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State Estimation for Parabolic PDEs with Reactive-Convedve
Non-Linearities

L. Jadachowski®, T. Meuref, A. Kugi®

Abstract— An extended Luenberger observer is proposed for an efficient numerical solution for the corresponding kérne
the solution of the state estimation problem for semi-linea  PDE is considered as proposed in [6].
parabolic PDEs with reactive-convective non-linearities Here, The paper is organized as follows: In Section Il the state
the backstepping method is applied to the linearised obseer - - . ) C .
error dynamics to determine the observer gains. This, howear, estimation pr_oblem is formulated for a semi-linear parqbol
requires a successive evaluation of the so-called Hopf-Gol PDE, for which the extended Luenberger observer is de-
transformation allowing to transform the PDE of the linearised  veloped and observer gains are computed. Convergence of
observer error into a normal form, for which backstepping  both linearised and semi-linear observer error dynamics is
ga? be_d|rte_ct|y ;‘fﬁd Moreover, the Cg”gp“ta“%r.""‘.' Ef{'ﬁ'egb.c OI addressed in Section IIl. An efficient computational imple-

etermination o € gains Is Improve Yy comDpining the dire .
numerical solution approach with the sample-and-hold impé- mentation of the proposed Obs?rver scheme. by means of
mentation. Finally, the observer error convergence is angsed the sample-and-hold approach is presented in Section IV.
both theoretically and by means of numerical simulations. Section V provides simulation results of an exemplary set-
up. Some final remarks close the paper.
|. INTRODUCTION AND PROBLEM FORMULATION

. . . Il. OBSERVER DESIGN
The need for state estimation algorithms for distributed-

parameter systems is justified by the fact many applications I the following, the state estimation problem is considere

ranging from advanced control schemes to process monitdf & semi-linear scalar parabolic PDE given by

ing and diagnostics require full state information. Forténi a2

dimensional systems it is well known that the state estiomati Qux(z,t) = Oz2(2,1) + f (2,1, 2, 0:2) @

problem induces significant difficulties in the non-linease.  gefined on(z, ) € (0,L) x R} with R} = {t € R* | ¢ >

Consequently, it is not surprising that this is especiatliet ;1 ith BCs ' 0 °

when dealing with the observer design for systems governe

by partial differential equations (PDES). 9,x(0,t) =0, te€ ng (2a)
For the solution of the state estimation problem for sys- - . _ +

tems governed by non-linear PDEs, different observer and O:a(l,t) +qe(L,t) =0, tERy, (2b)

filter design techniques are proposed. In [15], a distrithute with an arbitrary constant parametgiand IC according to

parameter observer of Luenberger structure is considered f

a semi-linear model of a chemical fixed-bed reactor. This z(z,t0) = xo(z) 2 €[0,L]. (3)

32233gt;;pehigggend&"]ssgflg?g_,C)[%ie[r;/f rodrt]e fﬁ%noﬁggf%msﬁe system output is defined as the system state at the

observer design approach for infinite-dimensional digsipa boundaryz =0, i.e.,

bilinear systems based on semigroup theory is addressed, (4 — o +

e.g., in [3]. Alternatively, design methods based on optima y(t) =2(0.8), tER,. “)

estimation and filter techniques are suggested in, e.g., [1h view of the well-posedness of (1)—(3) the following

[9]. Finally, backstepping-based state estimation for a-no assumption is made.

linear Navier-Stokes PDE can be found in [14] and for a Assumption 1:t is assumed that there exists a unique

semi-linear parabolic PDE in [10]. solution to the considered initial value problem (1)—(r F
Subsequently, an extension of [10] consisting of theesults on the existence and uniqueness of solutions fér suc

combination of the extended Luenberger observer desi@DEs, the interested reader is referred to, e.g., [8] anH [12

approach and the backstepping method is presented forRemark 1:Note that the subsequent observer design ap-

semi-linear parabolic PDEs with a reactive-convective-norproach is not restricted to autonomous systems as it is

linearity and linear BCs. Here, the extended linearisatiohere exemplarily illustrated for homogeneous BCs (2) of

of the observer error dynamics around the estimated stafeumann or mixed type, respectively. However, in case

is combined with the successive evaluation of the so-callasf different configuration including Dirichlet BCs and the

Hopf-Cole transformation (see, e.g., [4]) such that for theresence of inhomogeneities being known functions of time

resulting linearised observer error dynamics the backétep representing exogenous signals the following proceduire is

method (see, e.g., [13]) can be directly applied. Thereby, principle identical.

view of the successive determination of the observer gains

A. Extended Luenberger observer
~Carresponding author. Email: jadachowski@acin. tuwirata Following the idea of [10], the combination of the back-
bAutomation and Control Institute, Vienna University of Fiealogy, ’

Vienna, Austria stepping method, the extended linearisation and the Hopf-
cChair of Automatic Control, Kiel University, Kiel, Germany Cole transformation is considered for the observer design.

