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Abstract Repair and patching of wood defects is a
costly process of inline production in timber industry. A

large variety of plain as well as laminated wooden prod-

ucts demands for offline human interaction and skilled

handcrafting in order to achieve the desired quality of

the final products. The EU FP7 project Hol-I-Wood
PR demonstrates the transformation of a traditional

wood patching line for shuttering panels into a fully

automated, flexible patching plant.

The focus of this paper is set on the optimization

of the different production steps of a patching robot,
which comprises optimal patch placement, path plan-

ning and trajectory generation. Based on this, the pro-

cessing time of each workpiece can be accurately esti-

mated. These computations serve as an input for ad-
vanced panel scheduling, which assigns panels to one of

several identical parallel patching lines in a throughput-

optimal manner. In order to ensure high modularity of

the components and scalability for various wood mills,

an agent-based approach was chosen for the implemen-
tation of the automation system.
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Fig. 1 Unprocessed shuttering panel.
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1 Introduction

Repair of wood defects is the most time-consuming and

disruptive process of inline production in timber indus-

try. Major artifacts determining the quality of surfaces

are resin galls and loose dead knots, a sample of which
is shown in Figure 1. Patching is necessary to ensure

homogenous material quality of laminated wood prod-

ucts. This process still requires a lot of manual labor.
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Fig. 2 Defect covered with three patches.

Only in recent years, industry has taken up the mat-

ter of automated patching of wood defects. Given the
contour and location of the defects, basically two ap-

proaches do exist in industry: First, the defect is milled

by numerically controlled machines and either an indi-

vidually shaped dowel or putty is used to seal the hole.

This process is rather expensive, but in turn offers the
possibility to correct the wood without impairing its

appearance. Second, small defects and cracks can be

covered using putty only. After the putty is applied by

an extremely fast manipulator, the panels are exposed
to UV-light which makes the putty cure.

However to the authors’ knowledge, none of these
solutions nor the task of wood patching itself have

been thoroughly investigated in a scientific context. The

innovation in this area is mostly industrially driven.

Nevertheless, there is vast potential for process opti-

mization that requires rigorous scientific methods, even
more so with the patching technique presented in this

paper.

In the patching process under consideration, the de-

fect is eliminated by drilling the respective area and

then inserting a patch with high pressure to seal the

hole, see Figure 2. No glue or putty is used. Since the
patches have a fixed diameter of 30mm, big defects re-

quire several patches to be covered entirely. This tech-

nique is employed by semi-automatic patching tools,

which are the current industrial standard1 for patching

shuttering panels. Compared to a CNC-machine, they
are inexpensive and robust and shall therefore be inte-

grated into the new automated production plant.

The patching tools are operated by a worker carry-

ing out two major tasks: defect classification and local-

ization, as well as visual positioning of the rectangular

shuttering panel, such that the defect is exactly located
beneath the patching tool. Considering the fact that

defect classification and localization require much less

time than patching, the envisaged plant layout consists

1 Approximately 1500 of these patching tools are in use in
Europe.
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Fig. 3 Flowchart of the patching plant.

of one scanning line and three parallel patching lines,

as shown in Figure 3. Each patching line incorporates

two patching robots and one turner unit.

The panels are taken from the inbound storage and

scanned for defects. The scanner’s core2 is a timely
synchronized camera network. The acquired pictures

are merged into one for the bottom- and one for the

top-side. They serve as input for defect-detection and

-classification algorithms, which describe the border of
the defects by polygons. The time-synchronization en-

ables to scan the panels while in motion. After that the

panels go to the buffer storage, which consists of several

panel stacks. Besides its obvious buffer function, it also

provides the option to choose the panel to be processed
next. From there the panels are assigned to one of the

three patching lines where they are patched on both

sides and then collected in the outbound storage.

This paper presents a comprehensive concept for the

throughput-optimal automation of the wood patching
plant for shuttering panels described above. Thereby, a

major task is concerned with processing time optimiza-

tion and estimation for each individual panel. However,

processing time optimization of individual workpieces is
a very problem-specific matter, which is why the liter-

ature on this topic is quite diverse.

For instance, Mucientes et al. (2008) deals with a

complex production scenario in the wood furniture in-

dustry. The processing time estimate of each workpiece
is based on polynomials with multiple inputs, such as

its dimension and material quality. A set of fuzzy rules

is used to determine which product category, i.e. which

polynomial, resembles the current product the most.
Moreover, an evolutionary algorithm is employed to im-

prove this set of fuzzy rules.

In Or and Duman (1996), the automated production

process of printed circuit boards (PCB) is described.

This process is split up into three optimization prob-
lems which have to be solved for each type of PCB.

2 For details refer to our partner company MiCROTEC, see
http://www.microtec.eu/en.
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The process sequencing problem is a classical travel-

ing salesman problem, the assignment of components

to feeder cells of the placement machines is solved as

a quadratic assignment problem and, in case the pro-

duction of one PCB is managed by several placement
machines, a load balancing problem has to be consid-

ered. Heuristic solution procedures provide a reliable

basis for processing time estimation.

In Rubinovitz and Wysk (1988), a CAD model of
the workpiece and a model of the robot’s motion ca-

pabilities are used to determine the optimal process-

ing sequence of weld seams. First, the robot trajecto-

ries between each pair of weld positions are generated.

The travel times for all point-to-point movements are
then used to formulate a traveling salesman problem

for the purpose of defining the time-optimal process-

ing sequence. These computations are a useful basis for

processing time estimation of the workpiece.

An algorithm for online generation of painting tra-

jectories for spraying robots can be found in Vincze

et al. (2004). Laser range sensors at the robot end-

effector are used to determine the geometry of the work-

piece. The main idea is to split the geometry into basic
surfaces for which generic paint trajectories are saved

in a procedure library. Assuming a large scale spraying

plant that consists of a dedicated scanning unit and

several spraying stations, these trajectories enable pro-
cessing time estimation for subsequent process schedul-

ing.

Based on the processing time estimates for each

panel, a further task is optimal assignment of panels to

the three parallel patching lines. This problem presents
itself as classical parallel machine scheduling with a sin-

gle server. Its complexity is analyzed in Hall et al.

(2000) and in Hall et al. (2000); Kravchenko andWerner

(1997); Kim and Lee (2012) algorithms are presented to

solve this problem in polynomial time. State-of-the-art
surveys on assembly line balancing and scheduling us-

ing evolutionary algorithms are presented in Tasan and

Tunali (2008); Gen and Lin (2013). In Barbati et al.

(2012); Kouiss et al. (1997), Multi-Agent Technology
(MAT) is applied to dynamic scheduling problems.

In this application, a plant control based on MAT

is strived for, because of manifold reasons: The plant

components can be developed with little to none de-

pendencies. This provides plant owners with a best-
of-breed approach for their plant components without

increased costs for interoperability. By defining simple

interfaces, which represent the tasks carried out by the

plant components, the overall plant control is indepen-
dent of the specific plant components in use. There-

fore, components can easily be replaced by function-

ally equivalent components of other brands or types,

as shown in Vrba and Mař́ık (2010); Bussmann et al.

