Optimal Torque Control of Permanent Magnet Synchronous Machines Using Magnetic Equivalent Circuits

Wolfgang Kemmetmüller, David Faustner, Andreas Kugi

Abstract

In recent years, permanent magnet synchronous machines (PSMs) are often designed in a mechatronic way to obtain e.g., special torque characteristics at zero currents or maximum efficiency. These designs are often characterized by a pronounced magnetic saturation and non-sinusoidal properties. This paper describes the optimal torque control of such PSMs utilizing a magnetic equivalent circuit (MEC) model. In contrast to approaches based on fundamental wave models (dq0-models), which utilize the Blondel-Park transformation and typically consider saturation and non-sinusoidal characteristics only in a heuristic way, MEC models allow to systematically account for these effects. Given the MEC model, optimal values for the coil currents are obtained from a constrained, nonlinear optimization problem, which can be efficiently solved by exploiting the special mathematical structure of the model. The results of the optimization are used in a flatness-based torque control strategy. The performance and practical feasibility of the proposed torque control concept are demonstrated by experiments on a test stand. Finally, it is shown that using this torque control in an outer angular speed control loop also proves to be beneficial.

Keywords: Optimal torque control, magnetic equivalent circuit, permanent magnet synchronous motor, flatness based control

1. Introduction

The accurate control of the torque is essential in many applications of permanent magnet synchronous machines (PSMs), which makes this topic an active field of research in recent years. The industrial standard to control PSMs is field oriented control (FOC), which is based on a fundamental wave model and the application of the Blondel-Park transformation, see, e.g., [1, 2]. A number of research papers have discussed the development of advanced (non-linear) control strategies based on this model. E.g., [3–5] propose exact feedback linearization, [6–8] use backstepping control and passivity based methods are applied in [9–11] to the control of PSMs. Furthermore, sliding mode control is examined in [12–14], model predictive control is used in [15–17] and direct torque control concepts can be found in [18–20]. These control strategies in general exhibit a good performance for PSMs and operating regions, which can be accurately described by a (mathematically linear) fundamental wave model (dq0-model).

For applications with high demands on torque, speed or position accuracy, it happens more often in recent years that motor designs are employed which do not satisfy the assumptions that have to be made for the derivation of classical dq0-models. In particular, fractional slot concentrated windings and rotors with interior permanent magnets are preferred by industry due to the simpler and cheaper construction. Moreover, to shape the torque characteristics especially for zero currents, inhomogeneous air gap geometries are frequently used in a mechatronic design approach. These constructions often yield pronounced non-sinusoidal (non-fundamental wave) characteristics of the back-emf and the inductances of the motor. Moreover, PSMs are often operated in a region, where significant saturation of the iron parts occurs.

Heuristic extensions of the dq0-model are typically proposed in literature to account for saturation and non-fundamental wave characteristics. E.g., the control strategies in [21–31] are based on an extension of the dq0-model by higher harmonics in the back-emf, the inductances or the resulting torque. In these works, however, the influence of saturation and the resulting cogging or reluctance torque are not considered. Saturation is again incorporated into the dq0-model in a heuristic manner, see, e.g., [32–37].

The limitations of these approaches clearly result from the underlying dq0-model such that a more rigorous modeling approach is preferable. A magnetic equivalent circuit approach was described in [38, 39] for the modeling of PSMs with internal or surface mounted magnets. It was shown that an accurate description of the behavior of PSMs with non-fundamental wave characteristics and significant saturation can be achieved with this approach. Since the resulting models feature a limited model com-
plexity, these models can be considered a good basis for the controller design.

In this work, the optimal torque control of PSMs which show both significant magnetic saturation and non-sinusoidal characteristics is considered. As a test case, a PSM with interior permanent magnets is used, which was designed for a rear steering system of a car. In this application, a motion of the PSM has to be prevented in case of a failure of the power electronics. This is achieved by designing an inhomogeneous air gap geometry which results in a large cogging torque. This in turn prevents undesired rotation of the motor at zero currents. However, the significant non-sinusoidal behavior and saturation complicates the accurate torque control of such PSMs. The corresponding mathematical model is described in [38], which will serve as a basis for the controller design. The control strategy is based on the solution of a nonlinear, constrained optimization problem in combination with a flatness-based feedback control. In [40], also the optimal torque control of a PSM, which exhibits significant saturation, based on an MEC model is considered. For this surface magnet PSM it is, however, possible to accurately approximate the characteristic quantities like the flux linkage of the coils by means of fundamental wave components, with only their amplitudes and phase angles being nonlinear functions of the coil currents. It is demonstrated in [40] how the fundamental wave characteristics can be beneficially utilized to solve the resulting optimal control problem. The present work deals with the more general case containing both magnetic saturation and non-fundamental wave characteristics.

The paper is organized as follows: The mathematical model of [38] is briefly summarized in Section 2. In Section 3, the calculation of optimal currents is described, which is used in the flatness based control strategy outlined in Section 4. Measurement results of a test stand presented in Section 5 demonstrate the good control performance and the practical feasibility of the proposed control strategy. Finally, Section 6 elaborates the benefits of using the optimal torque control strategy in an outer control loop for the angular speed.

2. Mathematical Model

In [38], a general framework for the mathematical modeling of permanent magnet synchronous machines based on a magnetic equivalent circuit approach was derived. This approach was successfully applied to the modeling of both a surface-mounted PSM [39] and a PSM with internal magnets [38]. In this work, the same motor as in [38] will be used and therefore, the mathematical model derived in [38] serves as the basis for the development of the optimal torque control strategy.