Pre-print version of the article: L. Jadachowski, T. Meurer, and A. Kugi, “State estimation for parabolic pdes with reactive-convective
non-linearities”, in Proceedings of European Control Conference ECC 20183, Ziirich, Switzerland, 17.07.-19.07. 2013, pp. 1603—-1608
The content of this pre-print version is identical to the published paper but without the publisher’s final layout or copy editing.



AIC|IIN

For this, a distributed-parameter Luenberger-type oleservB. Hopf-Cole transformation
in the observer staté(z, 1) is set up according to For the determination of the observer gaiffs,¢) and

_a2a PPN - lo(t) the governing equations (13), (14) are transferred to
0ui(z,t) = 0:5(z, 8) + f(2,4,2,0:2) +U(z,)5(t)  (5) 4 simpler form by applying a suitable coordinate and state
with §(£) = y(t) — §(t) defined on(z, ) € (0, L) x R:B- The transformation. Introducing the coordinate transforovati

B \
Cs are assigned as pes (= %27 P %(t 1) (15)
0:2(0,) = LoDy (*) (6a) and taking into account the Hopf-Cole transformation
0.&(L,t) + qi(L,t) = 0 (6b) g P

é(zv t) = é(Cv 7_) = é(L<7 L?r + t()) eXp(X(<7 T))7 (16)

A A wherex(¢,7) = [$ b(s,7)ds with b(¢,7) = Lb(L(, L27 +
&(z,t0) = &o(z) z€0,L]. (") ty)/2 it is possible to eliminate the convection term
b(z,t)0.é(z,t) in (13), while the spatial coordinate is
scaled to unity.

(1) = 2(0,1), (8) As a result, instead of (13), (14) it is hence equivalent

to analyse the following diffusion-reaction PDE with only a

while I(z,t) andlq(t) entering both the PDE (5) and the BCsingle spatially and time-varying reaction parameter
6a) denote the observer gains to be determined. Consigerin _ . . . o .
t(he)plant (1)—(3) with the sgtate observer (5)(7) it fonawi;gfI d.e(¢.m) = D2e(C,7) + E(¢,T)E(¢, T) —1(¢,7)E(0,7) (17)
the dynamics of the observer errz, t) = 2(z,t) —£(2,t)  {efined on(¢,7) € (0,1) xR, R = {r e R |7 > 0}
is governed by ’ ' 00

for t € R, with the IC

The output estimate is given by

with

de(z,t) = Be(z,t) + f(z,t,2,0.2) — f(2,1,%,0.%) 9 0ct0.7) + (5(r) + Io(1))é(0,7) =0, TE€RS (18a)

—U(z,)e(0, 1) 9c6(1,7) + §(r)é(1,r) =0, TeRS (18b)

defined on(z,t) € (0, L) x R,;. The BCs follow as &(¢,0) = &o(¢), ¢ € [0,1]. (18c)
, Here, the transformed reaction parameter is given by

] =0, Ry 1 - - a

00,0+ lo(0)e(0,) =0t Ry (0D Gy 0y 7 1€ s, s — B(C,7) — OC,7) + ()

0.e(L,t) +qe(L,t) =0, te R;, (10b) with &(¢, 7) = LQE(LC, L27T +to), p(r) = —b(0, T)’ Lj(’r) =
and the IC is given by éj_b(LT) and the mapping of the observer gains is defined

e(zt0) = eofz). z€[0.1] WD 1,0 = (¢ m) = LA(EG L7+ to) exp(x(C. 7)) (19)

with eg(z) = xo(2) — Z0(2). For the determination of the  Io(t) — lo(7) = lo(L>T + to). (19b)

observer gaing(z, t) andly(t) such that (9)—(11) converges )

in the Z2-norm the governing equations of the observer error Rémark 2:Note that due to the Hopf-Cole transformation
dynamics are linearised with respect to the current observadditional time dependency in form pfr) in (18a) andj(r)
state(z, ¢) and its spatial derivative.(z, t). Considering N (18b) is induced compared to (14a) and (14b). This has

thatz(z,t) = (2, t) + e(z, ) this yieldd to be taken into account in the subsequent design of the
’ ’ ’ observer gains.
flz,t,x,0.0) = f2,t,2,0.%) + 0. f(2,t, &, 0.2)e(z, t) 5 With this,v for the determination of the observer gains
+ 0y f(z b, 8, 0,2)Dse(2, ). (12) 1(¢,7) and ip(7) to stabilize (17), (18) the backstepping

method is applied.

