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State estimation and advanced control of the 2D temperature field
in an experimental oscillating annealing device

L. Jadachowskia,∗, A. Steinböckb, A. Kugia

aChristian Doppler Laboratory for Model-Based Control in the Steel Industry, Automation and Control Institute, Vienna University of
Technology, Gußhausstraße 27-29, 1040 Vienna, Austria

bAutomation and Control Institute, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna, Austria

Abstract

Annealing plays a crucial role in industrial steel strip production lines. Laboratory annealing devices are experimental
furnaces that allow the simulation of the annealing process in large-scale production lines and are employed, e.g., to
design new or improve existing heat treatment cycles. The furnace considered in this paper is equipped with individually
controlled infrared heaters. It is used to reheat flat specimens of steel strips accurately and homogeneously in space
according to predefined temperature trajectories. In view of the complex furnace geometry with highly specular surfaces
and thermal radiation as the main heat transfer mode, the operation of this furnace constitutes a 2-dimensional nonlinear
distributed-parameter thermal control problem. The basic control inputs are the electric powers of infrared heating lamps,
which are controlled by six phase-fired thyristors. For temperature tracking, a two-degree-of-freedom control concept is
applied, which comprises an optimal feedforward controller and a state feedback controller. The feedforward controller
is based on the solution of a dynamic optimization problem. The feedback part contains a Linear-Quadratic-Gaussian
controller, which requires knowledge of the actual temperature field of the specimen. Since in the considered annealing
device, this temperature field cannot be completely measured, an extended Kalman filter is used for the estimation of
spatial temperature profiles. This estimation is based on just three local measurements of the surface temperature of
the specimen. The proposed control approach was implemented and experimentally validated in several annealing runs.
The effect of an oscillating motion of the specimen on the temperature homogeneity is investigated by comparisons of
measurement results with a fixed specimen position. It is shown that the temperature inhomogeneity can be significantly
reduced if the specimen oscillation is systematically taken into account in the mathematical model, the state estimation,
and the control design.

Keywords: Non-local quasilinear parabolic PDE, Model averaging, Model reduction, Temperature field control,
Optimal feedforward control, Extended Kalman filtering, Linear-Quadratic-Gaussian feedback control

1. Introduction

In the steel industry, annealing is a heat treatment pro-
cess to reduce internal stresses, to ensure specific metallur-
gical properties, or to prepare optimum surface conditions
for subsequent production operations, e.g., hot-dip galva-
nization (Totten, 2006; Bordignon et al., 2002). Annealing
is a typical processing step in strip production lines, where
the temperature evolution of the strip should follow a de-
sired reference trajectory.
So called continuous-type annealing furnaces are used in

the steel industry for heat treatment of strips in produc-
tion lines (Mullinger and Jenkins, 2014). The coiled strip
is uncoiled and conveyed with a velocity in the range of
1.5–3m/s through the furnace and the temperature evo-
lution along the length of the axially moving strip, i.e.,
along one spatial variable, has to be controlled according to

∗Corresponding author. Tel.: +43 1 58801-376266 Email address:
jadachowski@acin.tuwien.ac.at (L. Jadachowski)

the metallurgical requirements, see, e.g., (Strommer et al.,
2018; Niederer et al., 2016).

Batch-operated annealing devices are typically em-
ployed for laboratory reasons. In the steel industry,
they serve as experimental ovens to develop and inves-
tigate new annealing curves, to emulate continuous pro-
duction lines, and to optimize their process parameters.
Seyrkammer et al. (2010) developed a tracking controller
for the mean temperature of a sheet metal specimen in
a laboratory annealing test rig with Ohmic heating. De-
pending on the furnace design and the heating elements,
other laboratory-scale furnaces allow also to control the
spatial temperature distribution in the specimens. This is
especially true for the experimental furnace considered in
this paper. The furnace is operated by voestalpine Stahl
GmbH to simulate and improve continuous annealing pro-
cesses in the production lines. In the considered exper-
imental furnace, flat specimens are heated by electrically
powered infrared (IR) lamps. They are connected and con-
trolled in groups to minimize temperature inhomogeneities
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of the specimen. Such inhomogeneities can be caused by
an inadequate temperature controller that does not take
into account the distributed nature of the system. More-
over, they may result from electric power limitations com-
bined with a fixed and unsuitable geometric arrangement
of the IR-lamps and the specimen. Hence, accurate control
of 2-dimensional (2D) temperature fields plays an impor-
tant role when operating such annealing devices.
A thorough review of the relevant literature reveals only

few papers that consider practical implementation and ex-
perimental validation of 2D temperature control. A com-
bination of the flatness-based feedforward controller and
proportional-integral-derivative output error feedback con-
troller is proposed by Böhm and Meurer (2017) to con-
trol the temperature evolution of a deep drawing tool at
12 sensor positions. Girault and Videcoq (2013) consid-
ered an experimental device with a thin aluminum plate
heated by a mobile radiative heat source. They employ
a Linear-Quadratic Regulator to control the temperature
of the plate at 3 locations around the steady-state tem-
perature distribution. They use a Kalman filter with up
to 8 thermocouple measurements for temperature estima-
tion. Control of the temperature homogeneity is also a
traditional research topic in semiconductor manufacturing.
In (Logerais et al., 2015; Ebert et al., 2004), the authors
mainly focus on the temperature profiles along the radial
coordinate of the rotating circular wafers while assuming
homogeneity along the tangential direction. Temperature
control along a single spatial variable is also addressed by
Abeykoon et al. (2011) and Lipár et al. (2013) in polymer
extrusion processes and by Shen et al. (2016) in aluminum
quenching furnaces.
The main contribution of this paper is the development

and implementation of an advanced control concept for
the 2D temperature field of the specimen in an oscillat-
ing annealing furnace. The proposed control approach
consists of an optimal feedforward controller, a state ob-
server for the 2D temperature profile, and a state feed-
back control law with an integral term. The main goal
is to determine trajectories of the electric power supplied
to the IR-lamps to ensure that the real temperature field
of the specimen follows a desired reference temperature.
In particular, the primary control objective is that the
mean specimen temperature tracks the desired trajectory
Tref(t), which defines a transition of the mean tempera-
ture between two steady-state values within a finite time
tE . A simultaneous minimization of the temperature in-
homogeneity constitutes the secondary control objective.
Under nominal furnace conditions, both control objectives
are satisfied by the model-based feedforward controller
developed by Jadachowski et al. (2018). The underlying
mathematical model was presented by Jadachowski et al.
(2017b) for a fixed specimen position and extended in
(Jadachowski et al., 2018) to capture also the oscillating
motion of the specimen. To allow for the compensation of
tracking errors, a Linear-Quadratic-Gaussian (LQG) feed-
back controller is designed. It requires the estimation of

time evolutions of 2D temperature fields of the specimen.
For this, an extended Kalman filter (EKF) is developed
on the basis of the specimen temperature model and three
local measurements of the specimen surface temperature.
The overall estimation and control performance is eval-
uated by measurements. Different annealing cycles were
performed to investigate the accuracy of the temperature
estimation and the tracking controller and to examine the
effect of the oscillating motion on the temperature homo-
geneity of the specimen.

The paper is structured as follows: In Section 2, the
development of three mathematical models of the tem-
perature evolution in the oscillating specimen is summa-
rized. This includes a full-state finite-difference model, a
reduced-order finite-element model, and a reduced-order
time-averaged model. In Section 3, the temperature es-
timation problem is formulated and the EKF is designed.
Section 4 is dedicated to the tracking control strategy con-
sisting of the optimal feedforward controller and the LQG
feedback law with the integral control action. Measure-
ment and estimation results are presented and analyzed in
Section 5. Final remarks are given in Section 6.