The considered PSM with internal magnets comprises 12 coils and eight NdFeB-magnets. Figure 1 depicts the cross section of a quarter of the motor. As already briefly discussed in the introduction, the PSM is used in an automotive application, where it is absolutely important that no motion occurs in the case of e.g. a failure of the power electronics. This behavior is achieved by designing an inhomogeneous air gap which yields a large cogging torque, see Fig. 1. Moreover, this design also results in a non-sinusoidal back emf and a significant influence of saturation in the stator and rotor. As shown in [38], the motor can be accurately described by a (magnetically nonlinear) MEC, comprising magneto-motive force (mmf) sources describing the coils and the permanent magnets, and magnetically nonlinear or position dependent permeances describing the stator, the rotor, the air gap and the leakages. The mathematical equations of this MEC are derived using network theory well established in the modeling of electric networks, see, e.g. [41–43]. For this purpose, a tree being composed of elements of the MEC and connecting all nodes of the network without forming a mesh is defined. The choice of this tree is arbitrary except for the fact that all mmf sources of the MEC have to be part of the tree. The remaining elements of the network form the corresponding co-tree of the network. The interconnection of the tree and co-tree elements, i.e. the topology of the MEC, is described by the incidence matrix $D^T = [D^T_s, D^T_m, D^T_q]$, where $D_s = N_c D_c$, with the winding matrix $N_c = \text{diag}[N_s, N_c, N_c]$ and the number N_c of windings per coil. Therein, D_c is the part of the incidence matrix which is related to the coils, D_m is related to the permanent magnets and D_q is related to the permeances of the tree. The permeances of the tree and co-tree are combined in the (diagonal) permeance matrices G_t and G_c, respectively. Both, G_t and G_c, are nonlinear functions of the rotor angle and the corresponding mmfs. The mathematical model of the MEC can then be formulated.

Figure 1: Cross section of the considered PSM [38].
in the form, see [38],
\[
\frac{d}{dt}\psi_i^c = -Rc_i^c I_c + \left(\bar{D}_g^T \right)^T \psi_c^c + \left(\bar{D}_g \right)^T \left(\bar{D}_g \right)^T G_c \left[\begin{array}{l} u_{mg}^c \\ u_{mg}^m \end{array} \right] \tag{1a}
\]
(1b)
\[
0 = \left(\bar{D}_g^T \right)^T \left(\bar{D}_g + \bar{D}_g \right) \left[\psi_c^c \right] + \left(\bar{D}_g \right)^T G_c \left[\begin{array}{l} u_{mg}^c \\ u_{mg}^m \end{array} \right] \tag{2}
\]
with
\[
K = \left(\left(\bar{D}_g \right)^T \left(\bar{D}_g \right) \right)^T G_c \left[\begin{array}{l} \bar{D}_g^T \psi_c^c \\ \bar{D}_g^T \psi_c^c \end{array} \right] + \left(\bar{D}_g \right)^T \left(\bar{D}_g \right)^T G_c \left[\begin{array}{l} u_{mg}^c \\ u_{mg}^m \end{array} \right] \tag{3a}
\]
\[
\psi_i^c \text{ is the vector of independent flux linkages, } i_i^c \text{ is the corresponding vector of independent coil currents and } R_c \text{ is the electrical resistance of a coil. The influence of the coil voltages } v_c \text{ on the flux linkage is described by the matrix } \left(\bar{D}_g \right)^T, \text{ which reflects the magnetic connection of the coils. The set of algebraic equations (1b) describes the independent coil currents } i_i^c \text{ and the mmfs } u_{mg} \text{ of the permeances of the tree of the magnetic network as a function of the flux linkage } \psi_i^c \text{ of the coils and the mmfs } u_{mg}^m = u_{mg}^c - u_{mg}^m \text{ of the permanent magnets, cf. [38]. Finally, } H_i^c \text{ results from the inverse of a transformation matrix } T_{ic}, \text{ which has been used in [38] to eliminate the redundancies of the nonlinear algebraic equations, in the form } T_{ic}^{-1} = \left[H_i^c; H_i^c \right].
\]
The torque produced by the motor is given by
\[
\tau = \frac{1}{2} \rho \left(u_i^c \partial G_c / \partial \phi \right) u_{mg} + \left[\left(H_i^c u_i^c \right)^T, u_{mg}^m, u_{mg}^m \right] \left(\partial G_c / \partial \phi \right) \left[\begin{array}{l} \left(H_i^c u_i^c \right)^T \\ u_{mg}^m \\ u_{mg}^m \end{array} \right] \tag{3b}
\]
with \(p = 4 \) being the number of pole-pairs of the motor.

A detailed derivation of this model and a evaluation of the model accuracy is given in [38], where a slightly different notation is used. It should be noted that the optimal control strategy developed in this manuscript can be applied to any motor construction which can be described by an MEC model of the form (1)-(3).

3. Calculation of optimal coil currents

The main goal of this work is to derive a control strategy which calculates the control inputs \(v_c \), in a way that the torque \(\tau \) tracks a desired torque \(\tau^* \). As an intermediate step to this goal, the currents \(i_i^c \) are determined such that the resulting torque is equal to the desired torque for a given angle \(\phi \) and the copper losses of the motor are minimal. In the following subsections, the calculation of optimal coil currents is discussed for the general magnetically nonlinear case, the magnetically linear case and the geometrically nonlinear case.

