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Modeling of a permanent magnet synchronous machine with internal
magnets using magnetic equivalent circuits

Wolfgang Kemmetmüller1 Member, IEEE, David Faustner1, and Andreas Kugi1 Member, IEEE

1Automation and Control Institute, Vienna University of Technology, Vienna, Austria

The design of control strategies for permanent magnet synchronous machines (PSM) is almost exclusively based on classical dq0-
models. These models are, however, not able to systematically describe saturation or non-homogenous air gap geometries typically
occurring in PSM. This paper deals with a framework for the mathematical modeling of PSM based on magnetic equivalent circuits.
Different to existing works, the model equations are derived by means of graph theory allowing for a systematic choice ofa minimal
set of state variables of the model and a systematic consideration of the electrical connection of the coils of the motor.The resulting
model is calibrated and verified by means of measurement results. Finally, a magnetically linear and a dq0-model are derived and
their performance is compared with the nonlinear model and measurement results.

Index Terms—magnetic equivalent circuit, electric motor, permanent magnet motors

I. I NTRODUCTION

PERMANENT magnet synchronous motors (PSM) are
widely used in many technical applications. Numerous

papers and books dealing with the design of PSM have been
published in recent years, see, e.g., [1], [2], [3], [4], [5],
[6], [7]. The mathematical models proposed in these papers
range from finite element analysis over reluctance models to
classical dq0-models. Finite element (FE) models exhibit a
high accuracy for the calculated magnetic fields and allow
for an exact consideration even of complex geometries of
the motor, see, e.g., [5], [6], [7], [8], [9], [10]. Due to their
high (numeric) complexity, these models are, however, hardly
suitable for dynamical simulations and a controller design.

The design of control strategies for PSM is typically based
on classical dq0-models, which, in their original form, assume
a homogenous air gap and unsaturated iron cores, see, e.g.,
[11], [12], [13], [14], [15], [16], [17], [18]. Many modern
designs of PSM (including e.g. PSM with internal magnets)
exhibit considerable saturation and non-sinusoidal fluxesin the
coils. To cope with these effects, extensions of dq0-models
have been reported in literature, which are all based on a
heuristic approach and are limited to a very specific motor
design, see, e.g., [16], [17], [18]. In most cases, these models
are not able to accurately describe the motor behavior in all
operating conditions.

Magnetic equivalent circuits have become very popular for
the design and the (dynamical) simulation of PSM in the
recent years, see, e.g., [1], [2], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35]. This is due to the significantly reduced complexity in
comparison to FE models and their capability to systematically
describe saturation and non-homogenous air gap geometries.
The accuracy and complexity of reluctance models can be
easily controlled by means of the choice of the reluctance
network. While reluctance networks with a rather high com-

Manuscript received September 26, 2013; revised ??, 2013. Corresponding
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plexity are necessary to accurately describe field profiles in
the motor, models of significantly reduced complexity already
represent the behavior with respect to the torque, currentsand
voltages of the motor in sufficient detail. Thus, models based
on adequately chosen reluctance models promise to be a good
basis for dynamical simulations and the (nonlinear) controller
design.

In this paper, a framework for the systematic derivation
of a state-space model with a minimum number of nonlinear
equations and state variables is presented. The main purpose of
the derived model is to provide a state-space representation for
advanced model-based control strategies and thus to reproduce
the dynamic input-to-output behavior of the motor in an
accurate manner. The framework developed here is universal, it
is applied here to a specific internal magnet PSM that exhibits
both large cogging torque and saturation. Section II presents
the considered model and a complete reluctance model of the
motor. To obtain a minimal set of (nonlinear) equations that
describe the reluctance network, a method based on graph
theory is proposed. This method, well known from electrical
networks, see, e.g. [36], [37], [38] is adjusted to the analysis
of magnetic networks. Subsequently, the description of the
electrical connection of the coils and the choice of a suitable
set of state variables for the dynamical system is outlined.It
should be noted that the framework presented in this section
can be applied to any PSM. Section III is concerned with a
reduced model based on findings of simulation results of the
complete model. Section IV shows the systematic calibration
of the reduced model and a comparison with measurement
results. Starting from the nonlinear model, a magnetically
linear model and a classical dq0-model are systematically
derived in Section V. Finally, the results of the nonlinear
model, the magnetically linear model and the dq0-model are
compared with measurement results.

II. CONSIDEREDMOTOR AND COMPLETE MODEL

The motor considered in this paper is a permanent magnet
synchronous motor with internal magnets. It comprises 12
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stator coils, each wound around a single stator tooth, and 8
NdFeB-magnets in the rotor, which are alternately magnetized.
The setup of the motor is periodically repeated every90◦

(number of pole pairsp = 4), such that only a quarter of
the motor has to be considered. Fig. 1 shows a sectional view
of the PSM and the permeance network used to model the
stator and the rotor (air gap permeances are not included in
this figure).
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Fig. 1. Sectional view of the PSM with permeance network.

The motor is designed to exhibit a large cogging torque
by means of an inhomogeneous construction of the air gap,
see Fig. 1. This is due to the fact that the motor is used
in an application where external torques beyond a certain
limit should not yield large changes in the rotor angleϕ.
The large cogging torque, however, makes the design of high-
performance control strategies more involved. Thus, tailored
mathematical models which accurately describe the cogging
torque and the saturation are required for the controller design.

A. Permeance network

As already outlined in the introduction, a network of non-
linear permeances is utilized for the derivation of a model of
the motor. Fig. 2 depicts the proposed permeance network of
the motor. The permeances describing the core of the stator
and the rotor are approximated by cuboids of lengthl and area
A. To account for saturation effects in the core, the relative
permeabilityµr is defined as a function of the absolute value
of the magnetic field strengthH = u/l, i.e.µr (|u| /l), where
u denotes the magnetomotive force. Fig. 3 shows the relative
permeabilityµr for the applied core material M800-50A.