Notation: Arguments of functions are omitted whenever
they are clear from the context. Moreover, ∇T (x, t) de-
notes the temperature gradient with respect to the spatial
coordinates x = (x, y), and ∂∗T (x, t) denotes the partial
derivative w.r.t. ∗. Temperatures of the entity ⋆ are as-
sembled in the vector T⋆ =

[
T⋆,i

]
. The vector of their

fourth powers is written in the form T4
⋆ =

[
T 4
⋆,i

]
. Finally,

1n refers to the vector of dimension n with all entries equal
to 1 and I is the identity matrix.

2. Mathematical modeling

The geometry of the considered furnace is presented
in Fig. 1. It shows cross-sections of the heating cham-
ber. This chamber consists of a water-cooled housing
with a flat steel specimen (length Ls, width Ws, thickness
Bs) clamped between two specimen holders, which can be
moved vertically. On both sides of the specimen, two ar-
rays of IR-lamps (Nh horizontal and Nv vertical IR-lamps)
are mounted on gold-coated water-cooled reflectors. The
distance between two horizontal and two vertical lamps is
Lh and Lv, respectively. Inert gas streams into the heating
zone through a gap between the upper specimen holder
and the housing and leaves the IR-zone via the bottom
gap. When supplying electric power to the IR-lamps, the
specimen is heated by means of thermal radiation. In par-
ticular, the spatial temperature field in the specimen fillet
Ωf := {(x, y) ∈ R2 | 0.25Ls < x < 0.75Ls, 0.2Ws < y <
0.8Ws}, with the area Af = LfWf and the dimensions
Lf = 0.5Ls and Wf = 0.6Ws, is of main interest. A small
Biot-number Bi ≈ 8.87 × 10−4 ≪ 1 (cf. Incropera et al.,
2007) justifies the assumption of a homogeneous strip tem-
perature along the thickness direction z. The IR-lamps are
controlled in groups by means of six phase-fired thyristors.
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Figure 1: Cross-sectional views of the experimental annealing furnace: (left) view from the side, (right) view from the top. Two-sided arrow
indicates an oscillating motion of the specimen and the specimen holders with respect to the IR-lamps and furnace walls. For η = 0 the
specimen is in the center of the heating chamber of the furnace.

Four thyristors T h
i , i = 1, . . . , 4 are used for the horizontal

lamps and two T v
i , i = 1, 2 for the vertical lamps. The

mobile specimen holders allow the specimen to oscillate
vertically with a maximum amplitude of η̄ = 0.25Lf .
In the following, three mathematical models of the tem-

perature evolution in the oscillating specimen are briefly
summarized for reference. The presentation of a full-order
finite-difference (FD) model is followed by a reduced-order
finite-element (FE) model. The third model is obtained by
time averaging of the FE model.

2.1. Full-order FD-model of an oscillating specimen

A distributed-parameter first principles model of the
2D spatio-temporal temperature evolution for a non-
moving steel specimen was derived and validated by
Jadachowski et al. (2017b). In (Jadachowski et al., 2018),
this temperature model was extended to take into account

the oscillating motion of the specimen. The specimen po-
sition η(t) varies periodically in time along the vertical
direction whereas the IR-lamps have fixed positions. In
view of this motion, the Lagrangian coordinates xyz are
used, i.e., the frame (0xyz) is fixed to the specimen. The
model describes the 2D temperature field T (x, t) of the
specimen in K by the time-varying quasilinear non-local
parabolic PDE

ρcp(T )∂tT (x, t) = ∇ ·
(
λ(T )∇T (x, t)

)
+ q̇(x, T,u, η), (1)

which depends on the time t and the spatial coordinates
x = (x, y) ∈ Ω := {x ∈ R2 | 0 < x < Ls, 0 < y < Ws}.
Moreover, ρ in kg/m3 denotes the mass density, cp(T ) in
J/(kgK) the specific heat capacity, and λ(T ) in W/(mK)
the thermal conductivity. In (2), the source term

q̇(x, T,u, η) = − q̇r(x, T,u, η) + q̇c(x, T ) + q̇h(x, T )

Bs
(2)

3
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contains the net heat flux (W/m2) due to thermal radi-
ation q̇r(x, T,u, η), forced convection q̇c(x, T ), and heat
losses into the specimen holders q̇h(x, T ). Note that
the specimen motion is captured only by q̇r(x, T,u, η),
while the latter heat transfer mechanisms are assumed
to be independent of η(t). The control inputs uT(t) =[
uT
h (t) u

T
v (t)

]
define the net radiative power emitted

by the horizontal and vertical IR-lamps with u⋆(t) =
[u⋆,i(t)]i=1,...,N⋆

, ⋆ ∈ {h, v}. In fact, u⋆,i(t) =

p⋆el,i(t)/(πd⋆l⋆) in W/m2 is the net heat flux density at
the surface of lamp i, which has the effective diameter d⋆
and the length l⋆. Given the typically high temperatures
in the furnace, it is assumed that the entire electric power
p⋆el,i(t) supplied to the lamp i is converted into thermal
radiation. The control variables are box-constrained, i.e.,
0 ≤ u(t) ≤ ū1Nv+Nh

with the maximum lamp power ū.
The boundary conditions are postulated to be indepen-

dent of η(t) and defined on x ∈ Γ := cl(Ω) \ Ω by

λ(T )∂xT (x, t) = αh (T (x, t)− T up
h ) , x = 0 (3a)

λ(T )∂xT (x, t) = −αh

(
T (x, t)− T lo

h

)
, x = Ls (3b)

λ(T )∂yT (x, t) = αig (T (x, t)− Tig(x)) , y = 0 (3c)

λ(T )∂yT (x, t) = −αig (T (x, t)− Tig(x)) , y = Ws (3d)

with the convective heat transfer coefficients αh and αig

in W/(m2 K). In (3), T♦
h in K, ♦ ∈ {up, lo} describe

the temperature of the upper and lower specimen holder
and Tig(x) (K) is the quasi-stationary temperature profile
of the inert gas along the specimen length. The consistent
initial condition is defined as T (x, 0) = T0(x) for x ∈ cl(Ω).
The radiative heat flux q̇r(x, T,u, η) is calculated us-

ing the net radiation method (Siegel and Howell, 2002).
For this calculation, the domain Ω is spatially discretized
into Ns = NxNy equal rectangular elements which are
used for the computation of an exchange factor matrix
Fs(η). In addition to direct view paths, the matrix Fs(η)
captures specular and diffuse reflections depending on the
actual position of the specimen with respect to the IR-
lamps and the enclosing furnace walls. For fast evalu-
ation, Fs(ηn) is computed and stored for Nη + 1 fixed
positions ηn = −η̄ + (n − 1)dη with dη = 2η̄/Nη and
n = 1, . . . , Nη + 1 in advance by means of the hemicube
method (Cohen and Greenberg, 1985) using the FE soft-
ware Ansys. When evaluating the model, Fs(η) is then
obtained from the predetermined values by linear interpo-
lation.
A bijective mapping (i, j) 7→ k := i + Nx(j − 1), xk =