3.1. Optimal currents: Magnetically nonlinear case

Calculating optimal currents for the magnetically and geometrically nonlinear case directly leads to a nonlinear optimization problem of the form
\[
\min_{i_i, u_{mg}} \frac{1}{2} \left(i_i^c \right)^T \left(\psi_c^c \right) + \lambda + \mu^T \left(h_i^c \right)^T \tag{4}
\]
subject to the nonlinear equality constraints
\[
g = \left(i_i^c, u_{mg} \right) - \tau^* = 0 \tag{5a}
\]
\[
h = \left[\bar{D}_g \right] \left(\bar{D}_g \right)^T \left[\psi_c^c \right] + \left[\bar{D}_g \right] \left(\bar{D}_g \right)^T \left[\begin{array}{l} u_{mg}^c \\ u_{mg}^m \end{array} \right] = 0, \tag{5b}
\]
with the positive definite matrix \(Q > 0 \). Please note that by means of the constraint (5a) it is ensured that a solution is found which yields the desired torque \(\tau^* \). Moreover, (5b), which results from the second row of (1b), guarantees that the solution is compatible with the MEC-model of the motor.

To solve this optimization problem, the Lagrange function \(\mathcal{L} \) is introduced in the form
\[
\mathcal{L} = \frac{1}{2} \left(i_i^c \right)^T Q_i^c i_i^c + \lambda + \mu^T \left(h_i^c \right)^T, \tag{6}
\]
with the Lagrange multipliers \(\lambda \) and \(\mu \). The first order necessary optimality condition states that the partial derivatives of \(\mathcal{L} \) with respect to \(i_i^c, u_{mg}, \lambda \) and \(\mu \) must be equal to zero. In [44] and [45], a similar approach is chosen for the magnetically linear case, i.e. without taking into account the cogging torque, the reluctance torque and saturation.

The partial derivative of \(\mathcal{L} \) with respect to \(i_i^c \) reads as
\[
\begin{align*}
\left(\frac{\partial \mathcal{L}}{\partial i_i^c} \right)^T &= Q_i^c + \lambda \left(\left(H_i^c \right)^T, 0, 0 \right) \left(\partial G_c / \partial \phi \right) \left[\begin{array}{l} \left(H_i^c u_i^c \right)^T \\ u_{mg}^m \\ u_{mg}^m \end{array} \right] \\
+ \mu \left(\left(H_i^c \right)^T, u_{mg}^m, u_{mg}^m \right) \left(\partial G_c / \partial \phi \right) \left[\begin{array}{l} \left(H_i^c u_i^c \right)^T \\ u_{mg}^m \\ u_{mg}^m \end{array} \right] + \left[\left(H_i^c u_i^c \right)^T, u_{mg}^m, u_{mg}^m \right] \left(\partial G_c / \partial \phi \right) \left[\begin{array}{l} u_{mg}^c \\ u_{mg}^m \end{array} \right] \mu
\end{align*}
\]
and the partial derivative with respect to \(u_{mg} \) can be formulated as given in (8). The partial derivatives with respect to \(\lambda \) and \(\mu \) of course yield the nonlinear equality constraints (5).

The solution of the constrained optimization problem (4), (5) is thus traced back to the solution of a system of nonlinear equations (5), (7) and (8). For a real-time implementation of the optimal control strategy, this set of equations must be solved in each sampling interval with sampling time \(T_s \). Typically, \(T_s \) is in the order of 50 \(\mu \)s to 200 \(\mu \)s according to pulse-width-modulation (pwm) frequencies of 20 kHz to 5 kHz. Thus, high numeric efficiency.
is indispensable for a practical implementation. For this purpose, two assumptions are made, which have proven to be practically feasible: First, the partial derivatives of G_t and G_c with respect to i_t^j and u_{tg} are neglected in (7) and (8). This significantly simplifies the complexity of the set of nonlinear equations to be solved. Second, it is assumed that a good initial guess of the solution at sampling interval k is given by the solution of the previous sampling interval $k-1$. This assumption is obviously valid if the angle ϕ and the desired torque τ^* do not significantly change from one step to the next. The angle ϕ is of course sufficiently smooth due to physics and the desired torque τ^* is defined in sufficiently smooth manner, i.e. step-like desired torques are not considered.

If these prerequisites are met, then the set of nonlinear equations

$$
\left[\begin{array}{c} \frac{\partial L}{\partial \varphi} \vspace{1pt} \\ \frac{\partial L}{\partial u_{tg}} \vspace{1pt} \\ \frac{\partial L}{\partial \phi} \vspace{1pt} \\ \frac{\partial L}{\partial \mu} \end{array} \right] T = \lambda p \left[\begin{array}{c} \partial G_t \partial u_{tg} + [0, 0, I] D \partial G_c \partial u_{tg} D^T \vspace{1pt} \\ \partial G_t \partial u_{tg} + [0, 0, I] I \partial G_c \partial u_{tg} I D^T \vspace{1pt} \\ \partial G_t \partial u_{tg} + [0, 0, I] I \partial G_c \partial u_{tg} I D^T \vspace{1pt} \\ \partial G_t \partial u_{tg} + [0, 0, I] I \partial G_c \partial u_{tg} I D^T \end{array} \right] u_{tm} + \left(G_t + D_g G_c D_g^T \right) \mu
$$

$$
+ \frac{1}{2} \lambda p \left[u_{tg}^T \partial^2 G_t \partial u_{tg} + \left(H_c^j \vspace{1pt} u_{tm} \right) I D^T \vspace{1pt} \right] u_{tg} + \left(G_t + D_g G_c D_g^T \right) \mu
$$

$$(8)$$

Before proceeding with the calculation of the real control inputs, i.e. the voltages v_c, two simplifications frequently used in literature are analyzed from an optimal torque control point of view. First, magnetic saturation is neglected which yields a magnetically linear model. Still the non-sinusoidal flux characteristics is present. Afterwards, by assuming only fundamental wave components, the optimal torque control problem is discussed for the well-known dq-model yielding the well-known results from literature.