(2004); Leitão (2009). A further advantageous feature

of this approach is the simplified integration of legacy

equipment in modern plant control. This is of particular

importance in the wood industry in Europe, as there are
many existing wood mills with aged control technology,

which needs to be refurbished in the years to come. The

agent-based approach helps to ensure a smooth transi-

tion from the currently used control equipment to new
technologies. A further benefit of this approach is the

obtained scalability of the plant. The agent-based sys-

tem can easily cope with one or more parallel patch-

ing lines, without agent-code modification. Also the

agents’ ability to react to changes in the system, like
plant faults, constitutes an important feature in the

harsh production environment of the wood industry,

see Pěchouček and Mař́ık (2008).

The paper is structured as follows: The basics of the
Multi-Agent Architecture for the patching plant under

consideration are briefly outlined in Section 2. Section 3

describes optimal patch placement, path planning and

trajectory generation of the patching robot. Based on

this, a reliable estimate of the processing time of an
individual panel is given. Section 4 presents simulation

results for the optimization algorithms and Section 5

contains conclusions and gives an outlook on future

work.
The novelty of this paper is the successful combina-

tion of one-of-a-kind production with throughput maxi-

mization. Usually, one-of-a-kind production only refers

to extremely complex products that are produced on

demand such as ships, planes or industrial plants. This
is due to the fact that wood is a natural product and

consequently each workpiece is unique. Thus, an opti-

mization must be carried out for each individual shut-

tering panel. On average, an unprocessed shuttering
panel exhibits six defects per square meter per panel

side, ten percent of which require more than one patch

to be covered entirely. The panels are scanned for de-

fects at a rate of approximately 0.2Hz. So there is a time

slot of 5s to accomplish the entire planning task. The
results of the planning algorithms are further used to

accurately estimate the processing time of each panel,

which serves as the basis for subsequent panel schedul-

ing. The proposed algorithms incorporate techniques
from algorithmic geometry, combinatorial optimization

and time-optimal trajectory generation.

2 Multi-Agent Architecture

In order to provide the necessary flexibility for refur-

bishing existing wood mills and in view of the desired

modularization of plant components and scalability for
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various wood mill sizes, an agent-based approach was

chosen. In contrast to more traditional methods (e.g.,

object-oriented design, remote procedure calls, etc.),

Multi-Agent Systems facilitate decoupling of plant com-

ponents. This is achieved by the generally higher ab-
straction level of the agent-based approach compared

to purely object-oriented paradigms, as the behavior of

agents more closely resembles human behavior in a sim-

plified form, as shown in Zambonelli et al. (2000), mean-
ing that an agent represents a goal-driven, autonomous

and proactive entity. Ultimately, an agent incorporates

not only the behaviors for executing a control algorithm

but is also empowered to decide whether to execute the

algorithm or not, which is a significant difference to a
passive object and delivers a truly self-contained entity,

see Jennings and Sycara (1998). In this context, each

agent is only responsible for its own task/component

and publishes only those services which are provided to
the rest of the system. Therefore, the individual agents

do not rely on other agents to perform their specific

tasks. In this regard an agent-based system is similar

to service-oriented control approaches as presented in

Melik-Merkumians et al. (2012); Ollinger et al. (2013);
Huhns et al. (2005); Ribeiro et al. (2008). But in con-

trast to agent-based systems, service-oriented compo-

nents have less individual responsibilities (e.g., system

reconfiguration in case of a fault).

There are two kinds of agents in the system:

– Functional Agents(FAs) — these agents have no di-
rect representation in the plant and are responsible

for plant wide tasks. All FAs are located in the Man-

agement Layer.

– Automation Agents(AAs) — these agents are in di-
rect control of plant components. AAs are always

part of the Automation Layer.

The agent system structure, as shown in Figure 4,
is organized in three layers. The first layer, the Man-

agement Layer, encompasses the agents/agendas which

are necessary for the overall plant control (see Mer-

dan et al. (2008); Shen et al. (2006); Vrba and Mař́ık

(2010)). This includes the plant’s knowledge base, the
Wood Knowledge Repository (WKR), which is accessed

via the Wood Knowledge Repository Agent (WKRA),

the Patching Process Agent (PPA), the Scheduling Ag-

ent (SA), the Service Directory Agent (SDA) and the
Fault Diagnosis Agent (FDA).

– The WKRA manages the access to the WKR, where

all essential plant data is stored. Via this agent the
other agents can inform themselves about various

aspects of the plant e.g., amount and location of de-

fects on a specific panel, or the current state of com-

ponents. Also the WKRA is responsible for adding

new panels to the WKR as they are scanned.

– The PPA calculates the optimal processing routine,

i.e. patch locations, processing sequence and robot

paths. To do so, the PPA asks the WKRA for the
defect locations of a panel, carries out its compu-

tations (as described in Section 3) and returns the

processing routine to the WKRA along with an es-

timate of the processing times for each side of the
panel.

– The SA collects the estimated processing times of

the currently available, not processed panels and

calculates, based on the current state, the optimal

work schedule for the available patching lines.
– The SDA is a lookup table where all other agents

register themselves at start-up and publish their ser-

vices. It informs agents about where requested ser-

vices can be found (e.g., at start-up the PPA does
not know the actual address of the WKRA). If an

agent is not able to perform its assigned task it re-

nounces itself from the SDA. In this way, a dynamic

handover of responsibilities is achieved. By that the

system can easily continue its service in a gracefully
degraded state.

– If an agent experiences unusual difficulties or system

reactions, e.g., a panel gets stuck in a patching robot

causing that the panel never leaves the robot, the
responsible and/or affected agents inform the FDA

about their actual state and request analysis. This

analysis may also affect other agents which are not

directly involved (e.g., the SA has to reschedule after

a patching line is taken offline by the FDA). The
FDA steadily observes plant behavior, comparing

it to the expected behavior in order to detect and

avoid global errors (e.g., if the feeder conveyor to

the patching lines gets stuck all three patching lines
will seem to be stuck).

The second layer, the Integration Layer, is the in-
termediate communication layer between the agents on

the Automation Layer and the agents on the Manage-

ment Layer. It provides communication interfaces on

the field level for direct device control and it ensures

compatibility to the (control) hardware executing the
agents.

The third layer, the Automation Layer, comprises

all AAs, which control the physical components of the

plant. Each AA consists of two parts. The Proactive
Control (PC)3 is responsible for the optimization algo-

3 The open-source platform Java Agent DEvelopment
framework (JADE) (Jade 2014) is used for development and
execution of the PC. When using the JADE framework, the
task of the SDA can be performed by JADE’s Directory Fa-
cilitator agent.
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rithms and communication to other agents. It processes

the information from the agent system and issues or-

ders to the Reactive Control (RC). The RC is the real-
time capable control software of the plant components,

which performs its tasks based on the parameters given

by the PC. Process information acquired via the pro-

cess interface (e.g., I/O values) is forwarded from the
RC to the PC via a control software specific interface.