The nonlinear permeances of the stator teeth then read as

Gsj (usj) =
Astµ0µr

(
|usj |
lst

)

lst
, j = 1, 2, 3, (1)
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Fig. 2. Permeance network of the PSM.

with the areaAst, the lengthlst and the magnetomotive force
usj of a stator tooth, and the permeabilityµ0 of free space.
The permeances of the stator yoke can be found analogously
in the form

Gsjk (usjk) =
Asyµ0µr

(
|usjk|
lsy

)

lsy
, jk ∈ {12, 23, 31} , (2)

whereAsy is the area,lsy describes the length andusjk is
the corresponding magnetomotive force. The center of the
rotor is divided into 4 elements, which are described by the
permeances

Grjk (urjk) =
Arµ0µr

(
|urjk |
lr

)

lr
, jk ∈ {11, 12, 21, 22} .

(3)

Here,Ar is the effective area,lr the effective length andurjk

the magnetomotive force of the rotor element. The permanent
magnets are placed inside the rotor of the motor. The resulting
construction of the rotor exhibits parts, which have the form
of very slender bars. The circumferential bars are described
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Fig. 3. Relative permeabilityµr of the core material M800-50A.

by

Gbjk (ubjk) =
Abcµ0µr

(
|ubjk|
lbc

)

lbc
, jk ∈ {11, 12, 21, 22} ,

(4)

with the areaAbc, the lengthlbc and the magnetomotive force
ubjk. The permeances of the radial bars read as

Gbj (ubj) =
Abrµ0µr

(
|ubj |
lbr

)

lbr
, j = 1, 2. (5)

Again, Abr denotes the area,lbr the length andubrj the
magnetomotive force of the radial bar element.

The air gap of the motor is modeled by two types of
permeances: the permeancesGljk, jk ∈ {12, 23, 31}, de-
scribing the leakage between adjacent stator teeth, andGajk,
jk ∈ {11, 12, 21, 22, 31, 32}, describing the coupling between
stator and rotor. The leakage permeances are defined as

Gljk =
Alµ0

ll
, jk ∈ {12, 23, 31} , (6)

with the effective areaAl and lengthll. The air gap perme-
ancesGajk are, of course, functions of the relative rotationϕ
of the rotor with respect to the stator. A geometric model of
these permeances using an approximate air gap geometry is
possible but yields inaccurate results due to stray fluxes not
covered by the approximate air gap geometry. Therefore, a
heuristic approach, as has been proposed in [2], [19], is used
to approximate the coupling between the rotor and stator, i.e.
the air gap permeanceGa.

Ga (ϕ) =





0 −π
4 ≤ ϕ̃ ≤ −δ

Ga,max

2

(
1 + cos

(
π
δ ϕ̃

))
−δ < ϕ̃ ≤ δ

0 δ < ϕ̃ ≤ π
4

(7)

Therein, ϕ̃ is the relative rotationϕ mapped to the interval
(−π/4, π/4) by means of a modulo operation. Moreover,δ
is a parameter which can be approximately determined by the
geometrical overlap between a permanent magnet and a stator

tooth, andGa,max is the maximum value at̃ϕ = 0. GivenGa

of (7), the air gap permeances between the individual stator
teeth and permanent magnets are defined as

Gajk = Ga

(
ϕ− (j − 1)π

6
− (k − 1)π

4

)
, (8)

with j = 1, 2, 3 andk = 1, 2.
The NdFeB-magnets exhibit an almost linear behavior in

the operating range, which can be modeled in the form of
a constant magnetomotive forceumsj, j = 1, 2 and a linear
permeance

Gmj (umj) =
Amµ0µrm

lm
, j = 1, 2, (9)

with the constant relative permeabilityµrm, the effective area
Am and the lengthlm. Given the coercive field strengthHc

of the magnets, their magnetomotive forces are described by

ums1 = −ums2 = −Hclm. (10)

The stator coils withNc turns are modeled by

ucsj = Ncicj, j = 1, 2, 3, (11)

with icj being the electric current through the coilj.

B. Balance equations

Two approaches for the derivation of the balance equations
(Kirchhoff’s node and branch equations) are typically used
for magnetic reluctance networks: (i) mesh analysis [33],
[34], [35] and (ii) node potential analysis [2], [19], [20],
[21], [23], [25], [26], [27], [28]. While a proper choice of
meshes, yielding a set of independent equations might be
tricky, the node potential analysis automatically guarantees
the independence of the resulting equations. Therefore, node
potential analysis is typically favored.

In this paper an alternative approach for the systematic
derivation of a minimal set of independent equations based
on graph theory is proposed. It uses a tree, which connects
all nodes of the network without forming any meshes. This
approach is well known from electric network analysis, see,
e.g., [36], [37], [38], and can be, as will be shown in this
paper, directly applied to magnetic permeance networks, see
also [29].

The chosen tree has to connect all nodes of the network
without forming any meshes. Moreover, all magnetomotive
force sources have to be included in the tree, which is always
possible for non-degenerated networks. It further turns out to
be advantageous to exclude as many air gap permeance from
the tree as possible. One possible choice of a tree is given in
Fig. 2 by the components depicted in black. The co-tree is
then composed of all components which are not part of the
tree (depicted gray in Fig. 2). Adding one co-tree element to
the tree yields a single mesh.

For the subsequent derivation, it is useful to subdivide the
elements of the tree into magnetomotive force sources of the
coils (indextc), magnetomotive force sources of the permanent
magnets (indextm) and permeances (linear, nonlinear, angle
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dependent, indextg). Then, the overall vector of the tree fluxes
φt =

[
φT

tc,φ
T
tm,φT

tg

]T
is defined by

φtc = [φcs1, φcs2, φcs3]
T (12a)

φtm = [φms1, φms2]
T (12b)

φtg = [φs1, φs2, φs3, φs12, φs23, φb1, φb2, φr11, φr12,

φr21, φm1, φm2, φa11]
T
.