3.2. Optimal currents: Magnetically linear case

If the iron is not saturated, then the permeance matrices G_t and G_c are independent of the mmfs and (1b) is a set of linear equations which can be solved analytically for ψ_c^j as a function of i_c^j by using the matrix inversion lemma

$$
\psi_c^j = (D_c^j)^T D_c T_i(\phi) (D_c^j H_c^j i_c^j + D_m^c u_{tm}) ,
$$

with

$$
\psi_c^j = (D_c^j)^T D_c T_i(\phi) (D_c^j H_c^j i_c^j + D_m^c u_{tm}) ,
$$

(11)

Using (11) and (12) in (1a), the transformed coil currents i_c^j are given by

$$
L_c \frac{d}{dt} i_c^j = -\frac{\partial \psi_c^j}{\partial \varphi} \omega - R_c i_c^j + (D_c^j)^T v_c
$$

(13)

with the inductance matrix L_c^j

$$
L_c^j(\phi) = (D_c^j)^T D_c T_i(\phi) D_c^j H_c^j
$$

(14)

which is, as was expected, non-singular. Furthermore, the partial derivative of the flux linkages with respect to φ can be written as

$$
\frac{\partial \psi_c^j}{\partial \varphi} = (D_c^j)^T D_c \frac{\partial T_i}{\partial \varphi} D_c^j H_c^j i_c^j + D_m^c u_{tm})
$$

(15)

The mathematical model in the magnetically linear case is completed by the torque equation

$$
\tau = \frac{1}{2} \mu \left((H_c^j i_c^j)^T u_{tm} \right) \left[D_c^j \frac{\partial T_i}{\partial \varphi} D_c^j u_{tm} \right] \left(H_c^j i_c^j + D_m^c u_{tm} \right)
$$

(16)

The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.
Based on this mathematical model for the magnetically linear case, the optimal independent coil currents can be found by solving the optimization problem

$$\min_{i_1} \frac{1}{2} (i_1^T Q_i^T Q_i i_1)$$

subject to the (nonlinear) scalar equality constraint

$$g = \tau (i_1^T) - \tau^*.$$

Introducing the Lagrange function \(L = 1/2(i_1^T Q_i^T Q_i i_1 + \lambda g) \), the first order necessary optimality conditions take the form

$$\left(\frac{\partial L}{\partial i_1} \right)^T = Q_i^T + \lambda p (H_i^T D_c \partial T_i \left[D_c^T, D_m^T \right] H_i^T i_1) = \tau - \tau^*,$$

which still constitutes a set of nonlinear equations. Thus, again Newton iteration is employed, as proposed in (10) for the general magnetically nonlinear case. The elements of the Jacobian \(J_i \) of (19) read as

$$J_{i_{11}} = Q + \lambda p (H_i^T D_c \partial T_i \left[D_c^T, D_m^T \right] H_i^T i_1),$$

$$J_{i_{12}} = J_{i_{21}} = p (H_i^T D_c \partial T_i \left[D_c^T, D_m^T \right] H_i^T i_1),$$

$$J_{i_{22}} = 0.$$

Thus, the method for the calculation of the optimal currents \(i_1^* \) for a given desired torque \(\tau^* \) in the magnetically linear case is similar to the magnetically nonlinear case but significantly less complex.

3.3. Optimal currents: Fundamental wave case

The inductance matrix \(L_i \) and \(T_i \) in (14) and (12) depend on the angle \(\varphi \). If only fundamental wave components, i.e. components multiplied by \(\sin(p \varphi) \) or \(\cos(p \varphi) \), are considered, then the well-known dq0-transformation (Blondel Park transformation, see, e.g., [1, 2]) can be applied using the transformation matrix \(T_{dq} \)

$$T_{dq}(\varphi) = \begin{bmatrix} \cos(p\varphi) & \cos(p\varphi - \frac{2\pi}{2}) & \cos(p\varphi - \frac{4\pi}{2}) \\ \sin(p\varphi) & \sin(p\varphi - \frac{2\pi}{2}) & \sin(p\varphi - \frac{4\pi}{2}) \end{bmatrix}.$$

The resulting transformed magnetically linear fundamental wave model is given by, see also [1, 2, 38]

$$\frac{di_d}{dt} = \frac{2}{3L_m} \left(\frac{3}{2} L_m p \omega i_q - R_e i_d + v_d \right),$$

$$\frac{d}{dt} i_q = \frac{2}{3L_m} \left(\frac{3}{2} L_m p \omega i_d - \frac{3}{2} J \omega - R_e i_q + v_q \right),$$

with the transformed currents and voltages

$$\begin{bmatrix} i_d \\ i_q \end{bmatrix} = T_{dq} \begin{bmatrix} i_{d1} \\ i_{d2} \\ i_{d3} \end{bmatrix}, \quad \begin{bmatrix} v_d \\ v_q \end{bmatrix} = T_{dq} \begin{bmatrix} v_{d1} \\ v_{d2} \\ v_{d3} \end{bmatrix}$$

and the inductance \(L_m \). Since the electrical interconnection forces \(v_0 = 0 \), the zero component \(i_0 \) also vanishes, i.e. \(i_0 = 0 \). The corresponding transformed torque reads as, cf. [1, 2, 38]

$$\tau = 2pM u_{ms}i_q.$$

The constant coefficients \(L_m, J \) and \(M \) can be obtained from the magnetically linear model (11)-(16), e.g., by applying a Fourier analysis, see, also [38]. The determination of optimal currents for a given desired torque \(\tau^* \) is trivial, since (24) implies \(i_0^* = \tau^*/(2pM u_{ms}i_q) \) and minimal losses are obtained by setting \(i_0^* = 0 \).