In case of this implementation, the RC was realized

as an IEC 61499 program. Process data needed by the

PC is forwarded via so-called service interface function

blocks, whose task it is to connect the control environ-
ment with system parts (e.g., the agent system) which

are not part of the control environment, see Hegny et al.

(2008). This architecture of a generic AA is depicted in

Figure 5, further details can be found in Lepuschitz
et al. (2011). In case of a fault, the RC is also respon-

sible for putting the component into a safe state, see

Vallée et al. (2009).

For the considered plant, the following AAs are de-

fined:

– Each Conveyor Agent (ConA) manages its assigned

section of the transport grid of the plant. It is re-

sponsible for detecting local errors on its section

(e.g., a stuck panel) and for reporting these errors
to the SA and FDA.

– The Inbound Storage Agent (ISA) manages the in-

feed of panels to the plant.

– The Scanner Agent (ScA) uses its camera system to
capture optical information on the panel, thus de-

tecting the defects’ location and shape. The panel is

assigned an ID, then this information, called defect

list, is sent to the WKRA.
– The Buffer Storage Agent (BSA) receives instruc-

tions from the SA and accordingly feeds the panels

into the assigned patching line. It informs the Pat-

ching Robot Agents(PRAs) and the SA about its

actions.
– The PRA requests the configuration parameters and

the processing routine from the WKRA and pro-

vides this information to the patching robot.

– The Turning Unit Agents(TAs) are in control of the
turner units, where the panels are flipped upside

down.

– The Outbound Storage Agent (OSA) manages the

outbound storage and the outgoing flow of the pan-

els.

The typical workflow for a wooden panel is as fol-

lows:

1. The panel enters the plant via the inbound storage.

The ISA announces a new panel to the system.
2. The panel gets scanned and the ScA sends the de-

fect list to the WKRA and requests the data to be

inserted into the WKR.

3. The WKRA sends the defect list of the panel to the
PPA and asks for the optimal processing routine

and estimated processing time.

4. Based on the current workload and the estimated

processing time, the SA assigns the panel to a patch-

ing line.
5. As the panel arrives at the patching robot, the PRA

requests the trajectory from the WKRA and enters

it into the RC of the patching robot.

6. After the patching process is completed, the patched
panel leaves the system via the outbound storage.

The OSA informs the WKRA that the panel was

processed successfully.
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The presented system architecture automates the gen-

eration and execution of the the complete patching pro-

cess.

3 Optimizing the Patching Process and

Processing Time Estimation

For both sides of each panel, the scanner provides a list

of defects. This defect list serves as an input for the
following algorithms of the PPA:

1. Each defect needs to be entirely covered by a mini-

mum number of patches.
2. The minimum cost path, i.e. processing sequence, is

calculated with respect to a desired cost function.

3. The geometric robot path is parametrized in the

time t in order to yield (nearly) time-optimal tra-
jectories for the robot.

4. Based on the results of items 1-3 the processing time

of each panel side is estimated.

The tasks listed above are described in the following

subsections.

3.1 Patch Placement

Due to manufacturing reasons there is only one shape of

patches, namely cylinders with a radius of r = 0.015m.

They allow to patch approximately 85% of all wood

defects using merely one patch. The other 15% are too
big to be covered by one patch only. Since no glue is

used, it is obvious that the more patches are placed next

to each other, the more fragile this whole arrangement

becomes, see Figure 2. Some defects are even too big for
patching and thus the associated panel must be rejected

by the PPA.

Therefore, a patch placement algorithm has to com-

pute the minimum number of patches and their ar-

rangement necessary to cover these big defects. Striv-
ing for a minimum number of patches serves two im-

portant purposes. First, each patch requires approxi-

mately Tp = 2s processing time, the positioning time

not included. Second, since the allowed maximum num-
ber of patches per defect is limited due to quality rea-

sons, minimizing the number of patches indirectly but

nonetheless significantly contributes to waste reduction.

The input for the patch placement algorithm is the

defect list ∆ = {Di}, i = 1, . . . , N, of the respec-
tive panel side. Each element of the defect list de-

fines one closed defect polygon by a list of vertices,

Di = {di,j}, di,j =
[
xi,j yi,j

]T
, j = 1, . . . , nDi

, where

xi,j and yi,j denote the coordinates of vertex j of defect

i with respect to the front left corner of the panel. It

describes the contour of the defect by connecting vertex

di,j to vertex di,j+1 until finally the last vertex di,nDi

is again connected to the first vertex di,1.

The polygonDi has to be entirely covered by a num-
ber nPi

of circles of a given radius r. Each such circle is

described by its center coordinates pi,k =
[
xi,k yi,k

]T
.

All patches required to cover the defect Di are merged

into the set Pi = {pi,k}, k = 1, . . . , nPi .

The task is now to determine the minimum number

nPi
of patches and their arrangement to cover the entire

defect. Furthermore, a set of constraints ensuring that

the patches adhere to the panel (and do not fall out in
later production stages) has to be met. In particular,

each patch must have a minimum overlap with solid

wood and the patches themselves must not overlap too

much. This is formulated as an optimization problem

min
nPi

,Pi

nPi
(1a)

γ̃(Di, Pi, nPi) ≤ 0, (1b)

where γ̃ is the vector of constraints. In order to check
the defect covering and the overlap of each patch with

solid wood, the defect polygon is intersected with each

patch circle. Also the patch circles themselves are in-

tersected with each other to ensure sufficiently small

overlap of the patches.

The problem with the above formulation is that the

number of optimization variables ño = 1 + 2nPi
in-

creases with the number of patches nPi . Each patch
has to be placed individually taking into account all

the other nPi
− 1 patches. Furthermore, (1) constitutes

a mixed-integer optimization problem, which is known

to be quite challenging.

To overcome this issue, the whole patch placement

algorithm is founded on the idea of hexagonally clos-

est packaging, see Williams (1979) and Figure 6. A

hexagon is the one polygon that comes closest to the
circular shape, while at the same time it can still be

arranged in a pattern fully covering a plane, leaving no

holes in between the hexagons. Thus minimal overlap

between the circles is ensured. This naturally implies
maximum covered area (for a fixed number of patches)

and consequently guarantees that the minimum num-

ber of patches is utilized.

The algorithm simply starts by creating a hexagon
tessellation in a sufficiently large part of the xy-plane,

where each hexagon of side length r represents a circle

of equal radius. The defect polygon is put in the mid-

dle of the tessellated area, i.e. the centroid of the defect
polygon coincides with the centroid of the tesselated

area. The optimization is now achieved by moving the

defect along the x- and y-axis, denoted by δx and δy,
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Fig. 6 Hexagonally closest packaging.

and by rotating it by an angle δϕ until a global mini-

mum in the sense of the previously described criterion

is found.