(12c)

The vector of the corresponding tree magnetomotive forcesut

is defined in an analogous manner.
The co-tree only comprises permeances such that the vector

of the co-tree fluxes is given by

φc = [φl12, φl23, φl31, φs31, φb11, φb12, φb21, φb22,

φr22, φa12, φa21, φa22, φa31, φa32]
T (13)

and the vector of co-tree magnetomotive forcesuc is defined
in the same way. Now, the following relations between the tree
and co-tree fluxes and magnetomotive forces, respectively,can
be formulated

φt = Dφc (14a)

uc = −DTut. (14b)

The incidence matrixD describes the interconnection of the
individual elements of the permeance network and its entries
are either−1, 0 or 1. It can be decomposed into a partDc

linking the co-tree fluxes with the tree coil fluxes, a part
Dm linking the co-tree fluxes with the tree permanent magnet
fluxes, and a partDg, which connects the co-tree fluxes with
the fluxes of the tree permeances, i.e.DT =

[
DT

c ,D
T
m,DT

g

]
.

The constitutive equations of the permeances can be sum-
marized in the form

φtg = Gtutg (15a)

φc = Gcuc, (15b)

with the permeance matricesGt and Gc of the tree and
co-tree, respectively. Note that in general these matricesare
functions of the corresponding magnetomotive forces (due to
saturation) and the displacement of the rotor, i.e.Gt(utg, ϕ)
and Gc(uc, ϕ). For the permeance network of Fig. 2 these
matrices read as

Gt = diag [Gs1, Gs2, Gs3, Gs12, Gs23, Gb1, Gb2,

Gr11, Gr12, Gr21, Gm1, Gm2, Ga11]
(16a)

Gc = diag [Gl12, Gl23, Gl31, Gs31, Gb11, Gb12, Gb21,

Gb22, Gr22, Ga12, Ga21, Ga22, Ga31, Ga32] .
(16b)

Inserting (15) into (14), we find the following set of
equations



φtc

φtm

Gtutg


 = −DGc

[
DT

c ,D
T
m,DT

g

]


utc

utm

utg


 . (17)

If it is assumed that the coil currentsic = [ic1, ic2, ic3]
T and

thus the magnetomotive forcesutc are given, the unknown

variables of (17) areφtc, φtm andutg. A simple reformulation
of (17) yields



I 0 DcGcD

T
g

0 I DmGcD
T
g

0 0 Gt +DgGcD
T
g





φtc

φtm

utg


 =

−DGc

(
DT

c utc +DT
mutm

)
(18)

with the identity matrixI. It can be easily seen that a set
of dim (utg) = n = 13 nonlinear algebraic equations has
to be solved forutg. All other quantities of the network
can be calculated from simple linear equations. A proof of
the existence and uniqueness of a solution of the nonlinear
algebraic equations (18) is given in the Appendix A.

C. Torque equation

Starting from the magnetic co-energy of the permeance
network, the electromagnetic torque of the motor is defined
as

τ =
1

2
p

(
uT
tg

∂Gt

∂ϕ
utg + uT

c

∂Gc

∂ϕ
uc

)
, (19)

with the numberp of pole pairs, see, e.g., [2]. With the help
of (14b) this equation can be reformulated in the form

τ =
1

2
p

(
uT
tg

∂Gt

∂ϕ
utg + uT

t D
∂Gc

∂ϕ
DTut

)
, (20)

with uT
t =

[
uT
tc,u

T
tm,uT

tg

]
.

D. Voltage equation

The mathematical model (18) and (20) allows for a calcu-
lation of the magnetomotive forces, fluxes and the torque for
given currentsic. This model is useful for a static analysis of
the motor. In a dynamical analysis, however, the coil voltages
vc must be used as inputs. This relation is provided by
Faraday’s law

dψc

dt
= Rcic − vc, (21)

with the flux linkage ψc = Ncφtc, the winding ma-
trix Nc = diag [Nc, Nc, Nc], the electric resistance matrix
Rc = diag [Rc, Rc, Rc] and the electric voltagesvc =
[vc1, vc2, vc3]

T . Here, Nc is the number of turns,Rc the
electric resistance andvcj the voltage of the respective coil
j = 1, 2, 3. Eq. (21) links the fluxesφtc of the coils with their
currentsic. Thus, eitherφtc has to be defined as a function of
ic or vice versa. For nonlinear permeance networks, it proves
to be advantageous to express the coil currentsic as functions
of the fluxes by reformulating (18) in the form



DcGcD

T
c 0 DcGcD

T
g

DmGcD
T
c I DmGcD

T
g

DgGcD
T
c 0 Gt +DgGcD

T
g




︸ ︷︷ ︸
K1



utc

φtm

utg




︸ ︷︷ ︸
x

=

−



φtc

0
0




︸ ︷︷ ︸
M1

−DGcD
T
mutm︸ ︷︷ ︸

M2

.

(22)
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This means that the dynamical model of the motor is given
by a set of nonlinear differential-algebraic equations (DAE),
i.e. (21) and (22). Now, the following questions arise:

1) Do the state variables of (21) represent the minimum
number of states or is it possible to reduce the number
of states?

2) Does the nonlinear set of equations (22) have a unique
solution?

3) How can the electric interconnection of the coils (e.g.
delta or wye connection) be systematically taken into
account?

To answer the first two questions consider the matrixK1

of (22). Using the results of Appendix A, it turns out that
K1 is singular if the rows ofDc are linearly dependent.
Let us assume thatDc ∈ Rm×n, m < n has m⊥ linear
dependent rows. Then, the column spaceDI

c = span (Dc)
has dimensionm − m⊥ and the orthogonal complement
D⊥

c = span
(
a ∈ Rm|aTb = 0, ∀b ∈ DI

c

)
has dimension

m⊥. Let DI
c be a matrix composed ofm−m⊥ independent

vectors ofDI
c (i.e. the image ofDc) andD⊥

c be composed of
m⊥ independent vectors ofD⊥

c (i.e. the kernel ofDT
c ). Then,(

D⊥
c

)T
Dc = 0 holds and the nonsingular matrix

T1 =



T1c 0 0
0 I 0
0 0 I


 (23)

with

T1c =

[(
D⊥

c

)T
(
DI

c

)T

]
(24)

can be defined. Applying the transformation matrixT1 in the
form

T1K1T
−1
1︸ ︷︷ ︸

K2

T1



utc

φtm

utg


 = −T1M1 −T1M2 (25)

results in a matrixK2 with the structure

K2 =

[
0 0
0 K2r

]
, (26)

where the number of zero rows and columns ism⊥. To prove
this statement,K2 is formulated as