(xi, yj) for i = 1, . . . , Nx and j = 1, . . . , Ny allows to as-
semble the temperature vector T(t) = [T (xk, t)]k=1,...,Ns .
Consequently, the heat flux vectors follow as q̇r(T,u, η) =
[q̇r(xk, T,u, η)]k=1,...,Ns , q̇c(T) = [q̇c(xk, T )]k=1,...,Ns , and
q̇h(T) = [q̇h(xk, T )]k=1,...,Ns . The radiative net heat flux
is thus computed according to, (see (Jadachowski et al.,
2017b) for more details),

q̇r(T,u, η) = P1(η)

[
T4

T4
w

]
+P2(η)

[
uh

uv

]
, (4)

where the matrices P1(η) = P11(η)−P12(η)P
−1
32 (η)P31(η)

and P2(η) = P12(η)P
−1
32 (η) are defined by



P11(η) P12(η)
P21(η) P22(η)
P31(η) P32(η)


 =

diag{ε}(I− Fs(η)diag{ρd})−1

×(I− Fs(η) + Fs(η)diag{ρs})σ. (5)

The submatrices Pij(η), i = 1, 2, 3, j = 1, 2 capture the
radiative interaction in the furnace chamber depending on
the specimen position η(t). In (4), Tw contains the surface
temperatures of Nw sections of the enclosing furnace walls,
which are assumed to be known. The emissivities are as-
sembled in the vector ε; ρd and ρs describe the diffuse
and specular parts of the reflectivity with ε+ρd +ρs = 1
(Modest, 2003); σ is the Stefan-Boltzmann constant.
The other two heat fluxes q̇c(T) and q̇h(T) are directly

given by Newton’s law of cooling

q̇c(T) = αig (IcT(t)−Tig)

q̇h(T) = αh (IhT(t)−Th) .
(6)

Here, diagonal matrices Ic and Ih, where the latter has se-
lected diagonal entries being 0, arise from the effective con-
tact regions between the specimen and the holder flanges.
The vector Tig follows from the calculation of the quasi-
stationary mean temperature of the inert gas along the
coordinate x. The temperatures of the upper and lower
specimen holders are assembled in Th.
For evaluation of the model, finite differences are used

with Ns = 442 states. Hence, this model is referred to
as full-state FD model and is mainly used for simulation
purposes.

2.2. Reduced-order FE-model of an oscillating specimen

In view of the relatively high order Ns = 442, the
FD model is computationally too expensive to serve for
controller and observer design. In this paper, a FE ap-
proximation with a coarser discretization in space and
non-uniform element sizes is used to obtain a lower-order
model. Rötzer et al. (2017) compared three approaches
for a finite-dimensional approximation of (1)–(3) in terms
of model order and accuracy. An overview of model reduc-
tion methods is given, e.g., in (Antoulas, 2005).
Following Jadachowski et al. (2017a), 2D hat functions

ϕ(x) = [ϕk(x)]k=1,...,Ñs
, Ñs ≪ Ns, with a non-uniform

support are used to approximate the solution of (1)–(3)
by

T (x, t) = θT(t)ϕ(x), θ(t) = [θk(t)]k=1,...,Ñs
, (7)

where θk(t) is the temperature at the grid point k. The
substitution of (7) and (3) into the weighted residual weak
form (cf. Reddy and Gartling, 2010)

0 =

∫

Ω

(
ρcp(T )∂tT (x, t)ϕk(x) + λ(T )∇T (x, t)∇ϕk(x)

− q̇(x, T,u, η)ϕk(x)
)
dΩ +

∮

Γ

ϕk(x)λ(T )∇T (x, t)nds

(8)

4
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with dΩ = dxdy, the unit normal vector n on Γ, and the
arc length ds along Γ yields the FE model in the form

ρMθ̇(t) = Kθ(t) + χ(θ,u, η) + γ(θ), θ(0) = θ0. (9)

M and K denote the heat capacity matrix and the con-
ductivity matrix, respectively. The vector γ(θ) follows
from the boundary conditions (3). For anisotropic speci-
men materials, M and K may depend on the temperature
θ and on the spatial coordinates x. However, they are as-
sumed constant for the observer and controller design in
the remainder of this paper.
The components of the heat flux vector χ(θ,u, η) =

[χk(θ,u, η)]k=1,...,Ñs
from (9) are defined in the form

χk(θ,u, η) =

∫

Ω

˙̄q(x,Mθθ,u, η)ϕk(x)dΩ. (10)

In (10), ˙̄q(x,T,u, η) denotes a piecewise constant spatial
approximation of (2), i.e.,

˙̄q(x,T,u, η) = − 1

Bs
HT(x) (q̇r(T,u, η) + q̇c(T) + q̇h(T))

with a vector H(x) = [Hk(x)]k=1,...,Ns
. By means of the

bijective mapping from Section 2.1, Hk(x) = 1 if (i −
1)Ls/Nx < x ≤ iLs/Nx ∧ (j − 1)Ws/Ny < y ≤ jWs/Ny,
and Hk(x) = 0 else, i = 1, . . . , Nx and j = 1, . . . , Ny. To
compute T(t), (7) is evaluated at the grid point xk, which
yields the expression T(t) = Mθθ(t) with the mapping

matrixMθ =
[
ϕT(xk)

]
k=1,...,Ns

∈ RNs×Ñs as used in (10).

2.3. Time averaging

In this section, model averaging (Khalil, 2002) is used to
obtain a real-time executable model that can serve as a ba-
sis for observer and controller design. The time averaging
method is applied to make (9) independent of η(t). That
is, the oscillatory specimen motion is taken into account
in an averaged manner. Time averaging is also considered
by Jadachowski et al. (2018) for the determination of an
optimal feedforward control.
Let Π be the period of the periodic specimen oscilla-

tions, i.e., η(t) = η(t − Π). In a first step, it is assumed
that τ ≫ Π, where τ is the minimal time constant of the
linearization of (9). Because of this assumption and be-
cause of the small amplitude η̄, it is postulated that the
effect of the periodic specimen motion η(t) on the temporal
evolution of the mean specimen temperature is only weak.
However, the periodic motion does have an influence on
the spatial distribution of the specimen temperature.
Based on the former analysis about the effect and the

time scale of η(t), a time-average model

θ̇av(t) = f(θav,u)

= (ρM)
−1

(Kθav(t) + χav(θav,u) + γ(θav))
(11a)

with

χav(θav,u) =
1

Π

∫ t+Π

t

χ(θav,u, η(t))dt (11b)

and the initial condition θav(0) = θ(0) approximates
the time-varying model (9). With (11), a time-invariant
reduced-order FE model of the temperature field in the
oscillating specimen is available. A discrete-time formula-
tion of this model will serve as a basis for the estimation
of 2D temperature profiles in Section 3.

Remark 1. Formally, a crucial problem in model av-
eraging is to analyze and prove the approximation or-
der of (11) compared to (9). In (Khalil, 2002), this
is typically addressed by a state transformation θ(t) =
θav(t) + ζ(t, θav) with a Π-periodic function ζ(t, θ) =∫ t

0 [χ(θ,u, η(s))− χav(θ,u)] ds to express (9) as a pertur-
bation of the average model (11). In case of the nonlin-
ear model (11) with numerically determined values M, K,
and χ(θ,u, η), this proof is highly non-trivial and thus not
considered in this paper.

