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State Estimation for Parabolic PDEs with Reactive-Convective
Non-Linearities

L. Jadachowskia,b, T. Meurerc, A. Kugib

Abstract— An extended Luenberger observer is proposed for
the solution of the state estimation problem for semi-linear
parabolic PDEs with reactive-convective non-linearities. Here,
the backstepping method is applied to the linearised observer
error dynamics to determine the observer gains. This, however,
requires a successive evaluation of the so-called Hopf-Cole
transformation allowing to transform the PDE of the lineari sed
observer error into a normal form, for which backstepping
can be directly used. Moreover, the computational efficiency of
determination of the gains is improved by combining the direct
numerical solution approach with the sample-and-hold imple-
mentation. Finally, the observer error convergence is analysed
both theoretically and by means of numerical simulations.

I. I NTRODUCTION AND PROBLEM FORMULATION

The need for state estimation algorithms for distributed-
parameter systems is justified by the fact many applications
ranging from advanced control schemes to process monitor-
ing and diagnostics require full state information. For finite-
dimensional systems it is well known that the state estimation
problem induces significant difficulties in the non-linear case.
Consequently, it is not surprising that this is especially true
when dealing with the observer design for systems governed
by partial differential equations (PDEs).

For the solution of the state estimation problem for sys-
tems governed by non-linear PDEs, different observer and
filter design techniques are proposed. In [15], a distributed-
parameter observer of Luenberger structure is considered for
a semi-linear model of a chemical fixed-bed reactor. This
concept is adopted in similar observer design procedures in
various applications, see, e.g., [5], [7]. On the other hand, an
observer design approach for infinite-dimensional dissipative
bilinear systems based on semigroup theory is addressed,
e.g., in [3]. Alternatively, design methods based on optimal
estimation and filter techniques are suggested in, e.g., [1],
[9]. Finally, backstepping-based state estimation for a non-
linear Navier-Stokes PDE can be found in [14] and for a
semi-linear parabolic PDE in [10].

Subsequently, an extension of [10] consisting of the
combination of the extended Luenberger observer design
approach and the backstepping method is presented for
semi-linear parabolic PDEs with a reactive-convective non-
linearity and linear BCs. Here, the extended linearisation
of the observer error dynamics around the estimated state
is combined with the successive evaluation of the so-called
Hopf-Cole transformation (see, e.g., [4]) such that for the
resulting linearised observer error dynamics the backstepping
method (see, e.g., [13]) can be directly applied. Thereby, in
view of the successive determination of the observer gains
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an efficient numerical solution for the corresponding kernel-
PDE is considered as proposed in [6].
The paper is organized as follows: In Section II the state
estimation problem is formulated for a semi-linear parabolic
PDE, for which the extended Luenberger observer is de-
veloped and observer gains are computed. Convergence of
both linearised and semi-linear observer error dynamics is
addressed in Section III. An efficient computational imple-
mentation of the proposed observer scheme by means of
the sample-and-hold approach is presented in Section IV.
Section V provides simulation results of an exemplary set-
up. Some final remarks close the paper.

II. OBSERVER DESIGN

In the following, the state estimation problem is considered
for a semi-linear scalar parabolic PDE given by

∂tx(z, t) = ∂2
zx(z, t) + f(z, t, x, ∂zx) (1)

defined on(z, t) ∈ (0, L)× R+
t0 with R+

t0 = {t ∈ R+ | t >
t0} with BCs

∂zx(0, t) = 0, t ∈ R+
t0 (2a)

∂zx(L, t) + qx(L, t) = 0, t ∈ R+
t0 , (2b)

with an arbitrary constant parameterq and IC according to

x(z, t0) = x0(z) z ∈ [0, L]. (3)

The system output is defined as the system state at the
boundaryz = 0, i.e.,

y(t) = x(0, t), t ∈ R+
t0 . (4)

In view of the well-posedness of (1)–(3) the following
assumption is made.

Assumption 1:It is assumed that there exists a unique
solution to the considered initial value problem (1)–(3). For
results on the existence and uniqueness of solutions for such
PDEs, the interested reader is referred to, e.g., [8] and [12].

Remark 1:Note that the subsequent observer design ap-
proach is not restricted to autonomous systems as it is
here exemplarily illustrated for homogeneous BCs (2) of
Neumann or mixed type, respectively. However, in case
of different configuration including Dirichlet BCs and the
presence of inhomogeneities being known functions of time
representing exogenous signals the following procedure isin
principle identical.