fﬁgftgyﬂg%gszi)ré?ftfggf rt(;seu]!gsrén the linearised observ C. Stabilizati-on of the linearized observer error dynamics
An essential feature of the backstepping-based observer

design is the determination of the observer gains in such a
way that the observer error dynamics follows the behaviour
of a predefined target system. In the following, the desired
with b(z,t) = 0, f(2.1, &, 0.3), &(z,t) = 0, f(2,t,4,0,4). target system for the behaviour of the linearised observer
Here, BCs and the IC remain unchanged and follow accor@Tor is specified.
ing (10), (11) as Selection of the target systerThe observer error dy-

namics (17)—(18) is enforced to behave like the target syste

D4é(z,t) = 8%(z,t) + b(2, 1)D.6(z, 1)

+ &z, t)e(z,t) — U(z,t)é(0,t) (13)

z s _ +
026(0:” + lo(t)f(()’t) =90, te Ri‘r’ (14a) Orw(¢,7) = 8?71)(C,7‘) — u(M)w(¢,T) (20)
0.e(L,t) + qe(L,t) =0, te Ry (14b) ] . ]
é(z,t0) = éo(2), 2€[0,L]. (l4c) defined on(z, 7) € (0,1) x R with corresponding BCs
0cw(0,7) =0, T€eRS (21a)
1Here and in the followingd,, andd,_ denote partial derivatives with _
respect tar(z,t) and 821(2,%), respectively. P dcw(l,7) =0, TeRy (21b)
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and the IC approximatingj(¢, s, 7) by means of an infinite series. How-

ever, the recursive determination of the series coeffisient
w(C,0) = wo(¢), ¢ €0,1]. (22) significantly increases the computing time. For this reason
Here, () denotes a design parameter, whose appropriatgosequently an efficient numerical method introduced]in [6
choice guarantees the exponential stability of the targét used by applying a formal discretization of the kernel
system. It can be shown, see, e.g., [11], that the paraboHHeg’_a' formulation and a numerical time integration of th
PDE (20)—(22) is exponentially stable in tfid-norm, if the ~resulting system of ODEs. _
inequalityu(7) + Amin > € is satisfied for some > 0, where Numerical solution of the kernel-PDErollowing the
Amin denotes the smallest eigenvalue of the Sturm-Liouvill§olution method from [6], in a first step formal integration
problemdZw(¢, )+ w(¢, ) = 0 with BCs (21). As a result, 1S applied to the kernel PDE (25a). Therefore, scattering
it follows that coordinates are introduc€d=2 - ¢ —s, n=(¢ — s such

that g(¢, s, 7) = g(&(¢, 8),n(¢, s), 7). With this, it follows
(¢ ) 2 < exp(=r(7))[[wo(O)l| L2

(23) from (25) thatg(¢, n, 7) has to satisfy the PDE

with k(1) = [ ((s) + Amin) ds. With this, the evaluation _ _ 1,

of the backsteopping transformation relating the desiregeta OnDeg(&,m.7) = 489(5’ ) (282)

dynamics with the linearised observer error PDE is carried o 1, £

out as sketched below. 9g(€,0,7) = *17(1 “y T) (28b)
Determination of the kernel-PDEBY making use of Ong(n,m,7) — eg(n,m,7) = —4(T)g(n, M, 7) (28c)

the Volterra integral transformation 3(0,0,7) = ii(7) (28d)

¢
é(Cv T) = H)(C,T) _/ ﬁ((,s;r)w(sn‘)ds (24) with 85(57 T],T) = 78‘4?(5’ T]v T) + ’?(1 - gTquT)g(gvan)

