk−θn)

ˆ Lk

0
µkz2,kdxk.

This representation can be further simplified in several steps
with the help of (B.13) and the addition and subtraction
theorems of trigonometry,

C1,n =

ˆ Ln

0
γnz1,ndxn+

ˆ Ln

0
µn

(
z2,n+

n−1

∑
k=1

z3,k cos(θn−θk)

)
dxn

+
N

∑
k=n+1

ˆ Lk

0
µk

[(
z2,k +

k−1

∑
j=1

z3, j cos(θk−θ j)

)
cos(θk−θn)

+
k−1

∑
j=1

z3, j sin(θk−θ j)sin(θk−θn)

]
dxk.

By utilizing (B.4) and the inequality of Cauchy-Schwarz
(B.3), the following inequality

C2
1,n ≤ 3Lnγ2

n

ˆ Ln

0
z2

1,ndxn + 3Lnµ2
n

ˆ Ln

0

(
z2,n

+
n−1

∑
k=1

z3,k cos(θn−θk)

)2

dxn

+ 3(N−n)
N

∑
k=n+1

Lkµ2
k

ˆ Lk

0

[(
z2,k

+
k−1

∑
j=1

z3, j cos(θk−θ j)

)
cos(θk−θn)

+
k−1

∑
j=1

z3, j sin(θk−θ j)sin(θk−θn)

]2

dxk.

can be derived. With this and Lemma 13, 14 and 16, (B.21)
is shown. �

Lemma 19 The constants C2,n comply with the inequality

C2
2,n ≤ 3(N − n+ 1)

{ N

∑
k=n

µ2
k Lk

(
7L2

k

+ 6
k−1

∑
j=n

(N − j)L2
j

)
ˆ Lk

0

(
ṙk

0
)T

(z)ṙk
0(z)dxk

+ 112
n

∑
k=1

[(
(∂xk z1,k)(0)− (∂xk−1z1,k−1)(Lk−1)

)2

+Lk

ˆ Lk

0

(
∂ 2

xk
z1,k
)2dxk

] N

∑
j=n

3 j−kγ2
j L6

j

+ 112
N

∑
k=n+1

[(
(∂xk z1,k)(0)− (∂xk−1z1,k−1)(Lk−1)

)2

+Lk

ˆ Lk

0

(
∂ 2

xk
z1,k
)2dxk

] N

∑
j=k

3 j−kγ2
j L6

j

}
.

(B.23)
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Proof Application of (B.4) two times to (31d) and exploit-
ing the inequalities of Cauchy-Schwarz (B.3) and Poincaré
(B.5) yields the relation

C2
2,n ≤ 3(N − n+ 1)

N

∑
k=n

{
4γ2

k L3
k

ˆ Lk

0
z2

1,kdξk +L2
kC2

1,k

+ 4µ2
k L3

k

ˆ Lk

0

(
z2,k +

k−1

∑
j=1

z3, j cos(θk −θ j)

)2

dξk

}
.

With the use of Lemma 13, 16 and 18 together with the
summation formulas (B.10) and (B.11), the inequality (B.23)
follows. �

Lemma 20 Let z1,n ∈ H 2(0,Ln), z2,n ∈ L2(0,Ln) and
z3,m ∈R with z1,n(0) = z2,n(0) = z3,m(0) = 0 for n= 1, . . . ,N
and m = 1, . . . ,N − 1. Then the inequality

N

∑
n=1

1
Λn

ˆ Ln

0

(
−
ˆ xn

0

ˆ ξn

0
(γnz1,n + µnz2,n)dηndξn

− 1
2

µnx2
n

n−1

∑
k=1

z3,k cos(θn−θk)+ xnC1,n +C2,n

)2

dxn

≤
N

∑
n=1

{
K3,n

ˆ Ln

0
µn
(
ṙn

0
)T

(z)ṙn
0(z)dxn

+K4,n

ˆ Ln

0
Λn
(
∂ 2

xnz1,n
)2dxn

+K5,nαn
(
(∂xn z1,n)(0)− (∂xn−1z1,n−1)(Ln−1)

)2
}

(B.24a)

holds with

K3,n = 4µnLn

[
17

L3
n

Λn
+ 2

n−1

∑
k=1

L3
k

Λk
(N − k)

+ 3
n

∑
k=1

Lk

Λk
(N − k+ 1)

(
7L2

n + 6
n−1

∑
j=k

(N − j)L2
j

)]
,

K4,n = 4
Ln

Λn

N

∑
k=n

1
Λk

(
272γ2

k L7
k3k−n

+ 336Lk(N − k+ 1)
N

∑
j=k

3 j−nγ2
j L6

j

+ 336γ2
k L6

k3k−n
n−1

∑
j=1

L j(N − j+ 1)
)
,

K5,n =
Λn

Lnαn
K4,n

(B.24b)