A. Extended Luenberger observer

Following the idea of [10], the combination of the back-
stepping method, the extended linearisation and the Hopf-
Cole transformation is considered for the observer design.
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For this, a distributed-parameter Luenberger-type observer
in the observer statêx(z, t) is set up according to

∂tx̂(z, t) = ∂2
z x̂(z, t) + f(z, t, x̂, ∂zx̂) + l(z, t)ỹ(t) (5)

with ỹ(t) = y(t)− ŷ(t) defined on(z, t) ∈ (0, L)×R+
t0 . The

BCs are assigned as

∂zx̂(0, t) = l0(t)ỹ(t) (6a)

∂zx̂(L, t) + qx̂(L, t) = 0 (6b)

for t ∈ R+
t0 with the IC

x̂(z, t0) = x̂0(z) z ∈ [0, L]. (7)

The output estimate is given by

ŷ(t) = x̂(0, t), (8)

while l(z, t) andl0(t) entering both the PDE (5) and the BC
(6a) denote the observer gains to be determined. Considering
the plant (1)–(3) with the state observer (5)–(7) it followsthat
the dynamics of the observer errore(z, t) = x(z, t)− x̂(z, t)
is governed by

∂te(z, t) = ∂2
ze(z, t) + f(z, t, x, ∂zx) − f(z, t, x̂, ∂zx̂)

− l(z, t)e(0, t)
(9)

defined on(z, t) ∈ (0, L)× R+
t0 . The BCs follow as

∂ze(0, t) + l0(t)e(0, t) = 0, t ∈ R+
t0 (10a)

∂ze(L, t) + qe(L, t) = 0, t ∈ R+
t0 (10b)

and the IC is given by

e(z, t0) = e0(z), z ∈ [0, L] (11)

with e0(z) = x0(z) − x̂0(z). For the determination of the
observer gainsl(z, t) and l0(t) such that (9)–(11) converges
in theL2-norm the governing equations of the observer error
dynamics are linearised with respect to the current observer
statex̂(z, t) and its spatial derivative∂zx̂(z, t). Considering
that x(z, t) = x̂(z, t) + e(z, t) this yields1

f(z, t, x, ∂zx) = f(z, t, x̂, ∂zx̂) + ∂xf(z, t, x̂, ∂z x̂)e(z, t)

+ ∂xzf(z, t, x̂, ∂zx̂)∂ze(z, t). (12)

Substituting (12) into (9) results in the linearised observer
error dynamics iñe(z, t) of the form

∂tẽ(z, t) = ∂2
z ẽ(z, t) + b̃(z, t)∂z ẽ(z, t)

+ c̃(z, t)ẽ(z, t)− l(z, t)ẽ(0, t)
(13)

with b̃(z, t) = ∂xzf(z, t, x̂, ∂zx̂), c̃(z, t) = ∂xf(z, t, x̂, ∂z x̂).
Here, BCs and the IC remain unchanged and follow accord-
ing (10), (11) as

∂z ẽ(0, t) + l0(t)ẽ(0, t) = 0, t ∈ R+
t0 (14a)

∂z ẽ(L, t) + qẽ(L, t) = 0, t ∈ R+
t0 (14b)

ẽ(z, t0) = ẽ0(z), z ∈ [0, L]. (14c)

1Here and in the following,∂x and∂xz denote partial derivatives with
respect tox(z, t) and∂zx(z, t), respectively.

B. Hopf-Cole transformation

For the determination of the observer gainsl(z, t) and
l0(t) the governing equations (13), (14) are transferred to
a simpler form by applying a suitable coordinate and state
transformation. Introducing the coordinate transformation

z 7→ ζ =
1

L
z, t 7→ τ =

1

L2
(t− t0) (15)

and taking into account the Hopf-Cole transformation

ẽ(z, t) 7→ ĕ(ζ, τ) = ẽ(Lζ, L2τ + t0) exp(χ(ζ, τ)), (16)

whereχ(ζ, τ) =
∫ ζ

0 b̄(s, τ)ds with b̄(ζ, τ) = Lb̃(Lζ, L2τ +
t0)/2 it is possible to eliminate the convection term
b̃(z, t)∂z ẽ(z, t) in (13), while the spatial coordinatez is
scaled to unity.