K2 =



T1cDcGcD

T
c T

−1
1c 0 T1cDcGcD

T
g

DmGcD
T
c T

−1
1c I DmGcD

T
g

DgGcD
T
c T

−1
1c 0 Gt +DgGcD

T
g


 . (27)

It can be seen that the product

T1cDc =

[
0(

DI
c

)T
Dc

]
(28)

gives m⊥ zero rows. Of course, the right-hand side multi-
plication with an arbitrary matrix does not change the zero
rows. To prove the zero columns inK2, the productDT

c T
−1
1c

is analyzed. The matrixT1c can be written in the form

T1c =




aT1
...

aTm⊥

bT
1
...

bT
m−m⊥




, (29)

where aj ∈ D⊥
c and bj ∈ DI

c . The inverseT−1
1c =

[v1, . . . ,vm⊥ ,w1, . . . ,wm−m⊥ ] has to meetT1cT
−1
1c = I and

therefore

aTj vk = δjk aTj wk = 0 (30a)

bT
j wk = δjk bT

j vk = 0, (30b)

with the Kronecker symbolδjk, holds. Obviously, this means
thatvj ∈ D⊥

c andwj ∈ DI
c . Based on this discussion

DT
c T

−1
1c = [0, ⋆] (31)

holds, where the number of zero columns is equal tom⊥ and
⋆ is a matrix withm−m⊥ non-zero columns. Thus,K2 has
m⊥ zero columns and rows.

The application ofT1 to the vector of unknowns gives

T1



utc

φtm

utg


 =



T1cutc

φtm

utg


 , (32)

the multiplication ofM1 with the transformation matrix results
in

T1



φtc

0
0


 =



T1cφtc

0
0


 (33)

andT1 used in combination withM2 yields

T1DGcD
T
g utm =



T1cDc

Dm

Dg


GcD

T
g utm, (34)

which again hasm⊥ zero rows.
This discussion shows two important results: (i) From (25)

with (32) and (24) it can be seen that the part
(
D⊥

c

)T
utc

of the coil currents cannot be calculated from the permeance
network but has to be defined by the electrical connection
of the coils. Only the part

(
DI

c

)T
utc is determined by the

(reduced) set of nonlinear equations

K2r



(
DI

c

)T
utc

φtm

utg


 = −



(
DI

c

)T
φtc

0
0




−



(
DI

c

)T
Dc

Dm

Dg


GcD

T
g utm.

(35)

(ii) Not the entire part ofφtc is independent but the compo-
nents are restricted to fulfill

(
D⊥

c

)T
φtc = 0. (36)
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This implies that the set of differential equations (21) forthe
flux linkage can be reduced tom−m⊥ differential equations,
where

(
DI

c

)T
φtc is a possible choice of independent states.

Remark 1: To systematically obtain the reduced set of
nonlinear equations from the transformed set of equations (25),
the reduction matrixH1,

H1 =



H1r 0 0
0 I 0
0 0 I


 , (37)

H1H
T
1 = I with H1r = [0, I] ∈ R(m−m⊥)×m, is introduced.

Multiplying (25) with H1 from the left side directly yields the
reduced equations

H1K2H
T
1︸ ︷︷ ︸

K2r



H1rT1cutc

φtm

utg


 = −



H1rT1cφtc

0
0


−H1T1M2

(38)

with

K2r =



H1rT1cDcGcD

T
c T

−1
1c H

T
1r 0 H1rT1cDcGcD

T
g

DmGcD
T
c T

−1
1c H

T
1r I DmGcD

T
g

DgGcD
T
c T

−1
1c H

T
1r 0 Gt +DgGcD

T
g




(39)

and the new vector of unknowns

H1T1



utc

φtm

utg


 =



H1rT1cutc

φtm

utg


 . (40)

In a further step, the electrical connection of the coils will
be considered by means of the interconnection matrixVc, i.e.

utc = Vcūtc. (41)

Here,ūtc corresponds to the independent currents of the coils.
Using e.g. a wye connection of the three coils, the constraint
reads asic1 + ic2 + ic3 = 0, which can be accounted for by
the interconnection matrix


ic1
ic2
ic3


 =




1 0
0 1
−1 −1



[
ic1
ic2

]
. (42)

Thus, ūtc = Nc [ic1, ic2]
T has been chosen as the vector of

independent currents. Replacingutc by (41) in the reduced
vector of unknowns (40) results in


H1rT1cutc

φtm

utg


 =



H1rT1cVcūtc

φtm

utg


 . (43)

If the matrix H1rT1cVc is nonsingular,̄utc can be used as
the new vector of independent unknown coil currents and no
further action is necessary. In cases where the matrix is not
square, the resulting nonlinear set of equations is overdeter-
mined, i.e. there are more equations than unknowns. This can
directly be seen by calculating the left-hand side of the reduced
set of equations (38) in the formK3

[
ūT
tc,φ

T
tm,uT

tg

]T
, with

K3 given by

K3 =



S11 0 H1rT1cDcGcD

T
g

S21 I DmGcD
T
g

S31 0 Gt +DgGcD
T
g


 , (44)

where

S11 = H1rT1cDcGcD
T
c T

−1
1c H

T
1rH1rT1cVc (45a)

S21 = DmGcD
T
c T

−1
1c H

T
1rH1rT1cVc (45b)

S31 = DgGcD
T
c T

−1
1c H

T
1rH1rT1cVc. (45c)

Under the previous assumption thatH1rT1cVc is not square,
the matrixK3 has more rows than columns, which implies that
not all components of the reduced flux vectorH1rT1cφtc in
(38) can be arbitrarily assigned and therefore used as state
variables in (21). Thus, a part of the reduced flux vector has
to be added to the vector of unknowns. Let us assume that
the upper-left entryS11 of K3 hasn⊥ dependent rows. The
transformationT2 =

[
S⊥
11,S

I
11

]
, whereSI

11 is the column
space ofS11 andS⊥

11 is the orthogonal complement toSI
11, is

used to introduce a transformed vectorφ̃tc in the form

T2φ̃tc =


S⊥

11 [I,0]︸︷︷︸
H3r

+SI
11 [0, I]︸︷︷︸

H4r


 φ̃tc = H1rT1cφtc. (46)