3.4. Simulation results

In this section, the optimal currents are evaluated based on the magnetically nonlinear model presented in [38], which was calibrated and validated by measurement results on a test stand. Basically, two major points should be discussed: What is the improvement by using the magnetically nonlinear or the magnetically linear model in comparison to the fundamental wave model typically used in literature? How does the number of Newton iterations \(n_i \) used in (10) influence the accuracy of the optimal solution?

As already shortly discussed in Section 3.1, besides the number of iterations \(n_i \), the quality of the initial guess \(x_0^i \) used in the Newton iteration has an important influence on the accuracy. Obviously, it can be expected that the quality of the initial guess increases if the solution of the nonlinear equations (9) for the magnetically nonlinear case and (19) for the magnetically linear case – only slightly changes from one sampling time \((k-1)T_s\) to the next \(kT_s\). Clearly, the solution of the nonlinear equations changes due to changes in the rotor position \(\varphi \) and the desired torque \(\tau^* \). For the subsequent discussions, it is assumed that the desired torque \(\tau^* \) is chosen constant. Additionally assuming a constant angular speed \(\omega = \dot{\varphi}, \Delta \varphi = \varphi_k - \varphi_{k-1} = \omega T_s \) holds. The largest value of \(\Delta \varphi \) arises at maximum speed \(\omega_{max} \), which is given by \(\omega_{max} = 2\pi 200 \text{rad s}^{-1} \) (1200 rpm). In the subsequent simulation results, an angular speed of 830 rpm is chosen, which corresponds to a typical operating point of 70% of the maximum speed. Using a sampling time \(T_s = 100 \mu s \), this result in \(\Delta \varphi = 0.5^\circ \).

Fig. 2 shows the results of the optimal currents obtained from the magnetically nonlinear model for different values of the desired torque \(\tau^* \) from 0 N m to 3N m, which corresponds to the maximum torque of the motor. In the left column, the three coil currents \(i_{d1}, i_{d2} \) and \(i_{d3} \) are depicted, which result from (10) with (9) for \(n_i = 2 \) iterations. The right column shows the resulting errors \(\tau - \tau^* \).
Figure 2: Optimal currents and torque error $\tau - \tau^*$ for the magnetically nonlinear case for different desired torques τ^*.

The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.
in the torque. It can be seen that the proposed method to calculate the optimal currents for the magnetically nonlinear model results in very small errors in the torque over the entire operating range of the motor. Taking a closer look at the optimal currents also reveals that the motor under consideration shows a significant nonlinear behavior due to magnetic saturation and non-fundamental wave characteristics of the coil fluxes. Especially, the case \(\tau^* = 0 \text{ N m} \) emphasizes the need to actively control the currents in order to suppress the pronounced cogging torque of the motor.

Since the calculation of the optimal currents given in Fig. 2 is based on the same magnetically nonlinear model as was used for the simulations, the torque errors given in Fig. 2 result solely from the non-exact solution of the constrained optimization problem (4), (5). Although two Newton iterations already yield a good accuracy in the torque, in Fig. 3 the influence of the number of iterations \(n_i \) on the accuracy of the torque is examined in more detail. As expected, a higher number of iterations improves the accuracy. For \(n_i = 20 \) almost perfect tracking of the desired torque is achieved. For the practical application, however, a compromise between accuracy and computation time must be found. As it will be shown in the measurement results discussed later on, a number of \(n_i = 2 \) iterations turns out to be a good choice. Since the magnetically linear case is numerically less expensive, a higher number of iterations could be used. However, the errors resulting from the numeric solution of the optimization problem are very small already after 2 iterations such that \(n_i = 2 \) is also a good choice for the magnetically linear case.

Finally, the results given in Fig. 4 show the advantages gained from the usage of the magnetically nonlinear model for the calculation of optimal coil currents. Taking a look at the case \(\tau^* = 0 \text{ N m} \) first, it turns out that the optimal currents obtained from the magnetically nonlinear and the magnetically linear model exhibit a similar behavior. Even though the results of the magnetically nonlinear model show better torque accuracy, the results of the magnetically linear model are still comparably good. This is due to the fact that for the resulting small values of the currents the influence of the magnetic saturation of the core is negligible. The results based on the fundamental wave model (dq0-model), however, are significantly worse. As a matter of fact, it is not possible to systematically include the cogging torque in the dq0-model, which results in \(i_{c1} = i_{c2} = i_{c3} = 0 \) as the optimal values. Then, the resulting torque \(\tau \) is equal to the cogging torque of the motor. The advantages of using the magnetically nonlinear model instead of the magnetically linear model can be recognized for large values of \(\tau^* \). The results for \(\tau^* = 2 \text{ N m} \) in Fig. 4 show that neglecting magnetic saturation entails an error in the torque of approximately 150 mN m.

In conclusion, these first simulation results demonstrate that considering the magnetically nonlinearities in the calculation of the optimal currents yields a significant improvement of the accuracy of the torque in comparison to methods based on a magnetically linear model or the dq0-model.

4. Flatness-based current control

In the previous section, optimal values of the currents \(i^*_d \) have been calculated such that the torque \(\tau \) tracks a desired torque \(\tau^* \) and the copper losses are minimized. These results are the basis for a flatness-based feedforward and feedback control strategy to be developed in this section.