As a result, instead of (13), (14) it is hence equivalent
to analyse the following diffusion-reaction PDE with only a
single spatially and time-varying reaction parameter

∂τ ĕ(ζ, τ) = ∂2
ζ ĕ(ζ, τ) + c̆(ζ, τ)ĕ(ζ, τ) − l̆(ζ, τ)ĕ(0, τ) (17)

defined on(ζ, τ) ∈ (0, 1) × R+
0 , R+

0 = {τ ∈ R | τ > 0}
with

∂ζ ĕ(0, τ) +
(
p̆(τ) + l̆0(τ)

)
ĕ(0, τ) = 0, τ ∈ R+

0 (18a)

∂ζ ĕ(1, τ) + q̆(τ)ĕ(1, τ) = 0, τ ∈ R+
0 (18b)

ĕ(ζ, 0) = ĕ0(ζ), ζ ∈ [0, 1]. (18c)

Here, the transformed reaction parameter is given by
c̆(ζ, τ) =

∫ ζ

0 ∂τ b̄(s, τ)ds − b̄2(ζ, τ) − ∂ζ b̄(ζ, τ) + c̄(ζ, τ)
with c̄(ζ, τ) = L2c̃(Lζ, L2τ + t0), p̆(τ) = −b̄(0, τ), q̆(τ) =
Lq− b̄(1, τ) and the mapping of the observer gains is defined
by

l(z, t) 7→ l̆(ζ, τ) = L2l(Lζ, L2τ + t0) exp(χ(ζ, τ)) (19a)

l0(t) 7→ l̆0(τ) = l0(L
2τ + t0). (19b)

Remark 2:Note that due to the Hopf-Cole transformation
additional time dependency in form ofp̆(τ) in (18a) and̆q(τ)
in (18b) is induced compared to (14a) and (14b). This has
to be taken into account in the subsequent design of the
observer gains.

With this, for the determination of the observer gains
l̆(ζ, τ) and l̆0(τ) to stabilize (17), (18) the backstepping
method is applied.

C. Stabilization of the linearized observer error dynamics

An essential feature of the backstepping-based observer
design is the determination of the observer gains in such a
way that the observer error dynamics follows the behaviour
of a predefined target system. In the following, the desired
target system for the behaviour of the linearised observer
error is specified.

Selection of the target system:The observer error dy-
namics (17)–(18) is enforced to behave like the target system

∂τw(ζ, τ) = ∂2
ζw(ζ, τ) − µ(τ)w(ζ, τ) (20)

defined on(z, τ) ∈ (0, 1)× R+
τ with corresponding BCs

∂ζw(0, τ) = 0, τ ∈ R+
0 (21a)

∂ζw(1, τ) = 0, τ ∈ R+
0 (21b)
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and the IC

w(ζ, 0) = w0(ζ), ζ ∈ [0, 1]. (22)

Here,µ(τ) denotes a design parameter, whose appropriate
choice guarantees the exponential stability of the target
system. It can be shown, see, e.g., [11], that the parabolic
PDE (20)–(22) is exponentially stable in theL2-norm, if the
inequalityµ(τ)+λmin ≥ ǫ is satisfied for someǫ > 0, where
λmin denotes the smallest eigenvalue of the Sturm-Liouville
problem∂2

ζw(ζ, t)+λw(ζ, t) = 0 with BCs (21). As a result,
it follows that

‖w(ζ, τ)‖L2 ≤ exp(−κ(τ))‖w0(ζ)‖L2 (23)

with κ(τ) =
∫ τ

0
(µ(s) + λmin) ds. With this, the evaluation

of the backstepping transformation relating the desired target
dynamics with the linearised observer error PDE is carried
out as sketched below.

Determination of the kernel-PDE:By making use of
the Volterra integral transformation

ĕ(ζ, τ) = w(ζ, τ) −
∫ ζ

0

ğ(ζ, s, τ)w(s, τ)ds (24)

with the integral kernel̆g(ζ, s, τ), the mapping of the target
system (20)–(22) to the observer error dynamics (17)–(18)
is realized. To determine the PDE governing the evolution
of the kernel ğ(ζ, s, τ) expressions for the observer error
(24) and its partial derivatives are substituted into (17),(18).
After some intermediate calculations this allows to deduce
the PDE governing the evolution of the kernelğ(ζ, s, τ), i.e.,

∂τ ğ(ζ, s, τ) = ∂2
ζ ğ(ζ, s, τ)− ∂2

s ğ(ζ, s, τ)

+ γ̆(ζ, τ)ğ(ζ, s, τ)
(25a)

dz ğ(ζ, ζ, τ) =
γ̆(ζ, τ)