It can be seen that adding the firstn⊥ elements ofφ̃tc to the
vector of unknowns results in a set of nonlinear equations with
a unique solution. To do so, (46) is inserted into (38) with (41)
and (44), (45) resulting in

[
S2 K3

]



H3rφ̃tc

ūtc

φtm

utg


 = −



SI
11H4rφ̃tc

0
0


−H1T1M2,

(47)

with S2 =
[(
S⊥
11

)T
,0,0

]T
. Obviously,H3rφ̃tc is obtained as

a solution of (47) andH4rφ̃tc has to be used as independent
state in the dynamical equation (see (21), (38) and (41))

d

dt
H4rφ̃tc = H4rT

−1
2 H1rT1cN

−1
c

(
RcN

−1
c Vcūtc − vc

)
.

(48)

As a result of this modeling framework we get the DAE system
(47), (48) which is of minimal dimension and systematically
accounts for the electric interconnection of the coils.

E. Simulation results

To evaluate the behavior of the PSM, simulations of the
mathematical model were performed. In a first step, the torque
and the magnetomotive forces for fixed currents were investi-
gated using (18) and (20). Fig. 4(a) shows the cogging torque,
i.e. the torque for zero currentsicj = 0, j = 1, 2, 3. It can
be seen that a pronounced cogging torque with a periodicity
of 15◦ is present in the motor. The results given in Fig. 2(b)-
(d) were obtained for−ic2 = ic3 = 2.5 A, ic1 = 0 A, which
approximately corresponds to the nominal value. A closer look
at the torque in Fig. 4(b) shows that the characteristics of the
torque is far from being sinusoidal, which would be expected
for an ideal PSM. The magnetomotive forces in the stator
teeth and yoke depicted in Fig. 4(c)-(d) further reveal thatthe
magnetomotive forces in the yoke are much smaller than for
the teeth.
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Fig. 4. Simulation results of the complete model (a) for zerocurrents and
(b)-(d) for −ic2 = ic3 = 2.5 A, ic1 = 0 A.

This fact gives rise to the development of a simplified
permeance network, which covers the essential effects of the
complete model. A simplified model of reduced dimension and
complexity is especially desirable for a prospective controller
design. Thus, the following simplifications will be made: (i)
The permeancesGs12, Gs23 andGs31 of the stator yoke are
neglected, i.e. set to∞. (ii) Simulations show that the fluxes
in the radial rotor bars are very small compared to the fluxes in
the rest of the motor. Thus, the simplificationGb1 = Gb2 = 0
is used. (iii) With the last simplification, the circumferential
rotor bars and the centre of the rotor can be modeled by a
single equivalent permeanceGb andGr, respectively.

In the subsequent section, the simplified model will be
presented in more detail. A comparison of simulation results
of the complete with the reduced model will justify the
simplifying assumptions being made.

III. R EDUCED MODEL

A. Permeance network

Fig. 5 shows the reduced permeance network. Therein, the
effective permeances of the circumferential bars and the center
of the rotor are given by

Gb =
Abcµ0µr

(
|ub|
2lbc

)

lbc
(49a)

Gr =
Arµ0µr

(
|ur|
2lr

)

lr
, (49b)

while all other components remain the same as for the com-
plete model.

Given the tree in Fig. 5, the flux vector of the tree perme-
ancesφtg reads as

φtg = [φs1, φs2, φs3, φb, φm1, φm2, φa11]
T (50)

and the vector of the co-tree fluxes is given by

φc = [φr, φl12, φl23, φl31, φa12, φa21, φa22, φa31, φa32]
T
.

(51)

The magnetomotive forces are defined accordingly and the
remaining fluxes and magnetomotive forces are equal to the
complete model. The permeance matrices of the tree and co-
tree reduce to

Gt = diag [Gs1, Gs2, Gs3, Gb, Gm1, Gm2, Ga11] (52a)

Gc = diag [Gr, Gl12, Gl23, Gl31, Ga12,

Ga21, Ga22, Ga31, Ga32]
(52b)
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Fig. 5. Reduced permeance network of the PSM.

and the components of the incidence matrix read as

Dc =



0 1 0 −1 0 −1 −1 −1 −1
0 −1 1 0 0 1 1 0 0
0 0 −1 1 0 0 0 1 1




(53a)

Dm =

[
−1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

]
(53b)

Dg =




0 −1 0 1 0 1 1 1 1
0 1 −1 0 0 −1 −1 0 0
0 0 1 −1 0 0 0 −1 −1
−1 0 0 0 1 0 1 0 1
1 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0
0 0 0 0 −1 −1 −1 −1 −1




.

(53c)

The balance and the torque equations are defined equally to
the complete model and are, therefore, not repeated here. In
the subsequent section, however, the derivation of the voltage
equations according to Section II-D is carried out for the
reduced model.

B. Voltage equation

Following (22) the vector of unknownsx and the right-hand
sideM1 for the reduced permeance network of 5 are given

by

x = [ucs1, ucs2, ucs3, φms1, φms2, us1, us2, us3,

ub, um1, um2, ua11]
T (54a)

M1 = [φcs1, φcs2, φcs3, 0, 0, 0, 0, 0, 0, 0, 0, 0]
T . (54b)

The column spaceDI
c of Dc from (53a) reads as

DI
c =




1 0
0 1
−1 −1


 (55)

with the orthogonal complementD⊥
c = [1, 1, 1]

T . Thus, the
transformation matrixT1c according to (24) is given by

T1c =



1 1 1
1 0 −1
0 1 −1


 , (56)

and the matrixH1r, see (37) reads as

H1r =

[
0 1 0
0 0 1

]
. (57)

The linear combination of coil currents which can be calcu-
lated from the set of equations are defined by

H1rT1cutc =

[
ucs1 − ucs3

ucs2 − ucs3

]
(58)

and the sum of the currents
(
D⊥

c

)T
utc = ucs1 + ucs2+ ucs3,

see (36), cannot be deduced from the permeance network. This
is immediately clear, since applying the same current to all
three coils does not change the fluxes in the machine.