4.1. Magnetically nonlinear case

The solution of the optimization problem (4), (5) results in optimal currents \(i^*_c \) and optimal values \(u^*_m \) of the mmfs of the tree permeances. Considering (1b) with (2), the corresponding optimal values of the flux linkages \(\psi^*_c \) are given by

\[
\psi^*_c = (\bar{D}_i)^T \bar{D}_c G_c \left(\bar{D}_i^T H_i^T i^*_c + D_s^T u^*_m + D_m^T u^*_m \right).
\]

Using this result in (1a), i.e. in

\[
\frac{d}{dt} \psi^*_c = -R_c \dot{i}^*_c + (\bar{D}_i)^T v^*_c,
\]

with \((\bar{D}_i)^T v^*_c = 0 \), yields the feedforward part \(v^*_c \) of the control input \(u_c \) in the form

\[
v^*_c = H_i^T \left(\frac{d}{dt} \psi^*_c + R_c \dot{i}^*_c \right).
\]

The time derivative of the optimal coil flux linkage \(\psi^*_c \) can be calculated from (25)

\[
\frac{d}{dt} \psi^*_c = (\bar{D}_i)^T D_m \frac{\partial G_c}{\partial \psi} \left(\frac{d}{dt} H_i^T i^*_c + D_s^T u^*_m + D_m^T u^*_m \right) \omega.
\]

\[
(28)
\]
where again the partial derivatives of G_c with respect to i^*_c and u_{tg} have been neglected. To obtain the time derivatives of the optimal current i^*_c and the optimal mmf of the tree permeances u^*_{tg}, the first order optimality conditions (9) are utilized. The total time derivative of f_{nl} reads as

$$\frac{df_{nl}}{dt} = J_{nl} \frac{d}{dt} \left[\frac{1}{\mu^*} \right] u_{tg} + \frac{\partial f_{nl}}{\partial \varphi} \frac{d\varphi}{dt} + \frac{\partial f_{nl}}{\partial \tau^*} \frac{d\tau^*}{dt} = 0, \tag{29}$$

with the Jacobian J_{nl} and the partial derivatives $\partial f_{nl}/\partial \varphi$ and $\partial f_{nl}/\partial \tau^*$ summarized in Appendix A. The time derivatives can be easily obtained from this set of linear equations, since J_{nl} is non-singular.

Remark 1. The calculation of $\frac{df_{nl}}{dt}$ as described in (28) and (29) is computationally expensive, even if the Jacobian J_{nl} needed in (29) has already been calculated in the Newton iteration (10). Given the fact that the control strategy is implemented using a fixed sampling time T_s, the approximation

$$\frac{d}{dt}\psi^i_{c}(kT_s) \approx \frac{\psi^i_{c,k} - \psi^i_{c,k-1}}{T_s} \tag{30}$$

can be obtained. Using this approximation in (27) significantly simplifies the calculation of the feedforward control part and is therefore preferable for the practical application. The errors resulting from this approximation are typically small due to the small sampling time T_s.

With (27) an optimal feedforward control law v^*_e is given. To cope with model inaccuracies and external disturbances, in addition a feedback controller has to be designed. In a practical application, measurement of the coil flux linkage is not reasonable. Thus, a control strategy based on the measured coil currents has to be developed.

Using the feedforward control (27) in (1a), the following differential equation for the error in the coil flux linkage can be formulated

$$\frac{d}{dt}(\psi^i_c - \psi^i_{c*}) = -R_c e^i_c + (D^c_1) \cdot v^*_e, \tag{31}$$

with the current error $e^i_c = i^*_c - i^*_c$ and the feedback part v^*_e of the input voltage $v_c = v^i_c + v^*_c$. The coil flux linkage error can be found as a function of the current error e^i_c and the error e_u in the mmfs of the tree permeances, $e_u = u_{tg} - u^*_{tg}$, from the following set of equations

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \psi^i_c - \psi^i_{c*} \end{bmatrix} = \begin{bmatrix} (D^c_1)^T
 D_c G_c D_g^T H_c \end{bmatrix} e^i_c + \begin{bmatrix} (D^c_1)^T
 D_c G_c D_g^T \end{bmatrix} e_u. \tag{32}$$

This equation results from (1b) assuming $G_c (-D^T \bar{u}_g, \varphi) \approx G_c (\bar{u}_g, \varphi)$ and $G_c (u_{tg}, \varphi) \approx G_c (u^*_{tg}, \varphi)$. The solution of (32) for the coil flux linkage error reads as

$$\psi^i_c - \psi^i_{c*} = (D^c_1)^T \begin{bmatrix} D_c & D_c D_g & D_g^T H_c \end{bmatrix} e^i_c = L^c_1 (\bar{u}_g, \varphi) e^i_c, \tag{33}$$

2Note that this assumption is basically equal to assuming that the control errors are small.
with T_l from (12). Please note that, in contrast to the magnetically linear case, the inductance matrix L_i^l is both a function of \bar{u}_{l}^0 and φ in the magnetically nonlinear case. Using (33) in (31), the error dynamics is given by

$$L_i^l \frac{d}{dt} e_i^l = -(D_i^l)^T D_i \left(\frac{\partial T_i^l}{\partial \varphi} \omega + \frac{\partial T_i^l}{\partial u_{l}^0} \frac{d}{dt} \right) D_i^l H_i^l e_i^l - R_c e_i^l + (D_i^l)^T v_c^l,$$

(34)

The feedback control law v_c^l is

$$v_c^l = H_i^l \left[(D_i^l)^T D_i \left(\frac{\partial T_i^l}{\partial \varphi} \omega + \frac{\partial T_i^l}{\partial u_{l}^0} \frac{d}{dt} \right) D_i^l H_i^l + R_c \right] e_i^l + H_i^l \left(-\lambda_{11} e_{1}^l - \lambda_{00} \int_{0}^{t} e_i^l dt \right),$$

(35)

with $\lambda_{11}, \lambda_{00} > 0$, finally yields an exponentially stable current error dynamics.