0 defined on(¢,n) € {(¢,7) € R* | n € [0,1], £ € [n,2
with the integral kerne§i(¢, s, 7), the mapping of the target 7]}. Integrating (28a) with respect tg from 0 to 5 and
system (20)-(22) to the observer error dynamics (17)—-(18fterwards oveg from 7 to £ allows together with (28b)—
is realized. To determine the PDE governing the evolutiof?8d) to determine an implicit integral formulation of the
of the kernelg(¢,s,7) expressions for the observer errorkernel-PDE, i.e.,

(24) and its partial derivatives are substituted into (1T§). 1 76
After some intermediate calculations this allows to deduceg(¢,n,7) = A(€,n,7) + Z/ / B3 (B, o, T)dad S
n 0

the PDE governing the evolution of the kergél, s, 7), i.e., (29)
AL i[9
] : ) 3 [ [ Ba.aniaads —ao) [ (65,705,
0G0, = 0G0 < FiCnr) e 2o Jo T 0 AT
+3(6 79, 5 7) where A(¢,n,7) = =3 [i/5(1 = 4,7)dB — % [S5(1 -
d;g(¢, ¢, 7) = 1) (25b)  5.7)dB+(r). Discretization of the kernel integral equation
. V2 5 (29), approximation of the integral terms by means of the
9cg(L,8,7) = —q(1)g(1,5,7) (25¢)  composite trapezoidal rule and appropriate indexing of the
g(1,1,7) = q(7) (25d) discretized domain yields the formulation for a vector ledrn

g(7) in terms of coupled first-order ODEs

defined on the triangular spatial domdigy s) € {(¢,s) € .
—Mg(7) = (D(7) — Lyv) (1) + b(7) (30)

R? | s € [0,1], ¢ € [s,1]} with ¥(¢,7) = &, T) + ;UL(T)Y

see, e.g., [6]. Moreover, the observer gaif ) andly(7)
follow in the form

I(¢,7) = 0:9(¢,0,7)  lo(r) = §(0,0,7) — (7). (26)

By considering the inverse of (19) the observer gdinst)
andly(t) of the linearised observer error dynamics(int)-

with Iy the identity matrix and matricedl, D(r) and
a vectorb(r) as defined in the Appendix, where to keep
the paper self-contained a detailed determination of (80) i
presented.

In this way, the original problem of solving (29) is
transformed into an initial-value problem (IVP), which

coordinates follow as can be solved numerically for a given initial condition

1/ g(0) = go. Subsequently, the initial conditiogy is chosen
I(z1) = ﬁ(l(gv 7) exp(=x(¢, T)))‘Czt{/} (@72) aé )a stationary solution of (30) at = 0, i.e., gy =
= — (D(0) — Iy) "' b(0).
lo(t) = lo(T)| __i=to. (27b) Remark 3:Note that in case of a time-independent para-
T meter ¥(z,7) = ¥(z) and a constant parameté(r) =
This guarantees the exponential stability of (13)—(14). G = const.,, the IVP (30) reduces to a set of algebraic
Obviously, an explicit solution of (25) is required toequations given byg = — (D —1Iy)"'b providing an
determine the observer gaifi§, 7) andiy(7). The classical efficient solution procedure.
solution of such PDEs traces back to [2], where the kernel
is obtained in terms of integral operators followed by sucl!l: CONVERGENCE OF THE OBSERVER ERROR DYNAMICS
cessive series approximation. Under assumption of certainSubsequently, the verification of the exponential stabilit
Gevrey regularity for time-varying parameters this methodf the linearised observer error dynamics of the closeg-loo
allows to construct a strong solution of the kernel-PDE bybserver is based on the analysis of the inverse backstpppin
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transformation from the(¢, 7)-system to thew((, 7)-PDE.  with Cine = exp(2inf,,- (¢, 7))/L and
In particular, it can be shown that the stability of the 1
target system (20)—(22) implies the exponential decay ef th 5 2 _ 5 2

linearised observer error dynamics (13), (14). The théaket lEo(Clze /0 (B(LG; to) exp(x(¢, 09))"d¢

stability assertions of the semi-linear observer errorayits < Chnp ||E0(2) HQLz (37)
of the form (9)—(11) are still an open question such that -

the observer error convergence is studied in a numericaith Cs,, = exp(2sup, x(¢,0))/L. Hence, evaluating (35)
simulation scenario. in view of (36) and (37) yields

A. Inverse backstepping transformation ez, )l 2 < Ceexp(—r(t)) €0 (2)ll 2 (38)

As mentioned above, the stability of the observer errofjth (¢) = k()| > and C; = Csv/Coup/vCint