During this process hexagons that do not intersect
with the defect polygon are taken out. Others are added

where the defect polygon is not covered. Compared to

the original problem formulation, the patches are per-

fectly arranged to each other. Therefore, the task of

checking the arrangement of every patch relative to all
the other patches needs not be performed.

Thus the optimization problem can be implemented

more efficiently in the form

min
δ
nPi (2a)

γ(Di, δ) ≤ 0, (2b)

where δ =
[
δx δy δϕ

]T
is the displacement of the defect

polygon relative to the tessellated area.

This way the number of optimization variables is

reduced to no = 3. Moreover, the vector of constraints
γ is significantly simplified, since the patch placement

relative to each other is fixed. The majority of intersec-

tions, i.e. each patch with every other patch, becomes

obsolete.

The hexagon tessellation has a periodic pattern. If
the defect is moved over an x-distance of the width of a

hexagon, δ̄x = 2r, if it is moved over a y-distance of the

height of a hexagon, δ̄y =
√
3 r, or if it is rotated around

δ̄ϕ = π/3, the pattern repeats itself. So the space of all
possible solutions D = [0, δ̄x]× [0, δ̄y]× [0, δ̄ϕ] is closed.

Nevertheless, the solution space still contains an in-

finite number of points. Only by applying a fixed step

size δd =
[
δdx δdy δdϕ

]T
for the displacement of the de-

fect, one obtains a finite number of possible solutions

ND =
(
δ̄x/δdx

) (
δ̄y/δdy

) (
δ̄ϕ/δdϕ

)
. A natural choice for

this step size is the positioning accuracy of the patch-

ing robot. By going through all these solutions, it is

guaranteed that the global minimum with respect to

the positioning accuracy is obtained in a finite number

of ND steps.

3.2 Path Planning

The result of the patch placement algorithm is a patch

list Π = {Pi}, i = 1, . . . , N , i.e. a list of patch locations

pi,k the robot must approach. To keep the notation

general, the patch locations are referred to as nodes

xi =
[
xi yi

]T
and merged into a node listX = {xi}, i =

1, . . . , n, n =
∑N
k=1 nPi

.

The path planning algorithm aims at computing the

minimum cost path between a number n of nodes such
that each node is visited exactly once. The costs can be

chosen freely and are for instance path length, travel

time or energy consumption.

This problem is very similar to the well-known trav-

eling salesman problem, where a salesman tries to find
a minimum cost round trip through a given number

of cities. It is an NP-hard combinatorial optimization

problem, for which a variety of different approaches are

proposed in the literature. Basically exact algorithms,

such as formulating the traveling salesman problem as
a linear integer program, as shown in Applegate et al.

(2006), and heuristic algorithms, such as Genetic (see

Eiben and Smith (2003)) or Ant Colony Algorithms (see

Dorigo and Stützle (2004)), are distinguished. High-
performance heuristic algorithms frequently make use

of Local Search Strategies, see Lin (1965), to further

improve their solution.

However, the panel is not supposed to go on a round

trip and come back to where it started, but to eventu-

ally move forward in the production line. Nevertheless,
the known algorithms for the traveling salesman prob-

lem can still be applied.

Cost Matrix In view of maximizing productivity, the

goal is to determine the time-optimal path. Therefore,
the costs represent the time it takes the patching robot

to move from node xi to node xj , given by a function

c(xi, xj). As is frequently the case in xy-positioning,

the x- and y-movement of the patching robot are as-

sumed to be independent. Thus the costs are defined
as

ci,j = c(xi, xj) = max(T̄xi,j , T̄yi,j), (3)

T̄xi,j and T̄yi,j being the travel times in longitudinal

and lateral direction, respectively. They are computed

between each pair of nodes yielding the cost matrixC =
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[ci,j ] ∈ Rn×n. The diagonal elements of this symmetric

matrix are zero, i.e. ci,i = 0, i = 1, . . . , n.

Solution In the following, two solutions to this problem

are proposed: First, an Ant Colony Algorithm which is
recognized as an efficient approach to tackle large prob-

lem instances of the general traveling salesman prob-

lem is described. Second, a Local Search Algorithm

combined with a Receding Horizon Concept presents

a problem-tailored and simple solution to the specific
traveling salesman problem at hand.

For this, let us consider a set of nodes X that is
fully connected by a set of arcs Ξ. Thus the pair G =

(X, Ξ) is a complete graph, i.e. every node xi ∈ X is

directly connected to every other node xj ∈ X. Each arc

ξi,j ∈ Ξ is now associated with its respective cost ci,j .
The path planning problem is the problem of finding

a minimum cost path on G from a previously specified

start node, the one with the lowest x-coordinate, to

an end node, the one with the highest x-coordinate,

visiting all the other nodes exactly once. Therefore, the
path vector can be defined as

ψ =
[
ψ1 . . . ψi . . . ψn

]
, i = 1, . . . , n (4a)

ψi ∈{1, . . . , n} \ {ψ0, . . . , ψi−1}, ψ0 = {}. (4b)

The path cost is the sum of the arc costs of the respec-
tive path through the graph,

J =

n−1∑

i=1

cψi,ψi+1 =

n−1∑

i=1

c(xψi , xψi+1). (5)

3.2.1 Ant Colony Algorithm (ACOA)

The objective function (5) can be minimized by means
of an Ant Colony Algorithm. The foraging behavior of

ants is determined by pheromone trails they deposit on

their way between food and nest. Ants tend to follow

these trails, while at the same time reinforcing them.

Thus, the pheromone concentration serves as the ant
colony’s collective memory, which develops over time.

The desirability of various paths is remembered and vis-

ible for other ants. For more detailed information, the

reader is referred to, e.g., Dorigo and Di Caro (1999);
Dorigo and Stützle (2004). In the following, only the

core functionality of all Ant Colony Algorithms, i.e.

the iterative, cooperative solution construction, shall

be outlined.

In every iteration t = 1, . . . , T , each ant m ∈
{1, . . . ,M} of a population of size M individually con-

structs feasible paths by making h = 1, . . . , n − 2 ran-
dom descisions4 based on (6). The probability that an

4 Start and end node are already fixed.

ant m decides to move from its current node i to node

j is

pmi,j(t) =





τα
i,j(t)η

β
i,j∑

l∈Nm
h
τα
i,l(t)η

β
i,l

j ∈ Nm
h

0 otherwise,
(6)

where Nm
h is the so-called feasible neighborhood5 and

τi,j(t) and ηi,j = 1/ci,j denote the pheromone trail

value and the heuristic information value on the arc
ξi,j , respectively. The tuning parameters α ∈ N and

β ∈ N are used to scale the weight of the heuristic and

the pheromone information relative to each other.

In this formulation, the heuristic value ηi,j repre-

sents a priori information on the problem. The costlier

an arc, the less desirable it is for an ant to use.