Remark 2. The feedback control law (35) again includes some parts which are computationally expensive. However, in a practical implementation, neglecting the first part on the right hand side of (35) turns out to be a feasible simplification if the current error e_i^l is small. Then, the simplified feedback control law reads as

$$v_c^l = H_i^l \left(-\lambda_{11} e_i^l - \lambda_{00} \int_{0}^{t} e_i^l dt \right).$$

(36)

The inductance matrix L_i^l is, in the magnetically nonlinear case, both a function of φ and \bar{u}_{l}^0. Thus, it reflects the changes due to the rotor position φ and saturation of the iron. Fig. 5(a) shows the entries $L_i^l_{kj}$, $k, j = 1, 2$ of L_i^l for $\tau_s^* = 0$ N m of the motor under consideration. It can be seen that the inductances show a significant variation with respect to a change in the rotor position. A comparison of the self inductance $L_i^l_{11}$ for $\tau_s^* = 0$ N m with $L_i^l_{11}$ for $\tau_s^* = 3$ N m in Fig. 5(b) reveals that the influence of saturation on the inductance matrix L_i^l is rather small and can therefore be neglected in a practical application, i.e.

$$L_i^l (\bar{u}_{l}^0, \varphi) \approx L_i^l (\bar{u}_{l}^0)$$. As will be discussed in Section 5 a further simplification using the average value \bar{L}_i^l,

$$\bar{L}_i^l = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} L_i^l (\bar{u}_{l}^0, \varphi) d\varphi,$$

(37)

do not significantly deteriorate the current control accuracy for the considered motor. Of course, it is required to check if the above prerequisites are fulfilled for a specific motor before these simplifications can be made.

4.2. Magnetically linear case

The calculation of the feedforward control v_c^l is significantly simplified for the magnetically linear case. Given

$$\bar{L}_i^l \frac{d}{dt} i_i^l = -(D_i^l)^T D_i \left(\frac{\partial T_i^l}{\partial \varphi} \omega + \frac{\partial T_i^l}{\partial u_{l}^0} \frac{d}{dt} \right) D_i^l H_i^l \dot{i}_i^l$$

(40a)

$$\frac{d\varphi}{dt} = \frac{1}{2} \left[(H_i^l)^T D_i u_m, \frac{\partial T_i^l}{\partial \varphi} \right] D_i^l H_i^l \frac{d}{dt} i_i^l,$$

(40b)

and $\partial f_{11}/\partial \tau^* = 0$, $\partial f_{12}/\partial \tau^* = -1$ holds. For the practical application, it again proves to be useful to approximate $\frac{d}{dt} i_i^l$ by

$$\frac{d}{dt} i_i^l \approx \frac{i_i^l_{k} - i_i^l_{k-1}}{T_s},$$

(41)

cf. Remark 1.
The dynamics of the current error $e_i^c = i_i^c - i_i^c*$ is given by

$$L_i^c \frac{de_i^c}{dt} = - \left(\bar{D}_i^c \right)^T D_i \frac{\partial T_i}{\partial \phi} D_i^c H_i^c e_i^c \omega - R_i e_i^c + \left(D_i^c \right)^T v_i^c$$

and the feedback control law v_i^c

$$v_i^c = H_i^c \left(\left(D_i^c \right)^T D_i \frac{\partial T_i}{\partial \phi} D_i^c H_i^c e_i^c \omega + R_i e_i^c \right) + H_i^c \left(-\lambda_i e_i^c - \lambda_{0i} \int_0^t e_i^c dt \right),$$

with $\lambda_{0i}, \lambda_{1i} > 0$, renders the error dynamics exponentially stable. As discussed in Remark 2 for the magnetically linear case, also in the magnetically linear case the first part of the right hand side of (43) can be neglected and $L_i^c (\phi)$ can be approximated by the average \bar{L}_i^c for the considered motor without introducing significant errors.

4.3 Fundamental wave case

For the fundamental wave model, again a flatness-based control strategy in the form of $v_d = v_d^* + v_d^c$ and $v_q = v_q^* + v_q^c$ is developed. In this case, the feedforward part is simply given by

$$v_d^* = \frac{3}{2} L_m p \omega i_d^*$$

$$v_q^* = R e_i^c + \frac{3}{2} J_\omega + \frac{3}{2} L_m \frac{d}{dt} i_q^*,$$

(44a)

(44b)

where $i_d^* = 0$ and $i_q^* = 2\tau^*/(p M)$ are used. It can be easily seen that the feedback control law

$$v_d^c = R e_i^c + \frac{3}{2} L_m p \omega e_i^c + \frac{3}{2} L_m \left(-\lambda_i e_i^c - \lambda_{0i} \int_0^t e_i^c dt \right)$$

$$v_q^c = R e_i^c - \frac{3}{2} L_m p \omega e_i^c + \frac{3}{2} L_m \left(-\lambda_i e_i^c - \lambda_{0i} \int_0^t e_i^c dt \right),$$

(45a)

(45b)

in combination with the feedforward control (44) yields an exponentially stable dynamics for the errors $e_i^c = i_d^c - i_d^*_{eq}$ and $e_i^c = i_q^c - i_q^*_{eq}$ with $\lambda_{0i}, \lambda_{1i} > 0$. A simplified version of (45) in the form

$$v_d^c = \frac{3}{2} L_m \left(-\lambda_i e_i^c - \lambda_{0i} \int_0^t e_i^c dt \right)$$

$$v_q^c = \frac{3}{2} L_m \left(-\lambda_i e_i^c - \lambda_{0i} \int_0^t e_i^c dt \right),$$

(46a)

(46b)

which is frequently used in practical applications, only yields a small reduction of the control accuracy.