2
(25b)

∂ζ ğ(1, s, τ) = −q̆(τ)ğ(1, s, τ) (25c)

ğ(1, 1, τ) = q̆(τ) (25d)

defined on the triangular spatial domain(ζ, s) ∈ {(ζ, s) ∈
R2 | s ∈ [0, 1], ζ ∈ [s, 1]} with γ̆(ζ, τ) = c̆(ζ, τ) + µ(τ),
see, e.g., [6]. Moreover, the observer gainsl̆(ζ, τ) and l̆0(τ)
follow in the form

l̆(ζ, τ) = ∂sğ(ζ, 0, τ) l̆0(τ) = ğ(0, 0, τ)− p̆(τ). (26)

By considering the inverse of (19) the observer gainsl(z, t)
and l0(t) of the linearised observer error dynamics in(z, t)-
coordinates follow as

l(z, t) =
1

L2

(
l̆(ζ, τ) exp(−χ(ζ, τ))

)∣∣∣ ζ=z/L

τ=
t−t0
L2

(27a)

l0(t) = l̆0(τ)|τ= t−t0
L2

. (27b)

This guarantees the exponential stability of (13)–(14).
Obviously, an explicit solution of (25) is required to

determine the observer gainsl̆(ζ, τ) and l̆0(τ). The classical
solution of such PDEs traces back to [2], where the kernel
is obtained in terms of integral operators followed by suc-
cessive series approximation. Under assumption of certain
Gevrey regularity for time-varying parameters this method
allows to construct a strong solution of the kernel-PDE by

approximatinğg(ζ, s, τ) by means of an infinite series. How-
ever, the recursive determination of the series coefficients
significantly increases the computing time. For this reason,
subsequently an efficient numerical method introduced in [6]
is used by applying a formal discretization of the kernel
integral formulation and a numerical time integration of the
resulting system of ODEs.

Numerical solution of the kernel-PDE:Following the
solution method from [6], in a first step formal integration
is applied to the kernel PDE (25a). Therefore, scattering
coordinates are introducedξ = 2− ζ − s, η = ζ − s such
that ğ(ζ, s, τ) = ḡ(ξ(ζ, s), η(ζ, s), τ). With this, it follows
from (25) thatḡ(ξ, η, τ) has to satisfy the PDE

∂η∂ξḡ(ξ, η, τ) =
1

4
Bḡ(ξ, η, τ) (28a)

∂ξ ḡ(ξ, 0, τ) = −1

4
γ̆
(
1− ξ

2
, τ
)

(28b)

∂ηḡ(η, η, τ) − ∂ξḡ(η, η, τ) = −q̆(τ)ḡ(η, η, τ) (28c)

ḡ(0, 0, τ) = q̆(τ) (28d)

with Bḡ(ξ, η, τ) = −∂τ ḡ(ξ, η, τ) + γ̆
(
1 − ξ−η

2 , τ
)
ḡ(ξ, η, τ)

defined on(ξ, η) ∈ {(ξ, η) ∈ R2 | η ∈ [0, 1], ξ ∈ [η, 2 −
η]}. Integrating (28a) with respect toη from 0 to η and
afterwards overξ from η to ξ allows together with (28b)–
(28d) to determine an implicit integral formulation of the
kernel-PDE, i.e.,

ḡ(ξ, η, τ) = A(ξ, η, τ) +
1

4

∫ ξ

η

∫ η

0

Bḡ(β, α, τ)dαdβ

+
1

2

∫ η

0

∫ β

0

Bḡ(β, α, τ)dαdβ − q̆(τ)

∫ η

0

ḡ(β, β, τ)dβ,

(29)

where A(ξ, η, τ) = − 1
2

∫ η

0
γ̆
(
1 − β

2 , τ
)
dβ − 1

4

∫ ξ

η
γ̆
(
1 −

β
2 , τ

)
dβ+ q̆(τ). Discretization of the kernel integral equation

(29), approximation of the integral terms by means of the
composite trapezoidal rule and appropriate indexing of the
discretized domain yields the formulation for a vector kernel
ḡ(τ) in terms of coupled first-order ODEs

−M˙̄g(τ) = (D(τ) − IN ) ḡ(τ) + b(τ) (30)

with IN the identity matrix and matricesM, D(τ) and
a vectorb(τ) as defined in the Appendix, where to keep
the paper self-contained a detailed determination of (30) is
presented.