The vector of independent coil fluxes is then given by

H1rT1cφtc =

[
φcs1 − φcs3

φcs2 − φcs3

]
(59)

and the constraint
(
D⊥

c

)T
φtc = φcs1 + φcs2 + φcs3 = 0 has

to be met.

vc1

vc2

vc3

va

vb vc

ic1

ic2

ic3

ia

ib ic

Fig. 6. Electrical connection of the motor coils (delta).

The coils of the motor are connected in delta connection, see
Fig. 6, which does not directly imply an additional constraint
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on the currents. The electric voltages, however, have to meet
vc1 + vc2 + vc3 = 0. Using this constraint in the ode

Nc
d

dt
(φcs1 + φcs2 + φcs3) = −Rc (ic1 + ic2 + ic3)

+ vc1 + vc2 + vc3,
(60)

ic1+ ic2+ ic3 = 0 can be directly deduced. Finally, the set of
independent differential equations is given by

Nc
d

dt
(φcs1 − φcs3) = −Rc (ic1 − ic3) + vc1 − vc3 (61a)

Nc
d

dt
(φcs2 − φcs3) = −Rc (ic2 − ic3) + vc2 − vc3. (61b)

Remark 2: Note that the electrical interconnection of the
coils does not have to be considered sinceH1rT1cVc = I,
with

Vc =
1

3




2 −1
−1 2
−1 −1


 (62)

and ūtc = Nc [ic1 − ic3, ic2 − ic3]
T .

C. Comparison with complete model and measurements

To prove that the reduced model captures the essential
behavior of the complete model with sufficient accuracy, a
comparison of the torques for zero current (see Fig. 7(a))
and for −ic2 = ic3 = 2.5 A, ic1 = 0 A (see Fig.
7(b)) is given. It can be seen that almost perfect agreement
between the two models can be achieved. The comparison of
the magnetomotive forceus3 in Fig.7(c) shows some minor
differences between the complete and reduced model, which,
however, do not significantly influence the torque. Therefore,
the simplifications of the reduced model can be considered
feasible.

For the evaluation of the model quality in comparison with
the behavior of the real motor, measurements at a test bench
were performed. The test bench given in Fig. 8 is composed
of (i) the PSM, (ii) a torque measurement shaft, (iii) a highly
accurate resolver, (iv) an inertia disk and (v) a harmonic drive.
The PSM is connected to a voltage source, where the terminal
voltagevc is adjusted to obtain a desired currentic while the
terminal voltagesva and vb are set to zero, see Fig. 6. To
measure the torqueτ as a function of the angleϕ, the PSM
is driven by a harmonic drive motor at a constant rotational
speed ofn = 2 rpm.

Fig. 9 depicts a comparison of the measured and simulated
torque of the PSM. It can be seen that a rather good agreement
between measurement and reduced model is given, which is
remarkable, since the model has only been parameterized by
means of geometrical and nominal material parameters.

The reduced model, however, is not accurate enough for a
high precision control strategy. Therefore, the next section is
concerned with the calibration of certain model parametersto
further improve the model accuracy.
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Fig. 7. Comparison of the complete with the reduced model (a)for zero
currents and (b)-(c) for−ic2 = ic3 = 2.5 A, ic1 = 0 A.
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Fig. 8. Test bench for the PSM.
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Fig. 9. Comparison of the reduced model with measurements (a) for zero
currents, (b) for−ic2 = ic3 = 2.5 A, ic1 = 0 A and (c) for−ic2 = ic3 =
7.5 A, ic1 = 0 A.

IV. M ODEL CALIBRATION

The main reason for the model errors are the inaccuracies
in the air gap permeancesGajk. Thus, the following strategy
is introduced for the identification of the air gap permeances:

(i) The torque is measured for fixed currentsics1 = 0,
−ics2 = ics3 = ics and a fixed step size in the angle
∆ϕ, resulting in a measurement vectorτkm, k = 1, . . . , Nϕ

with the corresponding anglesϕk = k∆ϕ, the number of
measurementsNϕ and∆ϕNϕ = π/2.

(ii) It is assumed thatGa = Ga,nom+∆Ga, with the nomi-
nal valueGa,nom and the corrective term∆Ga to be identified.
Of course, the corrective term has to meet the symmetry con-
dition (8), ∆Galm = ∆Ga (ϕ− (l − 1)π/6− (m− 1)π/4),
l = 1, 2, 3 andm = 1, 2. For fixed anglesϕk the correspond-
ing values are given by∆Gγlm

alm, where the indexγlm is defined

as

γlm = mod

(
k − (l − 1)

Nϕ

3
− (m− 1)

Nϕ

2
− 1, Nϕ

)
+ 1.

(63)

(iii) For each angleϕk, the relation
(
Gt +DgGcD

T
g

)
uk
tg = −DgGc

(
DT

c utc +DT
mutm

)
(64)

with Gt(ϕ
k,uk

tg) andGc(ϕ
k,uk

tg) has to be fulfilled, see (18).
(iv) The derivation∂∆Ga/∂ϕ, needed for the calculation

of the torque, see (20), is approximated by

∂∆Ga

∂ϕ

∣∣∣∣
ϕk+∆ϕ

2

=
∆Gk+1

a −∆Gk
a

∆ϕ
. (65)

The corresponding magnetomotive forces of the air gap also
have to be evaluated atϕk +∆ϕ/2. Since they are calculated
from (64) at the anglesϕk, these values are obtained by
averaging the magnetomotive forces at the anglesϕk and
ϕk+1, i.e.

ualm|ϕk+∆ϕ
2

=
uk+1
alm + uk

alm

2
, (66)

with l = 1, 2, 3 andm = 1, 2.
With these prerequisites,Nϕ torque equations in the form

τk = τkm and 7Nϕ nonlinear equations defined by (64), are
given. TheNϕ unknown values of∆Gk

a and the7Nϕ unknown
vectorsuk

tg are given as the solution of this set of equations.
This solution is found numerically using e.g. MATLAB and
results in the desired corrective term∆Gk

a as a function ofϕ.
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Fig. 10. Comparison of the identified and the nominal air gap permeance
Ga (ϕ).