Remark 2. Instead of averaging the ODE (9), one may
consider time averaging of the PDE (1) as shown by
Matthies (2001). In (Matthies, 2001), parabolic PDEs
with time-periodic perturbations are approximated up to
exponentially small errors. In particular, the originally
non-autonomous PDE is transformed such that the non-
autonomous terms are exponentially small in the period of
the acting input. Besides the fact that (1) constitutes a
non-linear partial integro-differential equation, which in-
duces additional challenges, note that due to the com-
plex furnace geometry and multiple reflections occurring
on specular surfaces, q̇(x, T,u, η) in (1) cannot be analyt-
ically expressed, not even for η(t) ≡ 0. Hence, (1) has to
be discretized and approximated by the ODE (9) and con-
sequently the averaging methods for ODEs are employed
in this work.

2.4. Model validation

Model parameters were identified by Jadachowski et al.
(2017b) on the basis of the full-order FD model with the
fixed specimen position η(t) ≡ 0. In (Jadachowski et al.,
2017b), the emissivities of the specimen and the enclo-
sure walls as well as the convective heat transfer coeffi-
cients αh and αig were identified based on step responses
of two horizontal IR-lamps. Local temperature measure-
ments of three thermocouples were recorded during the
heating period of 400 s. Additionally, 2D images of the
surface temperature of the specimen were taken at discrete
times using a temporarily installed CCD thermocamera.
For these snapshots, the vertical reflector and lamps were
temporarily folded to the side, i.e., the images were cap-
tured through the quartz glass window, see Fig. 1.
For parameter estimation, a minimization problem was

solved that takes into account both the time evolutions of
local thermocouple measurements and the 2D images of
spatial temperature fields. The result of this minimiza-
tion problem was εs = 0.90 for the specimen emissivity,
εw = 0.32 for emissivities of furnace walls, and αh =
142.6W/(m2 K) and αig = 13.3W/(m2 K) for the heat
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transfer coefficients. It was found that the relative accu-
racy of the model with the identified parameters is better
than 4.4% of the maximum measured temperature.
The identified parameters are also used in this pa-

per. Material parameters and the remaining radiative
parameters are taken from (Incropera et al., 2007), see,
(Jadachowski et al., 2017b).

3. Observer design

In this section, the estimation of the spatial temperature
evolution by an EKF is considered. The EKF uses mea-
surements of the local surface temperatures of the spec-
imen that are recorded by thermocouples (TCs). The
placement of these thermocouples with the coordinates
ξ = (x, y) is discussed in the next subsection.

3.1. Temperature measurements
Four TCs are used to measure the surface tempera-

ture of the specimen. The TCs are mounted at four
distinct points on the specimen surface shown in Fig. 2.
The thermocouples TC1, TC2, and TC3 are located

x

y

ξ3

ξ2

ξ1
ξ4

0 0.25Ls 0.5Ls 0.75Ls Ls

0
0.2Ws

0.5Ws

0.8Ws

Ws

specimen Ω
specimen fillet Ωf

Figure 2: Four thermocouples mounted on the specimen surface.

at the fixed positions ξ1 = (0.25Ls, 0.5Ws), ξ2 =
(0.5Ls, 0.8Ws), and ξ3 = (0.75Ls, 0.5Ws), respectively.
The measurements of these TCs are used by the EKF.
The position ξ4 of the thermocouple TC4 varies be-
tween the experiments and is taken from the set ξ4 ∈
{(0.375Ls, 0.5Ws), (0.5Ls, 0.5Ws), (0.625Ls, 0.5Ws)}.
Since the temperature field in the area of the specimen

fillet is of particular importance, only TC positions in Ωf

are considered. Temperature measurements Θi(t), i =
1, . . . , 4 obtained from the four TCs are recorded with the
sampling time ts and assembled in yj = [Θi(jts)]i=1,...,3

and yr,j = Θ4(jts). Apart from these measurements, no
other sensor signals are used for the estimation of the tem-
perature evolution of the specimen during furnace opera-
tion.

Remark 3. The selection of the TC positions with ξ4 =
(0.5Ls, 0.5Ws) resembles results of an optimization-based
algorithm for sensor placement as reported by Rötzer et al.
(2017). Therein, the problem of optimal sensor placement
was solved by maximizing the Gramian determinant (cf.
Vande Wouwer et al., 2000), which was calculated on the
basis of a model discretized with global trial functions.
Similar results are expected when using the local trial func-
tions ϕ(x).

3.2. EKF design

Prior to the EKF design, the forward Euler method is
applied to (11) to obtain the discrete-time dynamics

θav,j+1 = F(θav,j ,uj) +wj , θav,0 = θav(0), (12a)

with θav,j = θav(jts), uj = u(jts), and F(θav,j,uj) =
θav,j + tsf(θav,j,uj), j ∈ N0. The state equation is aug-

mented with the process noise wj ∈ RÑs . The tempera-
ture evaluations at the TC positions read as

yj = Cθav,j + vj , (12b)

with C = [ϕ(ξ1) ϕ(ξ2) ϕ(ξ3)]
T and the measurement

noise vj ∈ R3. With (12b), only the three TC measure-
ments at the positions ξi, i = 1, 2, 3 are available to the
EKF. The remaining measured value yr,j at ξ4 is used for
validation of the observer.
It is assumed that wj and vj are normally distributed

white noise sequences with zero mean and positive definite
covariance matrices Q̂ and R̂, respectively. The weighting
matrices Q̂ and R̂ are empirically determined in the form

Q̂ = q̂0
(
q̂1sign(M) + 1Ñs

1T
Ñs

)2
and R̂ = r̂0I with the

design parameters q̂0, q̂1, r̂0 > 0. For the EKF design, the
discrete-time input sequence uj = u(jts) is assumed to be
known, e.g., from the controller presented in Section 4.
According to the EKF design, see, e.g., (Simon, 2006),

the estimate θ̂j of the specimen temperature is given by

θ̂j = θ̂−
j + L̂j

(
yj −Cθ̂−

j

)
(13)

with the Kalman gain L̂j = P̂jC
T
(
CP̂jC

T + r̂0I
)−1

. Af-

ter each measurement, the so-called a priori estimate θ̂−
j

is propagated using the system dynamics (12a), i.e.,

θ̂−
j+1 = F(θ̂j ,uj). (14)

The observer error covariance matrix P̂j is updated by the
solution of the discrete-time Riccati equation

P̂j+1 = Φ̂j

(
I− L̂jC

)
P̂jΦ̂

T
j + Q̂. (15)

The determination of P̂j is based on a linearization of

(12a) at the current state estimate θ̂j

Φ̂j =
∂F(θav,j ,uj)

∂θav,j

∣∣∣∣
θav,j=θ̂j

. (16)

The definition of suitable conditions for the initial tem-
perature estimate θ̂0 and the initial covariance matrix P̂0

completes the design of the EKF.

4. Temperature tracking control

In this section, a control strategy is proposed to realize a
transition of the mean fillet temperature along the desired
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trajectory Tref(t) with minimal temperature inhomogene-
ity. A promising and well-known approach for tracking
control is a two-degree-of-freedom control concept, i.e.,

uj = uff
j +∆uj , j ≥ 0 (17)

comprising a feedforward part uff
j and a feedback part

∆uj . For the considered furnace, three feedforward con-
trol strategies using dynamic optimization were developed
and compared by Jadachowski et al. (2018). By assum-
ing nominal furnace conditions, one of these controllers is
employed here to obtain the reference signals uff

j of the sys-
tem input that ensure the desired transition of the mean
temperature. Reference signals θref,j of the correspond-
ing spatial temperature profiles follow from an evaluation
of (12) with uj = uff

j , wj = 0, and vj = 0. The feed-
back term ∆uj is introduced to compensate for model
mismatches and parameter uncertainties. It is based on
an LQG control concept presented in Section 4.2 and uses
the previously calculated temperature estimates θ̂j .