In this way, the original problem of solving (29) is
transformed into an initial-value problem (IVP), which
can be solved numerically for a given initial condition
ḡ(0) = ḡ0. Subsequently, the initial condition̄g0 is chosen
as a stationary solution of (30) atτ = 0, i.e., ḡ0 =
− (D(0)− IN )

−1
b(0).

Remark 3:Note that in case of a time-independent para-
meter γ̆(z, τ) ≡ γ̆(z) and a constant parameter̃q(τ) ≡
q̃ = const., the IVP (30) reduces to a set of algebraic
equations given bȳg = − (D− IN )

−1
b providing an

efficient solution procedure.

III. C ONVERGENCE OF THE OBSERVER ERROR DYNAMICS

Subsequently, the verification of the exponential stability
of the linearised observer error dynamics of the closed-loop
observer is based on the analysis of the inverse backstepping
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transformation from thĕe(ζ, τ)-system to thew(ζ, τ)-PDE.
In particular, it can be shown that the stability of the
target system (20)–(22) implies the exponential decay of the
linearised observer error dynamics (13), (14). The theoretical
stability assertions of the semi-linear observer error dynamics
of the form (9)–(11) are still an open question such that
the observer error convergence is studied in a numerical
simulation scenario.

A. Inverse backstepping transformation

As mentioned above, the stability of the observer error
dynamics (17)–(18) can be directly deduced taking into
account the inverse backstepping transformation. For this,
in the following an inverse to (24) is introduced in the form

w(ζ, τ) = ĕ(ζ, τ) +

∫ ζ

0

m̆(ζ, s, τ)ĕ(s, τ)ds, (31)

with the inverse kernelm̆(ζ, s, τ) mapping (17)–(18) to
(20)–(22). Therefore, proceeding similarly as in Section II-
C the kernel-PDE governing the evolution of̆m(ζ, s, τ)
can be determined in a form similar tŏg(ζ, s, τ). Hence,
the presented solution method can be similarly applied to
m̆(ζ, s, τ). Following this argumentation, the existence of
a bounded strong solution̆m(ζ, s, τ) to the corresponding
kernel-PDE is guaranteed.

B. Stability of the linearized observer error dynamics

Considering thatğ(ζ, s, τ) and m̆(ζ, s, τ) are bounded
strong solutions of the corresponding kernel-PDEs, the sub-
sequent estimates follow by application of the Cauchy-
Schwarz inequality. Evaluating theL2-norm of the integral
term in (24) results in

∥∥∥
∫ ζ

0

ğ(ζ, s, τ)w(s, τ)ds
∥∥∥
2

L2
≤ Cğ‖w(ζ, τ)‖2L2 (32)

with Cğ = supζ,s,τ ğ
2(ζ, s, τ), while a similar calculation

for the integral term in (31) evaluated atτ = 0 yields
∥∥∥
∫ ζ

0

m̆(ζ, s, 0)ĕ(s, 0)ds
∥∥∥
2

L2
≤ Cm̆‖ĕ0(ζ)‖2L2 , (33)

where Cm̆ = supζ,s m̆
2(ζ, s, 0). In addition, taking into

account the boundedness ofm̆(ζ, s, τ) it follows from (31)
that

‖w0(ζ)‖L2 ≤
(
1 +

√
Cm̆

)
‖ĕ0(ζ)‖L2 . (34)

Hence, evaluating theL2-norm of (24) in view of the
estimates (32)–(34) and the stability of thew(ζ, τ)-system
according to (23), it is easy to deduce that

‖ĕ(ζ, τ)‖L2 ≤ Cĕ exp(−κ(τ))‖ĕ0(ζ)‖L2 (35)

with Cĕ =
(
1 +

√
Cğ

) (
1 +

√
Cm̆

)
. This guarantees the

exponential decay in theL2-norm of the linearised observer
error dynamics (17)–(18) with the observer gainsl̆(ζ, τ)
and l̆0(τ) from (26). Consequently, considering (16) and
changing the limits of integration it follows that

‖ĕ(ζ, τ)‖2L2 =

∫ 1

0

(
ẽ(Lζ, L2τ + t0) exp(χ(ζ, τ))

)2
dζ

≥ Cinf ‖ẽ(z, t)‖2L2 (36)

with Cinf = exp
(
2 infζ,τ χ(ζ, τ)

)
/L and

‖ĕ0(ζ)‖2L2 =

∫ 1

0

(
ẽ(Lζ, t0) exp(χ(ζ, 0))

)2
dζ

≤ Csup ‖ẽ0(z)‖2L2 (37)

with Csup = exp
(
2 supζ χ(ζ, 0)

)
/L. Hence, evaluating (35)

in view of (36) and (37) yields

‖ẽ(z, t)‖L2 ≤ Cẽ exp(−κ(t)) ‖ẽ0(z)‖L2 (38)

with κ(t) = κ(τ)|τ=(t−t0)/L2 andCẽ = Cĕ

√
Csup/

√
Cinf .