. X . . T=(t—to)/L? é é su inf-

dynamics (17)-(18) can be directly deduced taking intQuith this it is shown that the observer erré(rz,r;%) of the
account the inverse backstepping transformation. For thignearised observer error dynamics (13), (14) with observe
in the following an inverse to (24) is introduced in the formgainsi(, t) and!(¢) according to (27) decays exponentially

¢ over timet in the L?-norm.
w(¢7) =G 7) +/0 (G, s, 7)é(s, 7)ds, C. Convergence of the semi-linear observer error dynamics

with the inverse kernebn(¢,s,r) mapping (17)-(18) to A rigorous proof of the exppnentlal stabll_lty of the semi-
(20)~(22). Therefore, proceeding similarly as in Sectibn | linéar observer error dynamics (9)~(11) is still an open
C the kernel-PDE governing the evolution @i(¢,s,7) Problem. The challenges are twofold. First, evaluation of
can be determined in a form similar @, s, 7). Hence, (9)—=(11) with the backstepping transformation (24) implie
the presented solution method can be similarly applied {6/t the dynamics of the resulting effective target system
m(C,s,7). Following this argumentation, the existence ofS govermned by a non-linear PDE. Hence, this precludes
a bounded strong solutiom(C, s, ) to the corresponding the use of the stability assertion as obtained for the linear
kernel-PDE is guaranteed. target PDE (20)—(22) and requires that the stability of the
non-linear target system has to be considered separately.
B. Stability of the linearized observer error dynamics On the other hand note that for the design of the observer
Considering thatj(¢, s, ) and 1n(C,s,7) are bounded 9ainsi(z,t) andly(t) the additional coordinate and state
strong solutions of the corresponding kernel-PDEs, the suffansformation (15), (16) is applied and the target system i
sequent estimates follow by application of the Cauchyassigned in the transformed, v)-coordinates. This means
Schwarz inequality. Evaluating thB>-norm of the integral for the non-linear target system expressions correspgndin
term in (24) results in to the linearw((, 7)-system (20)—~(22) and the backstepping
transformation (24), that at first (20)—(22) and (24) havedo
formulated in the(z, ¢)-coordinates by means of the inverse

(31)

<§(C, s, T)w(s, 7)ds 22 < Cg”u)((,T)HQLz (32)
0 L

with Cj = sup, , , 5*(¢, s,7), while a similar calculation
for the integral term in (31) evaluated at= 0 yields

of (15)—(16) and then substituted into (9)—(11).

Remark 4:For parabolic PDEs (1)-(3) with the non-
linearity f(z,t,z,0.x) = f(z,t,z) the theoretical analysis
of the stability of the semi-linear observer error dynanigcs

¢ 2 presented in [10]. In particular, the exponential conveoge
H/ (¢, 5,0)E(s,0)ds|| < Crnll€o(Q)]122, (33) of the semi-linear observer error PDE is shown for locally
0 L and uniformly Lipschitz continuous non-lineariti¢éz, ¢, x).
where Cy;, = sup. ,m2((,s,0). In addition, taking into )
account the bounéédness Wf(¢, s, 7) it follows from (31) V. IMPLE_MENTATION FOR REAL-TIME APPL'FATlo_NS_
that The continuous update of the extended linearisation of
the semi-linear observer error dynamics (13), (14) inwelve
lwo (Ol 2 < (1 + \/Cm> leo (O]l 2 - (34) a significant computational cost. Moreover, in practical ap

plications measurements are often obtained at discretstim
only. Motivated by this, in the following a sample-and-hold
approach is employed for the efficient and real-time capable
implementation of the considered observer scheme.

Hence, evaluating the.?-norm of (24) in view of the
estimates (32)—(34) and the stability of th€(, 7)-system

according to (23), it is easy to deduce that
. . Therefore, it is subsequently assumed that the output (4)
180G Tl 2 < Ce exp(—k(7))l|€0(C)l| 2 (35)  and the linearisation algorithm are updated only at discret
with ¢ = (1 + \/C_g) (1+ @) This guarantees the tlmestk = kTa-i-_to, k € Ny with the sampling tim&,.With
exponential decay in the?-norm of the linearised observer this: the determination of the observer gaipé:) = I(2, x)
error dynamics (17)—(18) with the observer gaiitg,7) &"dlox = lo(tx) is performed for each sampling period
and [y(7) from (26). Consequently, considering (16) an tk, ti1) depending on the previous resiilf(z) = &(z, t)