4.1. Optimal feedforward control

In this section, the feedforward control input uff
j =

[uff
i,j ]i=1,...,Nv+Nh

is calculated by dynamic optimization on
the basis of the discrete-time dynamics (12) of the time-
averaged FE model (11). The feedforward control input is
chosen as

uff
j = sat(vjuc), (18)

with uc = [uc,i]i=1,...,Nv+Nh
, where the evaluation of

the saturation function sat(vjuc,i) = 0 for vjuc,i < 0,
sat(vjuc,i) = ū if vjuc,i ≥ ū, and sat(vjuc,i) = vjuc,i else,
is applied componentwise. The feedforward controller (18)
amplifies the constant power distribution uc ∈ RNh+Nv by
a time-dependent scalar value vj = v(jts). The control
variables are both vj and uc.
By introducing the mean temperature of the specimen

fillet T̃ (θav,j) = cTmθav,j with cm =
∫
Ωf

ϕ(x)dΩ/Af and

its deviation

ej(θav,j) = T̃ (θav,j)− Tref,j (19)

from the reference trajectory Tref,j = Tref(jts), (18) is cal-
culated from the solution of the constrained discrete-time
optimal control problem (OCP)

minimize
vj ∈

RNh+Nv+1

N−1∑

j=0

(
g0e

2
j(θav,j) + g1κj(θav,j)

)
(20a)

s. t. θav,j+1 = F(θav,j , sat(vjuc)) (20b)

θav,0 = θ0 (20c)

max (uc) = ū (20d)

0 ≤ uc ≤ ū1Nv+Nh
. (20e)

Here, g0, g1 > 0 denote weighting parameters and vT
j =[

vj u
T
c

]
are optimization variables. While the first term in

(20a) aims at a desired tracking performance, the second
term with

κj(θav,j) =
1

Af

∫

Ωf

(
θT
av,jϕ(x)− T̃ (θav,j)

)2
dΩ

= θT
av,jWθav,j

(21)

and W =
∫
Ωf

ϕ(x)ϕT(x)dΩ/Af − cmcTm corresponds to

the control objective of a uniform specimen temperature.
The OCP (20) uses the horizon length βtE with a design

parameter β > 1. The variable tE denotes the transition
time between two steady-state values of Tref(t). Hence,
N = ⌈βtE/ts⌉ ∈ N+ is chosen in (20a). The condition
β > 1 is justified by the still evolving value of κj(θav,j) for
t ≥ tE and helps to reduce the temperature inhomogeneity
for t > tE .

Remark 4. The parametrization (18) represents a re-
striction for the parametric optimization problem (20).
Hence, the solution of (20) may be sub-optimal compared
to the solution of an OCP that directly optimizes the input
sequence uff

j . However, the sacrificed control performance
is rewarded by lower computational costs as shown by
Jadachowski et al. (2017a) for the furnace model (9) with
the fixed specimen position η(t) ≡ 0. In case of the oscil-
lating specimen, an OCP based on the time-varying model
would require a much finer time discretization. Then, the
expected reduction of the computational effort associated
with the input parametrization (18) is even more signifi-
cant.

The OCP (20) is solved by means of the open source
software Ipopt (Wächter and Biegler, 2006). It uses an
interior-point line-search algorithm to compute solutions
of large-scale nonlinear programming problems. The solu-
tion of (20) is followed by the determination of the feed-
back signal ∆uj in the next subsection.

4.2. LQG feedback control

Because of possible unmodeled furnace disturbances,
parameter uncertainties, or model-plant mismatches, the
specimen temperature may deviate from the reference evo-
lution. In terms of the time-average reduced-order sys-
tem state, this means that θav,j can deviate from θref,j .
Because θav,j cannot be directly measured, its estimated

counterpart θ̂j is used for control. The same applies to the

mean temperature T̃ (θav,j) of the specimen fillet, which is

thus replaced in the controller by T̃ (θ̂j) = cTmθ̂j. In this
paper, an LQG controller is employed for feedback track-
ing control. Its task is to minimize the estimated control
error θ̂j − θref,j .
To ensure that the estimated mean steady-state tem-

perature error ej(θ̂j) vanishes, the LQG control concept
is augmented by an integral control action. In a discrete-
time formulation, the integrated mean temperature error
eI,j follows the dynamics

eI,j+1 = eI,j + δ(uj)tsej(θ̂j), eI,0 = 0, (22)
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with ej(θ̂j) from (19). With the augmented error state

ej =
[
θ̂T
j − θT

ref,j eI,j]
T and the linearizations

Φj =
∂F(θav,j ,u

ff
j )

∂θav,j

∣∣∣∣∣
θav,j=θref,j

(23a)

Γj =
∂F(θref,j ,uj)

∂uj

∣∣∣∣
uj=uff

j

(23b)

along the predetermined reference trajectories θref,j and
uff
j , satisfying Tref,j = cTmθref,j , the linearized error dy-

namics

ej+1 =

[
Φj 0

δ(uj)tsc
T
m 1

]

︸ ︷︷ ︸
Φ̃j

ej +

[
Γj

0

]

︸ ︷︷ ︸
Γ̃j

∆uj (24)

serves as a basis for the design of the feedback controller.
Note that the calculation of Φj in (23a) is based on θref,j

and uff
j , while Φ̂j computed in (16) uses θ̂j and uj =

uff
j +∆uj .

Remark 5. In (22), δ(uj) is used to prevent integrator
windup effects in case of input saturations. It is chosen
in the form δ(uj) = 0 if 1T

Nv+Nh
uj > δ0, and δ(uj) = 1

else, with a design parameter δ0 > 0. Other anti-windup
strategies can be found, e.g., in (Hippe, 2006).

Following Franklin et al. (1997), the feedback control
law

∆uj = Kjej , ∀j = 0, . . . , N − 1, (25)

with the time-varying control gain matrix

Kj = −
(
r0I + Γ̃T

j Pj+1Γ̃j

)−1 (
Γ̃T
j Pj+1Φ̃j

)
(26)

minimizes the cost function

J =
1

2

N−1∑

j=0

(
eTj Qej + r0∆uT

j ∆uj

)
. (27)

Q is a user-defined symmetric positive semidefinite weight-
ing matrix, chosen in the form

Q =

[
q0cmcTm 0

0T q1

]
(28)

with the design parameters q0, q1 > 0. The first term in
(27) simplifies to 1

2

∑N−1
j=0 (q0e

2
j(θ̂j) + q1e

2
I,j), i.e., it cor-

responds to the mean temperature error and its integral
value. Additionally, the regularization term r0∆uT

j ∆uj in
(27) with the penalty parameter r0 > 0 prevents large cor-
rections of the heating power. The parameters q0, q1, and
r0 are chosen in such a way that the feedback law (25)
mainly adheres to the primary control objective, i.e., to
track the desired mean reference temperature.

For the determination of Kj , the backwards evolving
discrete Riccati equation

Pj = Q + Φ̃T
j Pj+1Φ̃j +

(
Γ̃T
j Pj+1Φ̃j

)T

Kj (29)

has to be recursively solved for j = N − 1, . . . , 0. In (29),
PN = PS is calculated from the solution of the algebraic
Riccati equation

PS = Q + Φ̃T
NPSΦ̃N −ΨT

(
r0I + Γ̃T

NPSΓ̃N

)−1

Ψ

with Ψ = Γ̃T
NPSΦ̃N obtained by substituting (26) into

(29) for j = N and PN = PN+1 = PS .