Proof With (B.4), the inequality

N

∑
n=1

1
Λn

ˆ Ln

0

(
−
ˆ xn

0

ˆ ξn

0
(γnz1,n + µnz2,n)dηndξn

− 1
2

µnx2
n

n−1

∑
k=1

z3,k cos(θn−θk)+xnC1,n+C2,n

)2

dxn

≤
N

∑
n=1

4
Λn

ˆ Ln

0

{(
ˆ xn

0

ˆ ξn

0
γnz1,ndηndξn

)2

+x2
nC2

1,n+C2
2,n

+

[̂ xn

0

ˆ ξn

0
µn

(
z2,n+

n−1

∑
k=1

z3,k cos(θn−θk)

)
dηndξn

]2}
dxn

is given. The evaluation of the integral for the terms with
the constants C1,n and C2,n and the application of Poincaré’s
inequality (B.5) for two times yields

N

∑
n=1

1
Λn

ˆ Ln

0

(
−
ˆ xn

0

ˆ ξn

0
(γnz1,n + µnz2,n)dηndξn

− 1
2

µnx2
n

n−1

∑
k=1

z3,k cos(θn −θk)+ xnC1,n +C2,n

)2

dxn

≤
N

∑
n=1

4
Λn

{
16γ2

n L4
n

ˆ Ln

0
z2

1,ndxn +
L3

n

3
C2

1,n +LnC2
2,n

+ 16µ2
n L4

n

ˆ Ln

0

(
z2,n +

n−1

∑
k=1

z3,k cos(θn −θk)

)2

dxn

}
.

With this, the validity of Lemma 20 can be shown after some
lengthy but straightforward calculations utilizing Lemma 13,
16, 18 and 19 and (B.7), (B.8) and (B.9). �

Lemma 21 Let z1,n ∈ H 2(0,Ln), z2,n ∈ L2(0,Ln) and
z3,m ∈R with z1,n(0) = z2,n(0) = z3,m(0) = 0 for n= 1, . . . ,N
and m = 1, . . . ,N − 1. Then the inequality

N

∑
n=1

αn

[
C2,n

αn
− 1

knαn

(
(∂xn z1,n)(0)− (∂xn−1z1,n−1)(Ln−1)

)]2

≤
N

∑
n=1

{
K6,n

ˆ Ln

0
µn
(
ṙn

0
)T

(z)ṙn
0(z)dxn

+K7,n

ˆ Ln

0
Λn
(
∂ 2

xnz1,n
)2dxn

+K8,nαn
(
(∂xn z1,n)(0)− (∂xn−1z1,n−1)(Ln−1)

)2
}

(B.25a)
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holds with

K6,n = 6µnLn

n

∑
k=1

N−k+1
αk

(
7L2

n+6
n−1

∑
j=k

(N− j)L2
j

)

K7,n = 672
Ln

Λn

( N

∑
k=n

N−k+1
αk

N

∑
j=k

3 j−nγ2
j L6

j

+
N

∑
j=n

3 j−nγ2
j L6

j

n−1

∑
k=1

N−k+1
αk

)

K8,n =
Λn

Lnαn
K7,n +

2
α2

n k2
n

(B.25b)

Proof The validity of Lemma B.25 can be proven in a
straightforward way by means of (B.4), Lemma 19, (B.7),
(B.8) and Lemma 21. �

According to Lemma 17, 20 und 21 the square of the norm
of ˇA z fulfills the inequality

∥∥ ˇA z
∥∥2 ≤

N

∑
n=1

{
(K3,n+K6,n)

ˆ Ln

0
µn
(
ṙn

0
)T

(z)ṙn
0(z)dxn

+(K1,n+K4,n+K7,n)

ˆ Ln

0
Λn
(
∂ 2

xn
z1,n
)2dxn

+(K2,n+K5,n+K8,n)αn
(
(∂xnz1,n)(0)−(∂xn−1z1,n−1)(Ln−1)

)2
}
.

Since all constants are positive, the inequality

∥∥ ˇA z
∥∥2 ≤

N

∑
n=1

{
ˆ Ln

0

(
µn
(
ṙn

0
)T

(z)ṙn
0(z)+Λn

(
∂ 2

xn
z1,n
)2
)

dxn

+αn
(
(∂xn z1,n)(0)−(∂xn−1 z1,n−1)(Ln−1)

)2
} N

∑
k=1

8

∑
j=1

K j,k

holds true. Therefore, the boundedness of the inverse oper-
ator ˇA is shown since

∥∥ ˇA z
∥∥2 ≤

N

∑
k=1

8

∑
j=1

K j,k ‖z‖2

or

∥∥ ˇA z
∥∥≤

(
N

∑
k=1

8

∑
j=1

K j,k

) 1
2

‖z‖ ,

respectively.
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