With this it is shown that the observer errorẽ(z, t) of the
linearised observer error dynamics (13), (14) with observer
gainsl(z, t) andl0(t) according to (27) decays exponentially
over timet in theL2-norm.

C. Convergence of the semi-linear observer error dynamics

A rigorous proof of the exponential stability of the semi-
linear observer error dynamics (9)–(11) is still an open
problem. The challenges are twofold. First, evaluation of
(9)–(11) with the backstepping transformation (24) implies
that the dynamics of the resulting effective target system
is governed by a non-linear PDE. Hence, this precludes
the use of the stability assertion as obtained for the linear
target PDE (20)–(22) and requires that the stability of the
non-linear target system has to be considered separately.
On the other hand note that for the design of the observer
gains l(z, t) and l0(t) the additional coordinate and state
transformation (15), (16) is applied and the target system is
assigned in the transformed(ζ, τ)-coordinates. This means
for the non-linear target system expressions corresponding
to the linearw̆(ζ, τ)-system (20)–(22) and the backstepping
transformation (24), that at first (20)–(22) and (24) have tobe
formulated in the(z, t)-coordinates by means of the inverse
of (15)–(16) and then substituted into (9)–(11).

Remark 4:For parabolic PDEs (1)–(3) with the non-
linearity f(z, t, x, ∂zx) ≡ f(z, t, x) the theoretical analysis
of the stability of the semi-linear observer error dynamicsis
presented in [10]. In particular, the exponential convergence
of the semi-linear observer error PDE is shown for locally
and uniformly Lipschitz continuous non-linearitiesf(z, t, x).

IV. I MPLEMENTATION FOR REAL-TIME APPLICATIONS

The continuous update of the extended linearisation of
the semi-linear observer error dynamics (13), (14) involves
a significant computational cost. Moreover, in practical ap-
plications measurements are often obtained at discrete times
only. Motivated by this, in the following a sample-and-hold
approach is employed for the efficient and real-time capable
implementation of the considered observer scheme.

Therefore, it is subsequently assumed that the output (4)
and the linearisation algorithm are updated only at discrete
timestk = kTa+t0, k ∈ N0 with the sampling timeTa.With
this, the determination of the observer gainslk(z) = l(z, tk)
and l0,k = l0(tk) is performed for each sampling period
[tk, tk+1) depending on the previous resultx̂k(z) = x̂(z, tk)
and the sampled outputyk = y(tk).

In particular, in view of the extended linearisation of (9)–
(11) at t = tk let b̃k(z) := b̃(z, tk) and c̃k(z) = c̃(z, tk).
Consequently, the reformulation of the time scaling in (15)
leads totk 7→ τk = kTa/L

2 while the Hopf-Cole transform-
ation (16) is evaluated at every sampling steptk, k ∈ N0
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according to ẽ(z, tk) 7→ ĕk(ζ) = ẽ(Lζ, tk) exp(χk(ζ)),
whereχk(ζ) =

∫ ζ

0
b̄k(s)ds with b̄k(ζ) = Lb̃k(Lζ)/2. Hence,

the observer gains are calculated by means of backstepping
based on the time-invariant kernel-PDE (25) withγ̆k(ζ) =
γ̆(ζ, τk) and q̆k = q̆(τk) in every sampling period[τk, τk+1].
This allows to neglect the differentiation with respect toτ
in (29), which results in an efficient solution procedure for
the kernel-PDE as already mentioned in Remark 3.

V. SIMULATION RESULTS

Subsequently, numerical results are presented to evaluate
the backstepping-based state observer for the parabolic PDE
with a non-linear reaction-convection term.