) .\ - o= nd the sampled outpyk = y(tx).
changing the limits of integration it follows that In particular, in view of the extended linearisation of (9)—

(11) att = ty let bk(z) = b(z,tk) and 5k(z) = é(z,tk).
Consequently, the reformulation of the time scaling in (15)
leads toty, — 7 = kT,/L? while the Hopf-Cole transform-
ation (16) is evaluated at every sampling stgpk € Ny

1
(¢, )12 = /0 (B(LC, L7 + to) exp(x(C, 7)) dC
> Chu |62, 1) |7 (36)
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according toé(z,ty) — éx(¢) = é(L(, tr)exp(xx(¢)), of the observer gains, where the Hopf-Cole transformason i

wherex(¢) = _[04 br(s)ds with by (¢) = Lby(L¢)/2. Hence, applied to transform the Iinea(ised observer error PDE to a
the observer gains are calculated by means of backstepp#igtable normal form. The design and the numerical compu-
based on the time-invariant kernel-PDE (25) with(¢) = tatlon_of the observer gains is carried out in the transfcnt_me_

5(¢, ) andge = () in every sampling periory,, 7411 cgordlnates. Convergence of the observer error dynamics is
This allows to neglect the differentiation with respectrto discussed for the linearised and the semi-linear PDE. In
in (29), which results in an efficient solution procedure foview of a real-time implementation of the state observer, a

the kernel-PDE as already mentioned in Remark 3. sample-and-hold approach is employed, which significantly
reduces the computing costs for the observer gains. The
V. SIMULATION RESULTS performance of the proposed observer is illustrated in a

Subsequently, numerical results are presented to evalugilulation scenario, which confirms a very accurate state
the backstepping-based state observer for the parabolic pgstimation.
with a non-linear reaction-convection term.

The numerical solution is performed using thdepe- APPENDIX
algorithm of MATLAB . Here, the spatial coordinatec [0, L]
with L = 1 of the system (1)-(3) and the state observer To approximate the integral terms in (29) by means of the
(5)—(7) is split intoN = 10 equidistant intervals of length composite trapezoidal rule, in a first step the spatial domai
Az = 1/N = 0.1. The reaction-convection non-linearity is Q; = {(¢,7) € R? | € [0,1], € € [n,2—n]} is discretized.

thereby exemplarily assigned according to For this, Q5 is split into N5 — 1, N5 > 3 intervals in then-
. . A A3 direction and int2 N5 — 2 intervals in the¢-direction with
f(z,t 2, 0.0) = sin(2mz) + 2z — 1)(9:2)°, an equidistant interval length= 1/(Ns — 1) implying that

while the boundary parameter in (2b) is defineddoy: 1. 0 = & <& < - < &y, = 2and0 = m <72 <
Hence, the PDE (1)—(3) is characterized by a homogeneous < "Ns = 1 ‘,’V'th §=0(—1),i=1,.. - 2Ns —1 and
Neumann BC at: = 0 and a mixed BC at = 1. The " =9( —1),j=1,..., Ns. Thereby, the integrals in (29)
IC with ¢, = 0 is chosen ascy(z) = 0.1(cos(rz) +1). &€ approximated by using discrete values of their integgan
Moreover, the target system (20)—(22) is parametrized tg;alue}ted only at grid points, j) € Z with T := {(i, j) €
u(r) = p e 0,1} | j=1,...,Ns,i = j,...,2Ns — j}. Application of

Simulation results are presented in Fig. 1. Thereby, resufflé_composite trapezoidal rule to each of the integrals in
) with spatially discretized kerngi ;(7) = §(&,n;,7),

of the state estimation based on an open-loop observer ° ; . o
(simulator) are compared with the determined backsteppin%w) € Z and discretized functiofy; ;(1) = 5 (1— 5", 7),
based observer. In particular, Figs. 1(a)—(b) show thelpeofi (¢,j) € Z Yields a pointwise approximation of the kernel
of the plant and the observer error due to a simple simulaté¥tegral equation (29), i.e.,