The pheromone value τi,j , on the contrary, repre-
sents learned desireablity to use that arc. Thus the

pheromone matrix T(t) = [τi,j(t)] ∈ Rn×n, being the

collective memory of all ants, changes over time as ants

deposit pheromone on their paths. This is accomplished

by the following pheromone update laws. First, a por-
tion ρ ∈ [0, 1] of pheromone evaporates

τi,j(t)← (1− ρ) τi,j(t) (7)

and second, each ant m deposits pheromone along its
path

τψm
i ,ψ

m
i+1

(t)← τψm
i ,ψ

m
i+1

(t) +
1

Jm(t)
, i = 1, . . . , n− 1,

(8)

with ψm and Jm according to (4) and (5), respec-

tively. Pheromone evaporation causes ”bad” paths to
be forgotten, while pheromone deposition enables ants

to share their experience via the collective memory.

Finally, the feasibility of the ants’ paths has to be
discussed. To guarantee that ants visit each node ex-

actly once, each ant m is given a local memory

Mm
h = {ψm1 , . . . , ψmh }. (9)

It contains all the nodes already visited up to itera-

tion h of the construction process and thus updates the

feasible neighborhood,

Nm
h = {1, . . . , n} \Mm

h . (10)

The completeness of the graph G makes each node a

neighbor of every other node, i.e. each node can be

reached from any other node by crossing only a single

5 Since G is a complete graph, the feasible neighborhood
does not depend on the current node i but only on the pre-
viously visited nodes, see (10).
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Table 1 Parameters for the implemented algorithm were
chosen experimentally. This results in similar values as pro-
posed in the literature, e.g. Dorigo and Stützle (2004). Only
for the evaporation rate ρ a very small value was chosen.

α β ρ M T e

1 5 0.2 n 70 1

arc. Thereby it is ensured that ants cannot get stuck at

a node6.
The parameter set for the implemented Ant Colony

Algorithm is given in Table 1. In order to improve its

real-time capability, more importance is attached to

rapid convergence compared to solution space explo-
ration. To achieve this, the evaporation parameter ρ is

set to a small value and the concept of an elitist ant is

introduced, see Dorigo and Stützle (2004).

Elitist Ant The elitist ant, denoted as (.)ε, holds the

best-so-far path ψε, i.e. the best path found since the
start of the algorithm. This gives the possibility to stop

the algorithm any time, still yielding a useful result.

Additionally, the elitist ant deposits pheromone in ev-

ery iteration of the algorithm,

τψε
i ,ψ

ε
i+1

(t)← τψε
i ,ψ

ε
i+1

(t) +
e

Jε(t)
, i = 1, . . . , n− 1,

(11)

where e ∈ R+. With growing e, this provides increas-

ingly strong reinforcement of the best-so-far path.
By the time the algorithm terminates, a number of

M T paths were constructed, the best of which isψopt =

ψε. Applying the Ant Colony Algorithm to the patch

list Π yields Πopt, which is now sorted according to

the time-optimal path ψopt. In the following, two more
measures for speeding up the algorithm in view of the

considered problem are proposed.

Patch Clustering Since the traveling salesman problem

is NP-hard, it is of vital importance for the computation
time of the algorithm to keep the problem size, that is

the number of nodes n, at a minimum. For this specific

application, some selected measures can be taken. Sup-

pose a panel exhibits eight small and two big defects,

which makes a total of N = 10 defects. Each of these
big defects requires three patches. So there are in to-

tal n = 14 patches to be placed. Naturally the patches

covering the big defects are very close to each other.

So by clustering the patches according to their respec-
tive defect, the problem size decreases from n = 14 to

n̄ = N = 10.

6 If G was not complete, it might happen that the feasible
neighborhood Nm

h = {} before the construction process is
finished.

Thus the path planning algorithm is only applied

to the reduced set X = Π̄ = {pi,1}, i = 1, . . . , N in-

stead of the set X = Π = {Pi} with Pi = {pi,k}, k =

1, . . . , nPi
. This considerably lowers the computation

time, while at the same time the path costs remain vir-
tually the same.

Start Solution Taking into account the flow of the rect-

angular shuttering panels through the production line,
as described in Figure 3, it is beneficial to add a from-

left-to-right path and a nearest-neighbor path into the

set of start solutions.

The risk with this approach is that in the early

iterations of the algorithm these ”good” start solu-

tions might build up very high pheromone values due

the reinforcement by the elitist ant. This results in a

monodirectional search, ignoring other promising solu-
tions. However, this can be avoided by decreasing the

parameter e in (11).

3.2.2 Local Search Receding Horizon Algorithm

(LSRHA)

The core of this algorithm is Local Search, which is
based on the concept of λ-optimality and was initially

proposed in Lin (1965), see also Helsgaun (2000, 2009).

Then, the Local Search Algorithm is combined with a

Receding Horizon Concept, which, for instance, is used

in air traffic management, see Hu and Chen (2005b,a);
Hu et al. (2007); Zhan et al. (2010). This concept was

originally proposed for optimal control problems, such

as model predictive control, see, e.g., Allgöwer et al.

(1999).

3-optimality The concept of λ-optimality is defined as

follows: A path is said to be λ-optimal, if it is impossible

to obtain a tour with smaller cost by replacing any λ of

its arcs ξi,j by any other set of λ arcs7. Consequently, an
n-optimal tour, i.e. λ = n, is globally optimal. So by in-

creasing λ, the problem gets more general, in the sense

that the number of possible exchanges increases. This

way, one receives increasingly strong necessary condi-
tions for optimality, but this comes at the cost of in-

creasing computational effort.

Computer experiments showed that setting λ = 3
is the most efficient trade-off between solution quality

and computational costs, see Lin (1965). By means of

3-exchanges, it is possible to realize path inversions and

insertions.

7 The implication being that a subset λ̃ ≤ λ of the arcs
may be contained in both sets and thus remain the same.
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Local Search Algorithm The algorithm begins by gen-

erating start solutions, see Subsection 3.2.1. Each of

these solutions is then refined by randomly perform-

ing 3-exchanges until no further improvement can be

achieved. Details on how to efficiently implement the
Local Search can be found in Lin (1965). The best one

is assumed to be the optimal path ψopt.

The Receding Horizon Concept is now utilized to

split the entire problem instance in smaller subproblems
to which the Local Search Algorithm is applied in an

iterative manner.

Receding Horizon Concept It is based on the fact that a

partial path is hardly ever influenced by nodes very far

from it, in particular, if there are several other nodes
in between. Consequently, path quality does not suf-

fer when disregarding nodes outside the vicinity of the

current local optimization horizon. However, since the

traveling salesman problem is NP-hard, the computa-

tional effort is reduced drastically. Therefore, a piece-
wise local optimization process is proposed. It starts at

the left panel end and advances on to the right end by

subdividing the total problem instance of n nodes into

smaller subproblems of ho ≪ n nodes.
In order to start this algorithm, first the nodes are

sorted in ascending x-direction, i.e. the from-left-to-

right path ψl2r =
[
ψl2r1 , . . . , ψl2rn

]
is generated. Now,

beginning at the left panel end, the Local Search Al-

gorithm is applied to subproblems of size ho. However,
only the first hi < ho nodes are assigned to the op-

timal final path. In this context, ho and hi are called

optimization and implementation horizon, respectively.