Fig. 10 shows a comparison of the nominal air gap per-
meanceGa (ϕ) model adopted from [2] with the identified
values, where measurements with fixed currentsics1 = 0,
−ics2 = ics3 = ics = 5 A were used for the identification.
It can be seen that the basic shape is equal to the nominal
characteristics, only the maximum value is reduced and the
transition phase is slightly changed. The identified shape
seems to be reasonable since the changes might account for
unmodeled leakages.
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Fig. 11. Comparison of the torque of the calibrated model with measurements
(a) for zero currents, (b) for−ic2 = ic3 = 2.5 A, ic1 = 0 A and (c) for
−ic2 = ic3 = 7.5 A, ic1 = 0 A.

In Fig. 11, the torque of the calibrated model is compared
with measurement results. These results show a significant
improvement to the uncalibrated model in Fig. 9 and a very
good agreement in the complete operating range of the motor.
Thus, it can be deduced that both the inhomogeneous air gap
as well as saturation in the motor are adequately represented
by the proposed model. It is worth noting that an even better
agreement between measurement and model could be achieved
for the cogging torque if the calibration would have been
performed at a lower current, e.g.ics = 2.5 A. Then, however,
the results for high currents would be worse such that the
presented results are a good compromise between the accuracy
for low and high currents.

The comparison of the induced voltagesvcsj , j = 1, 2, 3 for
a fixed angular velocity of120 rad/s given in Fig. 12 further
confirm the high accuracy of the proposed model.
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Fig. 12. Comparison of the induced voltages of the calibrated model with
measurements forω = 120 rad/s.

In conclusion, it was shown that a calibrated permeance
model in form of a state-space representation with minimum
number of states is suitable for the accurate description of
the behavior of the motor in the complete operating range. In
the subsequent section, a classical dq0-model of the motor,
as it is typically employed in the controller design of PSM,
will be derived. To do so, first a magnetically linear model
is extracted from the nonlinear reduced model. It will be
shown that the simplifications associated with the magnetically
linear and especially with the dq0-model result in rather large
deviations from the measurement results. This also implies
that a controller design based on dq0-models is not able to
exploit the full performance of model based nonlinear control
strategies.

V. SIMPLIFIED MODELS

A. Magnetically linear model

If it is assumed that the relativ permeabilityµr of all
permeances is constant, then a magnetically linear permeance
model is obtained. Starting from (18) (of course using the
incidence matrixD and the tree and co-tree magnetomotive
forces and fluxes of the reduced model of Section III), the
magnetomotive forcesutg of the tree permeances can be
calculated in the form

utg = −
(
Gt +DgGcD

T
g

)−1
DgGc

(
DT

c utc +DT
mutm

)

(67)

and the coil fluxesφtc read as, see (17)

φtc = −Dc

[
Gc −GcD

T
g

(
Gt +DgGcD

T
g

)−1
DgGc

]

(
DT

c utc +DT
mutm

)
.

(68)

Thus, the coil fluxes are given in the form of a superposition of
the flux due to the coil currentsutc = Ncic and the permanent
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magnetsutm. Inserting (68) into the voltage equation (21), we
get for the left-hand side

Nc
d

dt
φtc = Nc

∂φtc

∂ϕ︸ ︷︷ ︸
J

ω +Nc
∂φtc

∂ic︸ ︷︷ ︸
L

d

dt
ic. (69)

The (symmetric) inductance matrixL can be formulated as

L = −N2
cDc

[
Gc −GcD

T
g

(
Gt +DgGcD

T
g

)−1
DgGc

]
DT

c

(70)

and the vectorJ reads as

J = −NcDcTJ

(
DT

c utc +DT
mutm

)
(71)

with

TJ =

[
∂Gc

∂ϕ
− ∂Gc

∂ϕ
DT

g H5DgGc −GcD
T
g H5Dg

∂Gc

∂ϕ

+ GcD
T
g H5

(
∂Gt

∂ϕ
+Dg

∂Gc

∂ϕ
DT

g

)
H5DgGc

]

(72)

and

H5 =
(
Gt +DgGcD

T
g

)−1
. (73)

Given these results, the voltage equation (21) can be formu-
lated in the well-known form

L (ϕ)
d

dt
ic = −J (ϕ)ω +Rcic − vc. (74)

Note that the inductance matrixL and the vectorJ are both
nonlinear functions of the rotor angleϕ. According to (20),
the torqueτ of the motor in the magnetic linear case is given
by

τ =
1

2
puT

tcDcTJD
T
c utc

︸ ︷︷ ︸
τr

+
1

2
puT

tmDmTJD
T
mutm

︸ ︷︷ ︸
τc

+ puT
tmDmTJD

T
c utc︸ ︷︷ ︸

τp

.
(75)

Here, three different parts can be distinguished: (i) For zero
coil currents, i.e.utc = 0, the remaining partτc represents
the cogging torque of the motor. (ii) Excluding the permanent
magnets of the motor, i.e. settingutm = 0, only the reluctance
torqueτr due to the inhomogeneous air gap is present. (iii)
The partτp represents the main part of the torque. It is the only
part which can be found in an ideal PSM with a homogenous
air gap.

B. Fundamental wave model

The magnetically linear model of the previous section still
covers the complete nonlinearity due to the air gap perme-
ances. In this subsection, a further simplification is made,
where only the average values and the fundamental wave
components of the corresponding parts are considered.

Applying this approach to (70), the inductance matrix is
given by

L =




Lm − 1
2Lm − 1

2Lm

− 1
2Lm Lm − 1

2Lm

− 1
2Lm − 1

2Lm Lm


 , (76)

with the constant main inductanceLm. The termJ reduces to

J (ϕ) = Ĵ




sin (pϕ)
sin

(
pϕ− 2

3π
)

sin
(
pϕ− 4

3π
)


 (77)

and the torque can be formulated asτ = puT
tmMcm (ϕ)utc,

whereMcm (ϕ) reads as

M̂

[
sin (pϕ) sin

(
pϕ− 2π

3

)
sin

(
pϕ− 4π

3

)

− sin (pϕ) − sin
(
pϕ− 2π

3

)
− sin

(
pϕ− 4π

3

)
]
.