The numerical solution is performed using thepdepe-
algorithm of MATLAB . Here, the spatial coordinatez ∈ [0, L]
with L = 1 of the system (1)–(3) and the state observer
(5)–(7) is split intoN = 10 equidistant intervals of length
∆z = 1/N = 0.1. The reaction-convection non-linearity is
thereby exemplarily assigned according to

f(z, t, x, ∂zx) = sin
(
2πx

)
+ x(x − 1)(∂zx)

3,

while the boundary parameter in (2b) is defined byq = 1.
Hence, the PDE (1)–(3) is characterized by a homogeneous
Neumann BC atz = 0 and a mixed BC atz = 1. The
IC with t0 = 0 is chosen asx0(z) = 0.1(cos(πz) + 1).
Moreover, the target system (20)–(22) is parametrized by
µ(τ) ≡ µ ∈ {0, 1}.

Simulation results are presented in Fig. 1. Thereby, results
of the state estimation based on an open-loop observer
(simulator) are compared with the determined backstepping-
based observer. In particular, Figs. 1(a)–(b) show the profiles
of the plant and the observer error due to a simple simulator
(l(z, t) = l0(t) = 0) with the IC x̂0(z) = −0.7x0(z).
Note that due to the deviating initial condition the state
evolution of the simulator converges to another equilibrium
of the plant (differing from this in Fig. 1(a)) such that a
non-zero stationary estimation error evolves (Fig. 1(b)).With
the application of the introduced observer design approach
the resulting profile of the evolving observer error is shown
in Fig. 1(c) for µ = 1. Here, the observer error evolution
converges to the zero equilibriume(z, t) ≡ 0 providing
a very accurate state estimation. Fig. 1(d) addresses the
corresponding evolution of the observer gainsl(z, t) at z =
0.5 and l0(t) with a sampling timeTa = 0.02 for µ = 1.
Figs. 1(e)–(f) clearly indicate the superiority of the proposed
backstepping observer compared to a simple simulator. In
particular, Fig. 1(e) shows the evolution of‖e(z, t)‖L2 for
µ = 0 (dashed) andµ = 1 (gray). The dash-dotted line
addresses the evolution of theL2-norm of the simulator error.
Obviously, by increasing the design parameterµ the decay
behaviour of the observer error can be improved. A similar
decay behaviour of the observer error in terms of thesup-
norm is presented in Fig. 1(f).

VI. CONCLUSIONS

In this contribution, a backstepping-based solution of the
state estimation problem is presented for parabolic PDEs
with reactive-convective non-linearities. For this, assuming
a sufficiently small initial observer error an extended lin-
earisation of the observer error dynamics is performed to
obtain a linear PDE.This serves as the basis for the design

of the observer gains, where the Hopf-Cole transformation is
applied to transform the linearised observer error PDE to a
suitable normal form. The design and the numerical compu-
tation of the observer gains is carried out in the transformed
coordinates. Convergence of the observer error dynamics is
discussed for the linearised and the semi-linear PDE. In
view of a real-time implementation of the state observer, a
sample-and-hold approach is employed, which significantly
reduces the computing costs for the observer gains. The
performance of the proposed observer is illustrated in a
simulation scenario, which confirms a very accurate state
estimation.

APPENDIX

To approximate the integral terms in (29) by means of the
composite trapezoidal rule, in a first step the spatial domain
Ωḡ = {(ξ, η) ∈ R2 | η ∈ [0, 1], ξ ∈ [η, 2−η]} is discretized.
For this,Ωḡ is split intoNδ − 1, Nδ ≥ 3 intervals in theη-
direction and into2Nδ − 2 intervals in theξ-direction with
an equidistant interval lengthδ = 1/(Nδ − 1) implying that
0 = ξ1 < ξ2 < · · · < ξ2Nδ−1 = 2 and 0 = η1 < η2 <
· · · < ηNδ

= 1 with ξi = δ(i − 1), i = 1, . . . , 2Nδ − 1 and
ηj = δ(j − 1), j = 1, . . . , Nδ. Thereby, the integrals in (29)
are approximated by using discrete values of their integrands
evaluated only at grid points(i, j) ∈ I with I := {(i, j) ∈
N2 | j = 1, . . . , Nδ, i = j, . . . , 2Nδ − j}. Application of
the composite trapezoidal rule to each of the integrals in
(29) with spatially discretized kernel̄gi,j(τ) = ḡ(ξi, ηj , τ),
(i, j) ∈ I and discretized function̆γi,j(τ) = γ̆

(
1− ξi−ηj

2 , τ
)
,

(i, j) ∈ I yields a pointwise approximation of the kernel
integral equation (29), i.e.,

ḡi,j(τ) = Āi,j(τ) + B̄i,j(τ), (i, j) ∈ I. (39)