The following procedure is applied iteratively,
whereas ∆ψ(0) =

[
ψl2r2 , . . . , ψl2r1+ho

]
qualifies as a suit-

able initial condition.

After iteration step k, the optimal final path is

given by ψ(k),∗ =
[
ψ∗
1 , . . . , ψ

∗
1+hik

]
. In the next it-

eration step k + 1, the partial path defined by the
nodes ∆ψ(k+1) = [ψ2+hik, . . . , ψ1+hik+ho ] has to be

optimized for the optimization horizon ho, starting at

node ψ1+hik. As an initial guess of the solution of

this optimization problem, the first hi nodes of the re-
maining from-left-to-right path ψl2r are appended to

the optimal partial path ∆ψ(k),∗ of the previous itera-

tion k, i.e.
[
ψ
(k),∗
2+hik

, . . . , ψ
(k),∗
1+hi(k−1)+ho

, ψl2r2+hi(k−1)+ho
,

. . . , ψl2r1+hik+ho

]
. Application of the Local Search Algo-

rithm presented in Subsection 3.2.2 yields the optimal

partial path

∆ψ(k+1),∗ =
[
ψ
(k+1),∗
2+hik

, . . . , ψ
(k+1),∗
1+hik+ho

]
. (12)

In the sense of the Receding Horizon Concept, only

the first hi nodes of (12) are added to the opti-

mal final path such that ψ(k+1),∗ =
[
ψ∗
1 , . . . , ψ

∗
1+hik

,

ψ(k),∗
︷ ︸︸ ︷
︸ ︷︷ ︸

ψ(k+1),∗

∆ψ(k+1),∗
︷ ︸︸ ︷

Fig. 7 Illustration of the Receding Horizon Concept.

ψ
(k+1),∗
2+hik

, . . . , ψ
(k+1),∗
1+hi(k+1)

]
. This procedure is repeated

until8 1 + hi(k + 1) ≥ n − 1. Figure 7 illustrates this

process. The hatched nodes represent the partial path

∆ψ(k+1),∗ under consideration in iteration step k + 1.
It is of length ho and the superscript (.)∗ indicates it

has already been optimized. Now the first hi nodes of

∆ψ(k+1),∗ are appended to the final optimal path of the

previous iteration step k to form the current optimal fi-
nal path ψ(k+1),∗, i.e. the white nodes. The black nodes

are the remaining nodes which have not been optimized

yet.

Finally, the node listΠ is sorted according to ψopt =

ψ(k+1),∗ and Πopt is handed over to the trajectory gen-
erator.

3.3 Sine-Square-Trajectory-Generator (SSTG)

Receiving two consecutive patch locations pi and pi+1

of the patch list Πopt as an input, a nearly time-optimal

trajectory for the patching robot has to be planned.

Naturally this trajectory generator must account for the

dynamic limitations of the patching robot, namely max-

imum velocity vmax, acceleration amax and jerk jmax.

Trajectories with high acceleration are likely to in-

duce vibrations in the machine structure. This puts

an unnecessary burden on the machine and moreover

hampers precise positioning. The choice of sufficiently

smooth trajectories is a measure to avoid these prob-
lems, see Biagiotti and Melchiorri (2008).

In general the trajectory generator computes the

trajectory between a start point
[
xd(ti) yd(ti)

]T
= xi

and an end point
[
xd(tj) yd(tj)

]T
= xj . The travel

time is denoted by td = tj − ti. Since the patching
robot is a time-invariant dynamical system, one sets

ti = 0 without loss of generality. Similarly, xi = 0 and

xj ← ∆x = xj − xi is applied.

The dynamics of the patching robot are decoupled

in x- and y-direction. Therefore, the trajectory can be
planned in longitudinal and lateral direction separately.

8 The leftmost node ψl2r
n always remains the last node, so

it is not part of any optimization problem.
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The idea is to prescribe the desired acceleration

ad(Tj, Ta, Tv, t) in the form

ad =





amax sin
2(ω t) 0 ≤ t ≤ T̄1

amax T̄1 < t ≤ T̄2
amax sin

2(ω (t− Ta)) T̄2 < t ≤ T̄3
0 T̄3 < t ≤ T̄4
−amax sin2(ω (t− T̄4)) T̄4 < t ≤ T̄5
−amax T̄5 < t ≤ T̄6
−amax sin2(ω (t− T̄x)) T̄6 < t ≤ T̄x
0 otherwise,

(13)

where

T̄1 = Tj/2

T̄2 = Tj/2 + Ta

T̄3 = Tj + Ta

T̄4 = Tj + Ta + Tv

T̄5 = 3/2Tj + Ta + Tv

T̄6 = 3/2Tj + 2Ta + Tv

and

T̄x = 2Tj + 2Ta + Tv, (14)

with ω = π/Tj and Tj/2 denoting the time it takes until

maximum acceleration amax is reached. The time Ta is

the period of constant maximum acceleration and Tv is
the time of constant velocity. Then the whole scheme is

applied a second time to the deceleration phase. Con-

sequently, T̄x is the total travel time for the distance

∆x.
Integration of (13) yields the velocity

vd(Tj , Ta, Tv, t) =
∫ t
0
ad(Tj, Ta, Tv, t̃) dt̃ and the

position xd(Tj , Ta, Tv, t) =
∫ t
0
vd(Tj , Ta, Tv, t̃) dt̃, all

of which are depicted in Figure 8. The time derivative

of (13) yields the jerk, jd(t) = ȧd(t). It remains to
compute the time periods Tj , Ta and Tv from the robot

parameters maximum jerk jmax, acceleration amax and

velocity vmax.

The actuator needs the time Tj/2 to build up its

maximum acceleration. This time span is consequently
determined by the maximum jerk,

Tj = π amax/jmax. (15a)

Moreover, Ta computes from the time it takes to accel-

erate up to maximum velocity,

Ta = vmax/amax − Tj/2, (15b)

and Tv is determined by the distance ∆x to be covered,

Tv =
2∆x

amax (Tj + 2Ta)
−
T 2
j + 3TjTa + 2T 2

a

Tj + 2Ta
. (15c)
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Fig. 8 Position xd(t), velocity vd(t) and acceleration profile
ad(t) according to equation (13) for the (arbitrary) parame-
ters jmax = 15m/s3 , amax = 10m/s2 and vmax = 3m/s.