5. Results from the industrial implementation

To validate the developed estimation and control con-
cepts, a measurement campaign consisting of six annealing
cycles was carried out in the considered experimental fur-
nace of voestalpine Stahl GmbH. The purpose of this mea-
surement campaign was threefold. At first, it was aimed to
validate the estimation performance of the EKF by com-
paring temperature recordings of the thermocouple TC4
with the corresponding estimated temperature. Secondly,
the tracking performance of the proposed control concept
was investigated by comparing the mean specimen tem-
perature with its reference signal. The third purpose was
to investigate the effect of the oscillating movement of the
specimen on the spatial homogeneity of its temperature
field.
For the latter purpose, three experiments were carried

out with a fixed specimen position and three with an os-
cillating specimen. For each of the three experiments, the
position ξ4 of TC4 was modified and selected from the set
{(0.375Ls, 0.5Ws), (0.5Ls, 0.5Ws), (0.625Ls, 0.5Ws)}. The
positions of the other TCs remained unchanged as defined
in Fig. 2 in all six experiments. The TC measurements and
the system input signals were recorded during the heating
period [0, 2tE].
The reference signal for the mean specimen temperature

was chosen as illustrated in Fig. 3 in all experiments. Here,

.

t/tE

0 0.5 1 1.5 2

T
re

f(t
)/

T
re

f(t
E

)

0

0.5

1

Figure 3: Reference signal for the mean specimen temperature nor-
malized w.r.t. the target temperature at time t = tE .

a piecewise polynomial C1-function was used for Tref(t).
For t > tE , Tref(t) was held constant. The reference tra-
jectory realizes a transition starting from the initial mean
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temperature at t = 0 to the desired setpoint temperature
for t ≥ tE . The considered heating period is twice as
long as the transition time tE . This choice ensures that
the experiments also cover the homogenization of the tem-
perature field after the mean temperature has reached its
setpoint value Tref(tE) at the time tE .
The measurement campaign was carried out with 8 hori-

zontal IR-lamps hi, i ∈ {1, . . . , 4, Nh−3, Nh−2, Nh−1, Nh}
and 6 vertical IR-lamps vi, i ∈ {1, 2, 3, Nv−2, Nv−1, Nv}.
As investigated by Jadachowski et al. (2017a), the use of
additional IR-lamps would not improve the overall control
performance. For technical reasons, the IR-lamps are con-
trolled in groups by phase-fired thyristors, i.e., the hor-
izontal IR-lamps by four thyristors T h

1 = (hNh
, hNh−1),

T h
2 = (h1, h2), T

h
3 = (h3, hNh−2), T

h
4 = (h4, hNh−3), and

the vertical IR-lamps by two thyristors T v
1 = (v1, vNv ) and

T v
2 = (v2, v3, vNv−2, vNv−1). The remaining lamps were

deactivated during the experiments.

5.1. Experiments with a fixed specimen position

Temperature measurements of a representative experi-
ment with a fixed specimen position η(t) ≡ 0 are presented
in Fig. 4. In particular, this figure shows time evolutions
of measurements of the experiment with the TC4 located
at the position ξ4 = (0.5Ls, 0.5Ws).
Figure 4(A) shows the estimated relative control er-

ror of the mean temperature ej(θ̂j)/Tref(tE). The pro-
posed control strategy achieves a high tracking perfor-
mance in terms of the mean specimen temperature. In
the evaluated experiment, the relative mean steady-state
control error is below 0.5%. This good control perfor-
mance is achieved because of the integral action of the
LQG feedback controller and is similar in the remaining
two experiments with TC measurements Θ4(t) located at
ξ4 = (0.375Ls, 0.5Ws) and at ξ4 = (0.625Ls, 0.5Ws), re-
spectively. During the transient heating phase, only a
minor mean control error below 2% of the target tem-
perature occurs. This minor error can be attributed to
the saturation of the control variables, i.e., more powerful
lamps would be necessary to realize the desired tempera-
ture transition with even higher accuracy.
The relative local estimation errors eTCi,j/Tref(tE) with

eTCi,j = Θi(jts) − ϕT(ξi)θ̂j , i = 1, . . . , 3 are shown in
Fig. 4(B). The small values of eTCi,j , i = 1, 2, 3 arise from
the fact that they are used by the EKF for the temperature
estimation. For the observer validation, local estimation
errors eTC4,j are shown in Fig. 4(C). Here, estimation er-
rors from all three experiments with the changing position
ξ4 are compared. During transients, eTC4,j is less than
1.5% and reduces to 0.5% of the setpoint value at steady
states. This demonstrates a very good estimation perfor-
mance of the EKF which is essential to achieve the stated
control objectives.
To evaluate the temperature homogeneity, a sup-norm

Tsup(t) = max
(x,y)∈Ωf

∣∣T̂ (x, y, t)− Tref(t)
∣∣

with T̂ (x, y, t) = ϕT(x)θ̂j is computed. It describes
the maximum local deviation between the estimated 2D
temperature field T̂ (x, y, t) and the reference trajectory
Tref(t) in the specimen fillet. The normalized sup-norm
Tsup(t)/Tref(tE) w.r.t. the setpoint value is given in
Fig. 4(D). The increase of the temperature inhomogene-
ity for t < tE is attributed to the saturation of the con-
trol inputs in the transient heating phase. For t > tE ,
when the mean temperature is already nearly constant (cf.
Fig. 4(A)), the spatial temperature inhomogeneity contin-
uously decreases and arrives at 4% of Tref(tE).
The time evolutions of the normalized IR-lamp pow-

ers uh(t) and uv(t) are shown in Figs. 4(E) and 4(F), re-
spectively. In particular, Fig. 4(E) presents normalized
powers of the horizontal IR-lamps controlled by the four
thyristors T h

i , i = 1, . . . , 4. The highest heating power is
emitted by the IR-lamps controlled by the thyristor T h

4 ,
followed by T h

2 and T h
1 . For the selected reference tra-

jectory and the non-oscillating specimen, T h
3 supplies the

lowest power. The thyristors T h
4 and T h

2 saturate during
the transient heating phase. This is the main reason for
the control error shown in Fig. 4(A) for t ∈ (0.5tE , tE).
For t > tE , T

h
1 and T h

2 converge to the same steady-state
values. This results in a symmetric power distribution
w.r.t the plane x = 0.5Ls and, hence, symmetric tem-
perature profiles are expected. The normalized powers of
the vertical IR-lamps controlled by the two thyristors T v