Here, Āi,j(τ) = A(ξi, ηj , τ) and B̄i,j(τ) =
1
4

∫ ξi
ηj

∫ ηj

0
Bḡ(β, α, τ)dαdβ + 1

2

∫ ηj

0

∫ β

0
Bḡ(β, α, τ)dαdβ −

q̆(τ)
∫ ηj

0
ḡ(β, β, τ)dβ denote approximations of the integral

terms in the integral formulation (29) according to

B̄i,j(τ) =
δ2

4

[1
4

(
κj,j(τ) + κi,j(τ)

)
+

1

2

j−1∑∗

k=2

(
κj,k(τ)

+ κi,k(τ)
)
+

1

2

i−1∑∗

h=j+1

κh,j(τ) +
i−1∑∗

h=j+1

j−1∑∗

k=2

κh,k(τ)
]

+
δ2

2

[1
4
κj,j(τ) +

1

2

j−1∑∗

k=2

κj,k(τ) +
1

2

j−1∑∗

h=2

κh,h(τ)

+

j−1∑∗

h=2

h−1∑∗

k=2

κh,k(τ)
]
− q̆(τ)δ

[1
2
ḡj,j(τ) +

j−1∑∗

k=2

ḡk,k(τ)
]

+
δ2

4

[1
4

(
κj,1(τ) + κi,1(τ)

)
+

1

2

i−1∑∗

h=j+1

κh,1(τ)
]

+
δ2

2

[1
4
κj,1(τ) +

1

2

j−1∑∗

h=2

κh,1(τ)
]
− δ

2
q̆(τ)ḡ1,1(τ)
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Fig. 1. Numerical results for the state estimation problem.(a) Solutionx(z, t); (b) Simulator errore(z, t); (c) Observer errore(z, t) for µ = 1; (d)
Observer gainsl(0.5, t) and l0(t) for µ = 1; (e) L2-norm of the simulator error (dash-dotted) and of the observer error withµ = 0 (dashed),µ = 1
(gray); (f) sup-norm of the simulator error (dash-dotted) and of the observer error withµ = 0 (dashed),µ = 1 (gray);.

Āi,j(τ) = − δ

2

[1
2

(
γ̆1,1(τ) + γ̆j,1(τ)

)
+

j−1∑∗

k=2

γ̆k,1(τ)
]

− δ

4

[1
2

(
γ̆j,1(τ) + γ̆i,1(τ)

)
+

i−1∑∗

k=j+1

γ̆k,1(τ)
]
+ q̆(τ)

whereκi,j(τ) = − d
dt ḡi,j(τ) + γ̆i,j(τ)ḡi,j(τ), (i, j) ∈ I and

the summation operator
∑∗,m

n =
∑m

n if n−m < 1,
∑∗,m

n =

0 if n−m = 1 and
∑∗,m

n = −∑n−1
m+1 if n−m > 1.

With this, in a next step (39) is reformulated in terms
of a set of first-order ODEs evaluated at the discrete grid
points (i, j) ∈ Î with Î := {(i, j) ∈ I} \ {(i, j) | j = 1}.
Therefore, a kernel vector̄g(τ) = [ḡn(τ)]n=1,...,N of the
lengthN = (Nδ − 1)2 is set up by an appropriate indexing
of Î such thatn = I+ j for i ≤ Nδ andn = I+ j − (i−
Nδ)(i −Nδ − 1) for i > Nδ with I = (i − 2)(i − 1)/2− 1
implying that each̄gn(τ)n=1,...,N corresponds to the respect-
ive ḡi,j(τ). A similar indexing scheme for the discretized
integral operators results in̄An(τ) = Āi,j(τ), B̄n(τ) =
B̄i,j(τ) and Ā∗

n(τ) = Ā∗
i,j(τ), (i, j) ∈ Î, where Ā∗

i,j(τ)
combines the last two lines of̄Bi,j(τ). Hence, it is possible
to formulate (39) by means of a set ofN coupled first-order
ODEs (30) with identity matrixIN , matricesM = [Mn,m],
D(τ) = [Dn,m(τ)], m,n = 1, . . . ,N formally given by
Mn,m = ∂B̄n(τ)/∂ ˙̄gm, Dn,m(τ) = ∂B̄n(τ)/∂ḡm and vector
b(τ) = [bn(τ)]n=1,...,N defined asbn(τ) = Ān(τ)+ Ā∗

n(τ).
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