These equations only hold for a sufficiently large

∆x, otherwise maximum velocity or even maximum ac-

celeration is not reached. Therefore, the trajectory gen-
erator must distinguish these cases, which is easy to do

and thus is omitted for brevity.

3.4 Processing Time per Panel Side

Each defect Di, i = 1, . . . , N is covered by a number

of nPi
patches. The processing time of one patch pj

consists of the positioning time T̄j = max(T̄xj , T̄yj),

with T̄xj and T̄yj according to (14), and the patching
time Tp. Assuming that no disturbances are acting on

the system, the total processing time per panel side is

the sum of all patch processing times

¯̄T =

N∑

i=1


nPi

Tp +

nPi∑

j=1

T̄j


 . (16)

The Scheduling Agent associates each panel side with
its estimated processing time ¯̄T and uses this informa-

tion for workload balancing.

4 Simulation Results

This section briefly demonstrates the efficiency of the

proposed algorithms and points out their pros and cons.

4.1 Patch Placement

Figure 9 exemplarily shows the potential of the patch

placement algorithm. The optimal solution requires six
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Fig. 9 The patch placement algorithm reduces the number
of required patches for the defect to a global minimum of six.

patches to cover the defect as compared to eleven

patches of the worst solution. Major advantages of this

approach are: First, the above algorithm does not im-
pose any restrictions on the shape of the defect polygon,

in particular convexity is not required. Second, a global

minimum with respect to the positioning accuracy is

found. Third, any number of arbitrary constraints can
be added. If one of these constraints is not met, the

solution is not feasible and thus ignored. This is very

important, in particular with respect to the feasibility

of the patch arrangement. Fourth, the algorithm can be

terminated any time, which is essential for hard real-
time constraints. Then the best solution found so far is

going to be worked with. The major drawback of this

algorithm is its rather high computational cost.

The time complexity of an algorithm depends on

the problem size n, which, according to Sipser (2012),

is equal to the length of the input string. In case of the
patch placement algorithm presented in Section 3.1 n is

equal to the number of nodes nD of the defect polygon

D. In order to analyze the time complexity of the patch

placement algorithm the following experiment is carried
out.

To begin with, polygons of the same shape and size,
but with a different number of nodes are created. This

is achieved by adding nodes exactly at the edges of the

original polygon. Suppose an edge of the original poly-

gon is given by the two nodes dj and dj+1. Then the
number nD of nodes of the original polygon is increased

by a factor F by inserting (F − 1) nodes

dj, f = dj + f (dj+1 − dj)/F, f = {1, . . . , F − 1} (17)
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Fig. 10 Normalized computation time tDF
/tD versus nor-

malized problem size F = nDF
/nD.

into every edge of the polygon. This way, the polygons
D2, D10, D100, D200, D600 and D1000 are created, for

the factors F ∈ {2, 10, 100, 200, 600, 1000}.
Then, the patch placement algorithm is applied to

these polygons. It goes through exactly the same com-

putation steps for each of the defect polygons since they
are of identical shape and size. Only the input size, i.e.

the number of nodes nD, varies. The result is depicted

in Figure 10. It shows the computation time of the patch

placement algorithm tDF normalized to the computa-
tion time tD of the original defect polygon over the

normalized problem size F = nDF
/nD. Two examples

are chosen, Experiment 1 refers to a rather small de-

fect requiring only 3 patches, whereas Experiment 2 is

carried out with the big defect shown in Figure 9. The
absolute computation time tD of the original defects is

0.07s and 0.22s, respectively.

Clearly, the experiments reveal a quadratic depen-

dence of the computation time on the problem size, in
particular a least-squares curve fit of the experiments

yields

tDF

tD
= c2

(
nDF

nD

)2

+ c1
nDF

nD
+ c0 (18)

with constants c2 = 0.0025, c1 = 0.1479 and c0 =

0.0028.

Among all optimization steps, the minimization of

the number of patches has the largest contribution to
savings of both production time and wood. Each patch

requires approximately 4s of production time, includ-

ing positioning and the patching action itself. Also the

maximum number of patches allowed per defect is lim-
ited due to quality reasons, which is why minimizing the

number of patches needed per defect enables to process

even lower quality raw material and as a consequence
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reduces the amount of rejects. If only one defect of a

panel is too big to patch, the entire panel, i.e. up to 20kg

of wood, needs to be rejected. In conclusion, it is worth

computing the global minimum of patches required for

each defect, even at higher computational costs.

Similar problems to patch placement also arise in

network covering of telecommunications. In Das et al.

(2006), a given number of base stations of variable, but

identical transmission range shall be distributed in a

convex region such that the required total transmis-
sion power is minimized. This boils down to a covering

problem, where the number of circles of equal radius

is given a priori, but their location needs to be chosen

optimally as to minimize the radius. Compared to the
patch placement problem, the optimization variables

are the same, i.e. the position of the circles. However,

the objective function and the parameter of the algo-

rithm, i.e. the number of circles and the circle radius,

are interchanged.

4.2 Path Planning

In the following example, the cost of each arc corre-

sponds to the Euclidean distance between the respec-

tive two nodes. Figure 11 depicts a 1.5m long panel

exhibiting 24 ”small” and 3 ”big” defects (at approxi-
mately x = 0.35m, 0.8m, 0.9m). The small defects are

covered by one patch, whereas the big ones require three

patches each. For the path planning algorithm, the re-

spective patches are clustered and considered as one
node. The clustering is indicated by the black lines con-

necting the nodes.

The solution of the simplest possible path planning

method ”from-left-to-right” (L2R) is compared to the

results of the Ant Colony Algorithm (ACOA) and the
Local Search Receding Horizon Algorithm (LSRHA)

as presented in Sections 3.2.1 and 3.2.2 respectively.

Although the L2R path already yields quite good re-

sults, one can easily identify its weakness. If nodes are

very close in x-direction but far from each other in
y-direction, this method generates solutions that per-

manently jump up and down along the y-axis. Thus,

this method becomes less effective as the ratio between

panel length and width decreases.

Provided a computation time of 5ms, the ACOA
manages to improve the start solution from JL2R =

4.6m to JACO = 3.7m. However, the LSRHA finds a

path of length JLSRH = 3.5m in only 1ms. The reason

for the high performance of the LSRHA is that it makes
perfect use of the peculiarities of the traveling salesman

problem at hand. First, there is a dedicated production

flow, and second, the panels are much longer than wide.
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Fig. 11 Results of three path planning strategies for an ex-
emplary panel.

So it is easy to create good start solutions which only re-

quire local refinement9. The LSRHA is perfectly suited

to correct these errors.

Therefore, current benchmark algorithms for classi-

cal traveling salesman problems (or other complex com-

binatorial optimization problems) are implemented as

a two-stage-process. As a first step, one makes use of
the ACOA’s excellent global search ability to generate

good start solutions which, in a second step, are refined

using local search, see Dorigo and Stützle (2004).