1

and T v
2 are shown in Fig. 4(F). Again, the highest heating

power is emitted by the outermost IR-lamps controlled by
the thyristor T v

1 . This thyristor saturates in the transient
heating phase t < tE .
Subsequently, in Figs. 5 through 8, the left, middle

and right columns correspond to the positions ξ4 =
(0.375Ls, 0.5Ws), ξ4 = (0.5Ls, 0.5Ws) (middle), and ξ4 =
(0.625Ls, 0.5Ws), respectively, of the thermocouple TC4.
Figure 5 shows the estimated spatial temperature fields
T̂ (x, y, t) = ϕT(x)θ̂j of the specimen together with mea-
surements of the four TCs of all three experiments. Mea-
surements of TCi, i = 1, 2, 3 are indicated by ∗, while ◦ de-
notes the temperature recorded by TC4. The 2D normal-
ized temperature fields are given in Figs. 5(Ai), i = 1, 2, 3
for the time t = 1.5tE. Minor deviations between the tem-
perature field and the setpoint temperature Tref(tE) occur
close to the corners of the specimen fillet Ωf . As explained
in more detail by Jadachowski et al. (2016), this is mainly
attributed to the geometry of the heating chamber (es-
pecially the vertical reflector) and the positioning of the
vertical IR-lamps relative to the specimen and the reflec-
tor. In essence, the outer vertical IR-lamps transmit too
much thermal radiation onto the center of the specimen
and a uniform temperature profile along the direction y
cannot be achieved.
Specific estimated temperature profiles along the direc-

tions x and y are plotted in Figs. 5(Bi) and Figs. 5(Ci),
i = 1, 2, 3, respectively, for the times t = 0.5tE and
t = 1.5tE. Here, gray background areas indicate the speci-
men fillet. The spatial positions of the profiles were chosen

9

Post-print version of the article: L. Jadachowski, A. Steinboeck, and A. Kugi, �State estimation and advanced control of the 2D temperature

�eld in an experimental oscillating annealing device�, Control Engineering Practice, vol. 78, pp. 116�128, 2018, issn: 0967-0661. doi:

10.1016/j.conengprac.2018.06.011

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.conengprac.2018.06.011


(A) Mean control error (B) Error at ξ1, ξ2 and ξ3 (C) Error at ξ4
.

PSfrag
e j

(θ̂
)/

T
re

f(
t E

)
in

%

−3

0

3

.

PSfrag

e T
C

i,
j
/
T

r
e

f
(t

E
)

in
%

−3

0

3

ξ1

ξ2

ξ3

...

PSfrag

e T
C

4,
j
/
T

r
e

f
(t

E
)

in
%

−3

0

3

ξ4 = (0.375Ls, 0.5Ws)
ξ4 = (0.5Ls, 0.5Ws)
ξ4 = (0.625Ls, 0.5Ws)

(D) Estimated temperature
homogeneity

(E) Horizontal IR-lamp powers (F) Vertical IR-lamp powers
.

t/tE

0 0.5 1 1.5 2

T
su

p
(t

)/
T

re
f(t

E
)

in
%

0

2

4

6

8

10
.

t/tE

0 0.5 1 1.5 2

u h
(t

)/
ū
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Figure 4: Measurement results of an annealing experiment with the non-oscillating specimen with the TC measurement Θ4(t) located at
ξ4 = (0.5Ls, 0.5Ws): (A) the mean temperature tracking error; (B) the local observer errors eTCi,j , i = 1, 2, 3, at the positions ξ1 =
(0.25Ls , 0.5Ws), ξ2 = (0.5Ls, 0.8Ws), ξ3 = (0.75Ls , 0.5Ws); (C) the local observer error eTC4,j at the position ξ4 for three experiments; (D)
the estimated relative temperature homogeneity; (E) relative values of horizontal IR-lamps uh(t); (F) relative values of vertical IR-lamps
uv(t).

to contain the positions of the TCs (cf. lines in Figs. 5(Ai),
i = 1, 2, 3). Fig. 5 proves the good agreement between the
TC measurements and the corresponding estimated tem-
peratures. Two local spatial maxima of the estimated pro-
files occur along the x-coordinate at around x = 0.375Ls

and x = 0.625Ls. Also at these points the comparison with
the TC4 measurements exhibits a very good accuracy of
the observer. Only one spatial maximum is present along
the direction y, where a more parabolic-like form of the
temperature profiles can be observed.

All in all, the results shown in Figs. 4 and 5 confirm that
the spatial temperature fields follow the reference temper-
ature trajectory and that both the time evolution and the
spatial distribution of the temperature fields are accurately
estimated.

5.2. Experiments with an oscillating specimen

Separated temperature measurements for three exper-
iments with the oscillating specimen position η(t) =
3Lh sin(2πt/Π), where Π = 0.15tE are presented in Fig. 6.
In addition to the signals which are analogous to those
given in Fig. 4, Fig. 6 shows also the measured oscillating
position η(t) of the specimen. In terms of the mean spec-
imen temperature, the results presented in Figs. 6(Ai),
i = 1, 2, 3 do not considerably deviate from the case with
the fixed specimen position. In all three experiments,
the relative mean control error reduces significantly for

t > tE and is below 0.75% of Tref(tE). In the tran-
sient heating phase, the mean error does not exceed 2%.
Again, the remaining control errors during the transient
phase are mainly attributed to saturation of the IR-lamp
powers. Time evolutions of the relative local estima-
tion errors known by the EKF are plotted in Figs. 6(Bi),
i = 1, 2, 3. Apart from some outliers in Fig. 6(B3), the sig-
nals eTCi,j , i = 1, 2, 3 are mainly below 0.5% of Tref(tE).
Figures 6(Ci), i = 1, 2, 3, show the time evolution of lo-
cal estimation errors eTC4,j . The estimated local tempera-
tures do not differ more than 3% from the values measured
by the thermocouple TC4. These results are not as accu-
rate as those shown in Fig. 4(C) because the underlying
EKF is based on the average model (11) which does not
explicitly take into account the specimen oscillation. In
Fig. 6(C1) and Fig. 6(C3), some oscillations that may cor-
relate with the motion of the specimen are present. Such
oscillations are absent in Fig. 6(C2). The reason for this
behavior is that the TC positions ξ4 = (0.375Ls, 0.5Ws)
and ξ4 = (0.625Ls, 0.5Ws) repeatedly pass by an active
horizontal IR-lamp. This is not the case for the position
ξ4 = (0.5Ls, 0.5Ws). Moreover, from Fig. 4 and Fig. 6 it
can be inferred that the assumption τ ≫ Π (cf. Section
2.3) is only weakly satisfied for Π = 0.15tE. It is expected
that if Π ≪ 0.15tE, the temperature oscillations given in
Fig. 6(C1) and Fig. 6(C3) will be negligibly small with
a further reduction of the local estimation errors eTCi,j ,
i = 1, . . . , 4.
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(A1) Estimated temperature profile
at time t = 1.5tE

(A2) Estimated temperature profile
at time t = 1.5tE

(A3) Estimated temperature profile
at time t = 1.5tE.
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Figure 5: Estimated spatial temperature profiles of three annealing experiments with the fixed specimen position. The TC measurement
Θ4(t) located at three positions ξ4 = (0.375Ls, 0.5Ws) (left), ξ4 = (0.5Ls, 0.5Ws) (middle), and ξ4 = (0.625Ls, 0.5Ws) (right). (A1), (A2),
(A3): 2D relative temperature profiles of the specimen w.r.t. the target temperature at time t = 1.5tE . (B1), (B2), (B3): comparison of

relative temperature profiles T̂ (x, ·, t) along the direction x through the TC positions ξi, i = 1, . . . , 4 at the times t = 0.5tE and t = 1.5tE .

(C1), (C2), (C3): comparison of relative temperature profiles T̂ (·, y, t) along the direction y through the TC positions ξi, i = 1, . . . , 4 at the
times t = 0.5tE and t = 1.5tE . Temperature measurements Θi(t) at the corresponding TC positions ξi, i = 1, . . . , 3 (∗) and at the position
ξ4 (◦). Gray background areas indicate the specimen fillet.