(I(z,t) = lo(t) = 0) with the IC &9(z) = —0.7Tzo(2). - i

Note that due to the deviating initial condition the state Gij(1) = Aij (1) + Bij(1), (i,7) el (39)
evolution of the simulator converges to another equiliforiu B B

of the plant (differing from this in Fig. 1(a)) such that aHere, A;;(r) =  A(&,n;,7) and B;(r) =

non-zero stationary estimation error evolves (Fig. 1jih lf& O”J By (3, o, 7)dadp + % 0"]‘ 0” By (8, o, 7)dadB —
the application of the introduced observer design approa T’S] n; g(ﬁ 3,7)d3 denote approximétions of the integral
the resulting profile of the evolving observer error is Showﬁermsoin thé iﬁtegral formulation (29) according to

in Fig. 1(c) for u = 1. Here, the observer error evolution

converges to the zero equilibrium(z,t) = 0 providing 21 .
a very accurate state estimation. Fig. 1(d) addresses t?f;j(T) _ _[ (%,1(7) +%i,_7(7)) n 52 (21(7)

corresponding evolution of the observer galfis t) at z = 4 14

0.5 andy(t) with a sampling timeT,, = 0.02 for u = 1. i i jh:Q

Figs. 1(e)—(f) clearly indicate the superiority of the pospd 1 s . *
backstepping observer compared to a simple simulator. InT ix(7)) + 5 Z s, (7) + Z Z %h,lk(T)}
particular, Fig. 1(e) shows the evolution (#(z,t)|| = for h=j+1 h=j+1 k=2

u = 0 (dashed) and: = 1 (gray). The dash-dotted line 521 1 I, 117

addresses the evolution of tiié-norm of the simulator error. ~ + — [— 5, (T) + 5 Z 2k (T) + = 20,1 (7)
Obviously, by increasing the design parameiethe decay 24 2 k=2 2 h=2

behaviour of the observer error can be improved. A similar  j-1 nh-1 1 j—1

decay behaviour of the observer error in terms of ¢hp- + * - sanw(T)| = §(T)0 | =g (1) + * Ghe(T
norm is presented in Fig. 1(f). n; H; a{ )] ™) [2 5(7) ﬂ; rok{ )]

VI. CONCLUSIONS 52r1 1 2L,
TG00 +5a0) +5 3 ()]

+
In this contribution, a backstepping-based solution of the 4
state estimation problem is presented for parabolic PDEs
with reactive-convective non-linearities. For this, asgwy 1 1 N
a sufficiently small initial observer error an extended lin- © 3 [Z 5.1(7) + ) Z ”‘1‘71(7)} - 5’1(7)9171(7)
earisation of the observer error dynamics is performed to h=2
obtain a linear PDE.This serves as the basis for the design

2 J—1
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Fig. 1. Numerical results for the state estimation probléa).Solutionz(z,t); (b) Simulator errore(z,t); (c) Observer erroe(z,t) for u = 1; (d)
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0

2

1

A (1) = 5

[

- g[% (’71‘,1(7)

(31.1(7) +55.0(0) + 3 (7))

k=2

+5(n) + X Aea(m)] + ()

k=j+1

wheress (1) = = $3:;(7) + %;(7)3i ;(7), (i,§) € T and

the summation operator,"™ =
Oif n—m=1and)
With this, in a next step

mo *mo_
*,Mm Znnfllf -n_m < l’ Zn n
M=y fn—m> 1.

K

(3]

4

5]

[6]

39) is reformulated in terms

of a set of first-order ODEs evaluated at the discrete grid7]
points (i, j) € Z with = {(i.j) € T} \ {(0.4) | j = 1}.
Therefore, a kernel vectog(r) = [gn(7)]n=1,... n Of the
length V' = (N5 — 1)% is set up by an appropriate indexing
of Z such thatn =3+ j fori < Nsandn =3+ j — (i —
Ns)(i — N5 — 1) for i > Ns with 3= (i —2)(i — 1)/2 — 1
implying that eacly,, (7),=1, .. o corresponds to the respect-
ive g; (7). A similar indexing scheme for the discretized

integral operators
Bi,j (T) and A:(T)

results o, (1) = Ai (1), Bu(r) =
= Ar;(7), (i,j) € I, where A7 ;(r)

8

19

[10]

combines the last two lines @&; (7). Hence, it is possible [11]
to formulate (39) by means of a set.&f coupled first-order
ODEs (30) with identity matriXx, matricesM = [M,, ,,.],

D(7r) = [Dnm(7)], m,n

1,...,N formally given by

[12]

My = 0B,(7)/0Gim, D () = 0B, (1) /9 and vector [13]

b(T) = [bn (7—)}”:1,.,

v defined as, (1) = A, (7) + Az (7).
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