(78)

The coefficientsLm, Ĵ andM̂ can be obtained e.g. by a fourier
analysis of the corresponding entries of the magnetically
linear model. Fig. 13 shows a comparison of the entries of
the inductance matrixL, the vectorJ and the matrixMcm

between the magnetically linear model and the fundamental
wave model. It can be seen that a rather good approximation
of the magnetically linear model can be obtained by means of
the fundamental wave model.

The well-known dq0-representation of the fundamental
wave model can be found by using the transformations



id
iq
i0


 = K (ϕ)



ic1
ic2
ic3


 ,



vd
vq
v0


 = K (ϕ)



vc1
vc2
vc3


 (79)

with the transformation matrixK (ϕ),

K (ϕ) =



cos (pϕ) cos

(
pϕ− 2π

3

)
cos

(
pϕ− 4π

3

)

sin (pϕ) sin
(
pϕ− 2π

3

)
sin

(
pϕ− 4π

3

)
1
2

1
2

1
2


 .

(80)

Then, the dq0-model takes the form

d

dt
id =

2

3

1

Lm

(
−3

2
Lmpωiq +Rcid − vd

)
(81a)

d

dt
iq =

2

3

1

Lm

(
3

2
Lmpωid −

3

2
Ĵω +Rciq − vq

)
(81b)

and the torque is given by

τ = 2pM̂ums1Nciq. (82)

C. Comparison of the models

Up to now three models of different complexity, i.e. a
magnetically nonlinear model, a magnetically linear and a
fundamental wave model, were presented in this paper. In this
section, the torqueτ calculated by these models is compared
with measurement results, see Fig. 14.

The results for zero current (Fig. 14(a)) show that the
cogging torque can be reproduced rather well by the nonlinear
model. Even the magnetically linear model shows the basic
behavior of the cogging torque, however, with larger errors
compared to the nonlinear model. As a matter of fact, it is not
possible to reproduce the cogging torque with the fundamental
wave model. Thus, this model gives the worst results as it was,
of course, expected.

For nominal and high currents depicted in Fig. 14(b) and
(c), respectively, this result is confirmed. Again the nonlinear
model gives excellent agreement with the measurements while
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Fig. 13. (a) EntryL11 of the inductance matrixL, (b) J1 of the vector
J and (c)Mcm,11 of the matrixMcm for the magnetically linear and the
fundamental wave model.

the performance of the magnetically linear model degrades
with increasing currents. This results from the fact that satu-
ration is not included in the magnetically linear model. The
basic shape is, however, much better reproduced than in the
fundamental wave model.

This brief comparison shows that a controller designed
using a fundamental wave model cannot systematically ac-
count for the cogging torque and saturation. Using instead the
nonlinear model for a controller design it can be expected
that the control performance is superior to controllers based
on fundamental wave models. The obvious drawback of the
nonlinear model is the increased complexity of the resulting
control strategy. Here, the magnetically linear model might
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Fig. 14. Comparison of the measurement results with the nonlinear, the
magnetically linear and the fundamental wave model for (a) for zero currents,
(b) −ic2 = ic3 = 2.5 A, ic1 = 0 A and (c) for−ic2 = ic3 = 7.5 A,
ic1 = 0 A.

be a good compromise between model complexity and model
accuracy for the controller design and will yield significant
improvements in comparison to fundamental wave models.

VI. CONCLUSION

A systematical modeling framework for PSM with internal
magnets was outlined in this paper. Different to existing works,
the balance equations were derived based on graph-theory,
which allows for a systematic calculation of the minimum
number of nonlinear equations. Further, the choice of a suitable
state and the systematic consideration of the electrical connec-
tion of the coils were discussed. The quality of the calibrated
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model was shown by a comparison with measurement results.
Finally, a magnetically linear and a dq0-model have been
derived and compared with the nonlinear model.

Future work will deal with the application of the methodol-
ogy to other motor designs as, e.g. PSM with surface magnets,
reluctance machines or asynchronous machines. Moreover, the
use of the models derived in this work for nonlinear and
optimal controller design is an ongoing topic of research.
Here, first results show a high potential of the modeling
approach and a significant improvement in comparison to
control strategies using classical dq0-models.

APPENDIX A
EXISTENCE AND UNIQUENESS OF SOLUTION

The set of nonlinear equations in (18) has to be solved
numerically. Thus, it is interesting to examine if a solution
exists and if it is unique. The matricesGt andGc are positive
semi-definite matrices for allutg andϕ. This can be easily
seen since the entries of these diagonal matrices are positive
except for the air gap permeances, which can become zero
for certain anglesϕ. Moreover, a suitable construction of the
permeance network ensures thatDg has independent rows
such thatDgGcD

T
g is also positive semi-definite. To show

that the sum of this term withGt is even positive definite,
consider the vectorx which fulfills

xTGtx = 0. (83)

The only possible solutionx of (83) is equal tox =
[0, . . . , α]

T , α ∈ R. It is then rather simple to show that

xTDgGcD
T
g x > 0, ∀utg, ϕ, (84)

which implies thatF = Gt + DgGcD
T
g is positive definite.

In the magnetic linear case, the permeances are independent
of the magnetomotive force and therefore, the positive defi-
niteness ofF is sufficient for the existence and uniqueness of
a solution of (18). In the nonlinear case, however, it has to be
shown the Jacobian ofF(utg, ϕ)utg is positive definite, see,
e.g., [39]. The Jacobian can be written in the form

F+

n∑

j=1

∂F

∂utg,j
utg, (85)

whereutg,j describes thej-th entry ofutg. Using the fact that

µr(H) +H
∂µr(H)

∂H
> 0 (86)

holds, it can be shown that the Jacobian (85) indeed is positive
definite for allutg andϕ. It can be further shown that

lim
‖utg‖→∞

‖F (utg)utg‖ = ∞ (87)

holds, which implies that there exists a unique solution of the
set of nonlinear equations (18), see [39].
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