In the considered application, hard real-time con-
straints have to be met. Therefore, the possibility to

simply stop the algorithm after a given time is a vital

backup system. Both, the ACOA and the LSRHA can

be terminated any time, since they find good paths very
quickly and the best-so-far path is remembered. The

drawback of these heuristic methods is that optimality

of the computed path cannot be proven. Nevertheless,

the above mentioned advantages make the LSRHA the

method of choice for this particular path planning prob-
lem.

Regarding general applicability, it should be noted

that these algorithms can be applied to any robot de-

sign as nothing but the cost matrix would change. Go-
ing beyond the traveling salesman problem, both of

these algorithms are applicable to any problem that

can be stated in the form as described in Dorigo and

Di Caro (1999). Various examples for the application
of ACOAs and Local Search Algorithms are given in

Gambardella and Dorigo (2000); Chu et al. (2004); Gut-

jahr and Rauner (2007). The Receding Horizon Concept

is restricted to problems exhibiting a distinguished di-

rection of propagation, e.g. in the form of a dedicated
process direction as in the application at hand or in a

timely fashion as in air traffic management.

9 It is worth mentioning that the most suitable start so-
lution for the LSRHA is the nearest-neighbor path. Usually,
the nearest-neighbor path is extremely good except for a few
nodes that are left behind.
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Fig. 12 Schematics of the time-optimal Bang-Bang-
Trajectory-Generator.
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Fig. 13 Comparison of the SSTG to the BBTG for different
sampling times. The parameters remain the same as in Figure
8.

To the best of our knowledge, this is the first ap-

plication of ACOA and LSRHA to process sequencing
optimization in wood patching applications.

4.3 Trajectory Generation

The problem of finding a suitable trajectory is a well

established problem, see, e.g., Biagiotti and Melchiorri

(2008). In this book an online time-optimal trajec-

tory generator is outlined. Basically, it consists of a

chain of three integrators and a time-optimal sliding
mode controller (SMC) driving them towards their

respective reference values. Since this controller per-

manently switches between maximum and minimum

jerk, it shall be referred to as Bang-Bang-Trajectory-
Generator (BBTG), see Figure 12. For more details re-

fer to Zanasi and Morselli (2002). The BBTG is easy to

implement and therefore serves as a basis for compar-

ison to the Sine-Square-Trajectory-Generator (SSTG),

presented in Section 3.3, see Figure 13.
In the (quasi-) time-continuous case, sampling time

TS = 1ms, the BBTG generates strictly time-optimal

trajectories. However, it should be noted that the

BBTG is only able to switch the desired jerk at the
sampling times. For higher sampling times, this results

in oscillating behavior, which clearly counteracts pre-

cise and fast positioning. Consequently, time-optimality

is lost. The more recent papers Gerelli and Guarino

Lo Bianco (2010); Guarino Lo Bianco and Ghilardelli

(2012) present solutions to this problem.

The SSTG yields trajectories xSS(t) that are nearly
time-optimal, yet it has some advantages over the

BBTG. First, the SSTG yields smooth trajectories

without overshoot or oscillation, even for the time-

discrete case. Second, the SSTG is suited for offline pro-

cessing time estimation, since the estimation of the tra-
vel time is reduced to computing the time periods Tj , Ta
and Tv according to (15). On the contrary, the BBTG

is designed for online trajectory generation, meaning

each simulation time-step has to be computed in order
to estimate the overall trajectory time. For the applica-

tion at hand, the above mentioned advantages of SSTG

are decisive. In particular, the smoothness of the SSTG-

trajectories is a great benefit for the application at hand

since the panels are moved merely via friction forces.

Finally, it shall be noted that both trajectory gener-

ators can be applied to any 1D-motion-planning-task.

This naturally includes multidimensional motion that

can be decomposed accordingly.

4.4 Processing Time Estimation

In order to provide significant simulation results for

the processing time estimation a random test set of

500 panels, i.e. 1000 panel sides, is generated. This test
set incorporates all statistical data available10 for the

panels, e.g. panel length distribution, defect distribu-

tion per square meter, percentage of defects requiring

nP = {1, 2, 3, . . .} patches, etc.
Using the afore presented algorithms, the process-

ing time of each panel side is estimated. The result is

shown in Figure 14. Since the panel processing time is

subject to large variations, scheduling algorithms are
needed to evenly distribute the work load between the

three patching lines sketched in Figure 3. As already

mentioned in the introduction, this task can be for-

mulated as classical parallel machine scheduling with a

single server.

5 Conclusions

In this paper, a novel layout of a fully automated patch-

ing plant for shuttering panels is presented. In compar-

ison to existing solutions, legacy equipment of the cur-
rent semi-automatic patching process is reused in this

process.

10 The data is provided by our partner saw mill Lip Bled,
see http://en.lip-bled.si
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The core of this paper deals with optimizing the in-

dividual production steps of panel processing, namely

patch placement, path planning and trajectory gener-

ation. The patch placement algorithm is based on the
idea of hexagonally closest packaging. The defect poly-

gon is put in the middle of a hexagon tesselation and

displaced relatively to it until the defect is covered by

a minimum number of patches. Thus, within the closed

solution space, a global minimum with respect to the
positioning accuracy of the patching robot is found. It is

computationally rather expensive, but has great poten-

tial for not only saving production time but also wood,

thus increasing the yield.

For the path planning problem, a Local Search Al-

gorithm is employed. It randomly exchanges λ arcs of
a given start solution until a minimum is found. In the

sense of λ-optimality, increasing λ yields increasingly

strong necessary conditions for optimality. In combina-

tion with a Receding Horizon Concept which divides
the entire problem instance into several small subprob-

lems, this strategy yields superior results compared to

the frequently used Ant Colony Algorithm. However,

this is mainly due to the nature of the problem, namely

the dedicated production flow, the long but slim panels
and the rather small problem size.

The trajectory generation problem is tackled with
the so-called Sine-Square-Trajectory-Generator, which

prescribes the acceleration in form of a smooth curve,

thus aiding in precise positioning. Moreover, the com-

putational costs for this approach are very low, since it
comes down to solving algebraic equations. This is also

why it is particularly suited for offline-computation.

Compared to the Bang-Bang-Trajectory-Generator it is

not strictly time-optimal, but in practice the difference

in trajectory times is negligible.

Based on the results of the above algorithms, the

production time of the individual panels can be esti-

mated. The wide range of processing times observed
for the individual panels clearly shows the potential of

sophisticated scheduling strategies, which will be a part

of future work in the Hol-I-Wood PR project.

For the implementation of the algorithms in the

overall automation system, a Multi-Agent Approach is
employed. The foundations of this Multi-Agent Archi-

tecture have already been implemented on a hardware

system located in the laboratory facilities of the Au-

tomation and Control Institute (ACIN) at Vienna Uni-
versity of Technology, see Vallée et al. (2009). Moreover,

the pilot patching robot is currently being set up and

the overall automation concept is going to be imple-

mented on a pilot plant in the near future.
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