Figure 7 shows the corresponding time evolutions of the
IR-lamp powers. In contrast to Fig. 4(E) and Fig. 4(F), in
Fig. 7 only the horizontal IR-lamps saturate. The signals
T h
1 and T h

2 are similar to those from Fig. 4(E) insofar as
they converge to the same steady-state value. However,
there are evident differences in the signals T h

3 and T v
1 .

In case of the oscillating specimen, the vertical IR-lamps
controlled by T v

1 do not saturate and emit, just as T v
2 ,

significantly less power than in case of the non-oscillating

specimen. This is traded-off against the horizontal lamps
controlled by T h

3 . They now emit as much as the lamps
connected to T h

4 , they saturate in the transient heating
phase, and they also arrive at the same steady-state value
as T h

4 .

Estimated spatial temperature fields T̂ (x, y, t) =

ϕT(x)θ̂j and corresponding TC measurements are shown
in Fig. 8 for the oscillating specimen. The 2D temperature
profiles for the time t = 1.5tE are plotted in Figs. 8(Ai),
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Figure 6: Measurement results of three annealing experiments with the oscillating specimen and the TC measurement Θ4(t) located at three
different positions ξ4 = (0.375Ls, 0.5Ws) (left), ξ4 = (0.5Ls, 0.5Ws) (middle), and ξ4 = (0.625Ls , 0.5Ws) (right). Comparison of the mean
temperature tracking errors, the local observer errors at the positions ξ1 = (0.25Ls, 0.5Ws), ξ2 = (0.5Ls, 0.8Ws), ξ3 = (0.75Ls, 0.5Ws), the
local temperature error at the position ξ4, and the position η(t) of the oscillating specimen.

i = 1, 2, 3. Similar to the results from Fig. 5, minor de-
viations of the temperature field from the reference value
Tref(tE) occur close to the corners of Ωf . However, com-
pared to Fig. 5, these deviations are now reduced due to
the specimen motion and the adapted power distribution
supplied to the IR-lamps. In fact, a comparison between
Figs. 5(Bi) and Figs. 8(Bi), i = 1, 2, 3, reveals that the
homogeneity of the vertical temperature profiles improved
as a consequence of the specimen oscillation. Moreover,

the temperature offset between the two evaluation lines
along the direction x at y = 0.2Ws and y = 0.5Ws is
reduced. The temperature profiles along the direction y
passing through the TC positions ξi, i = 1, . . . , 4, are
shown in Figs. 8(Ci), i = 1, 2, 3. While some minor in-
homogeneities can be observed at different coordinates x
at the time t = 0.5tE, they are practically negligible for
t > tE .

To compare the temperature homogeneity in the fixed
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ū

h

0

0.5

1

T h
1

T h
2

T h
3

T h
4

(B1) Vertical IR-lamp powers (B2) Vertical IR-lamp powers (B3) Vertical IR-lamp powers
.

PSfrag

t/tE

0 0.5 1 1.5 2

u v
/
ū
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Figure 7: Measurement results of three annealing experiments with the oscillating specimen conducted with the TC measurement Θ4(t) located
at three different positions ξ4 = (0.375Ls, 0.5Ws) (left), ξ4 = (0.5Ls, 0.5Ws) (middle), and ξ4 = (0.625Ls, 0.5Ws) (right). Comparison of the
IR-lamp powers: relative values of horizontal IR-lamps uh(t) (top) and vertical IR-lamps uv(t) (bottom).

and the oscillating specimen, the normalized sup-norm
Tsup(t) is computed for all six experiments. Comparisons
of Tsup(t) between the oscillating and the non-oscillating
specimen are shown in Fig. 9 for different positions ξ4
of the thermocouple TC4. Generally, the oscillation re-
duces the temperature non-uniformities. The increase of
the temperature inhomogeneity for t < tE is attributed to
the saturation of the control inputs in the transient heat-
ing phase. For t > tE , when the mean temperature is
already nearly constant (cf. Figs. 4(Ai) and Figs. 6(Ai),
i = 1, 2, 3), the spatial temperature inhomogeneity contin-
uously decreases. Its steady-state value is approximately
4% of Tref(tE) for the non-oscillating specimen and 2% of
Tref(tE) for the oscillating specimen. This demonstrates
again that the oscillation of the specimen significantly im-
proves the control accuracy.

6. Conclusions

In this paper, an advanced control concept for an exper-
imental annealing furnace with an oscillating steel speci-
men was developed and evaluated based on measurements.
A distributed-parameter model of the 2D temperature evo-
lution in the steel specimen was extended to take into ac-
count the oscillating motion of the specimen. In a first
step, the Finite-Element (FE) method with a tailored non-
equidistant discretization of the spatial domain was used
to obtain a reduced-order model. In a second step, time
averaging was applied to the FE-model. The resulting
time-averaged FE model served as the basis for optimal

feedforward trajectory planning, an EKF-based tempera-
ture estimation, and an LQG feedback control design.

The optimal feedforward control approach is based on a
constant power distribution amplified by a time-dependent
scalar factor. This approach allows a reasonable trade-off
between computational costs and the control performance
in terms of the temperature homogeneity. The spatial 2D
temperature fields are estimated by means of the EKF. It
uses only three thermocouples for local temperature mea-
surements of the specimen surface. A fourth existing ther-
mocouple measurement was used to validate the estima-
tion performance. The LQG feedback tracking controller
is used to minimize errors between the desired and the
estimated temperature profiles. The controller was aug-
mented by an integral term to eliminate the mean steady-
state control error of the specimen temperature.

Experiments with both the fixed and the oscillating
specimen were conducted. In both cases, practically the
same good tracking accuracy in terms of the mean tem-
perature was achieved. A very good estimation perfor-
mance is achieved when the specimen does not move. This
is mainly attributed to the accuracy of the mathematical
model for the fixed specimen position. Here, the resulting
temperature inhomogeneity does not exceed 10% of the
setpoint temperature during the transient heating phase
and reduces to less than 4% in the steady state. The sys-
tematic consideration of a periodic specimen oscillation
in all design steps results in a significant reduction of the
spatial temperature inhomogeneity and a good overall esti-
mation and tracking accuracy. In essence, the temperature
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(A1) Estimated temperature profile
at time t = 1.5tE

(A2) Estimated temperature profile
at time t = 1.5tE

(A3) Estimated temperature profile
at time t = 1.5tE.
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Figure 8: Calculated spatial temperature profiles of three annealing experiments with the oscillating specimen. The TC measurement Θ4(t)
located at three positions: ξ4 = (0.375Ls , 0.5Ws) (left), ξ4 = (0.5Ls, 0.5Ws) (middle), and ξ4 = (0.625Ls, 0.5Ws) (right). (A1), (A2), (A3):
2D relative temperature profiles of the specimen w.r.t. the target temperature at time t = 1.5tE . (B1), (B2), (B3): comparison of relative

temperature profiles T̂ (x, ·, t) along the direction x through the TC positions ξi, i = 1, . . . , 4 at the times t = 0.5tE and t = 1.5tE . (C1),

(C2), (C3): comparison of relative temperature profiles T̂ (·, y, t) along the direction y through the TC positions ξi, i = 1, . . . , 4 at the times
t = 0.5tE and t = 1.5tE . Temperature measurements Θi(t) at the corresponding TC positions ξi, i = 1, . . . , 3 (∗) and at the position ξ4 (◦).
Gray background areas indicates the specimen fillet.

inhomogeneity under steady-state operating conditions is
halved by an oscillating specimen motion compared to a
non-oscillating specimen.
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