5. Measurement results

To compare and to evaluate the performance of the proposed torque control concepts, measurement results on the test stand depicted in Fig. 6 are presented. The test stand comprises the PSM under consideration which is coupled to a harmonic drive (load motor) via a torque sensor and a high resolution encoder. By means of the harmonic drive it is possible to fix the angular speed of the motor at a desired value. The torque generated by the PSM is measured by the torque sensor. The PSM is controlled by a three-phase bridge using MOSFETs as power switches. A fixed pulse-width modulation frequency of 10 kHz is used and the duty cycles of the individual half-bridges are utilized to adjust the voltages $v_{ck}, \ k = 1, 2, 3$, applied to the coils. The control strategies described in the Sections 3 and 4 were implemented on a dSPACE 1103 real-time hardware equipped with a 1 GHz PowerPC processor. The fundamental wave control strategy was implemented at a sampling time of 100 μs, while for the magnetically linear and the magnetically nonlinear control strategy an increased sampling time of 200 μs had to be used due to the higher numerical complexity. Moreover, average values \bar{L}_i^c of the inductance matrix according to (37) and $\bar{\tau}^*$ = 2 Newton iterations have been used. For the subsequent measurements, a fixed angular speed of 4 rpm was chosen. Please note that this slow speed prevents excitation of resonances of the mechanical setup which would deteriorate the accuracy of the measured torque. In the next section, it will be proven that the proposed control concept also works well for fast angular speeds.

Fig. 7 shows the measurement results of the coil current i_{1c} and the torque τ for the three control strategies of Sections 3 and 4, and for $\tau^* = 0, 1$ and 2 Nm. In accordance with the simulation results in Fig. 4, the fundamental wave model performs worst, especially for $\tau^* = 0$ Nm. This is, as has been already discussed, due to the fact that the cogging torque is not included in the fundamental wave model. The magnetically linear and the magnetically nonlinear control strategies, however, show almost identical behavior for $\tau^* = 0$ Nm. The benefits of the nonlinear

![Figure 6: Setup of the test stand.](image-url)
control strategy in comparison to the linear and the fundamental wave strategy is evident for increased desired torques $\tau^*=1$ N m and $\tau^*=2$ N m, see Fig. 7.

In Fig. 8 the corresponding control input v_{c1} and the current control error $i_{c1} - i_{c1}^*$ for the nonlinear control strategy for $\tau^*=2$ N m are depicted. Taking a closer look at the control input, characteristic steps can be seen in the measurements. These steps result from the compensation of the nonlinearities of the three phase bridge in the vicinity of zero currents. The measurement of the current control error shows that the current is controlled to the vicinity of zero currents. The measurement of the fundamental wave strategy shows that the current is controlled to the vicinity of zero currents. The measurement of i_{c1} in the present experimental setup.

It has to be mentioned that in comparison to the simulation results an increased deviation from the desired i_{c1} torque values is present in the measurements. This can be attributed to two facts:

1. The mechanical setup, in particular the flexible couplings, introduces small periodic disturbances which are also measured by the torque sensor.
2. The model, as a matter of fact, does not perfectly represent the real system behavior, see also [38]. These model errors are then reflected in the measured torque.

It is worth mentioning that the measurements of the torque sensor are only used to evaluate the control quality but are, of course, not part of the feedback loop. Thus, even if the current perfectly tracks the desired current, cf. Fig. 8, the errors in the model from current to torque are still present. However, it is well documented that the proposed nonlinear control concept which is based on the magnetic equivalent circuit model of [38] brings along a significant improvement of the torque control accuracy. In conclusion, the measurement results show that the proposed nonlinear control concept is practically feasible and yields good tracking results of the desired torque.

6. Control of angular speed

There are a number of applications where the PSM is used in a torque-controlled mode as e.g. in electrical power steering systems or traction applications. Therein, it is evident that an improvement of the torque control

Figure 7: Comparison of the measured coil current i_{c1} and torque τ of the fundamental wave (dq0), the magnetically linear and the magnetically nonlinear control strategy for $\tau^*=0$, 1 and 2 N m.
accuracy directly improves an enhanced system performance.

In most cases, however, the torque (or current) controller is used as a subordinate control loop for an outer speed or position control. In this section, it will be outlined that the improved accuracy of the proposed nonlinear torque control strategy also entails an improvement of a cascaded speed control loop.

To do so, the test stand depicted in Fig. 6 is adapted by removing the torque sensor and the harmonic drive, directly coupling the fly wheel and the angle sensor to the PSM. The angular speed $\omega = \phi$ of the resulting system can be described in the form

$$\frac{d}{dt} \omega = \frac{1}{\theta_m} \left(-d_\ell \omega - d_c \tanh \left(\frac{\omega}{\omega_0} \right) + \tau \right), \quad (47)$$

with the moment of inertia θ_m of the PSM including the fly wheel and the viscous damping coefficient d_c. The Coulomb friction of the setup is approximated by the term $d_c \tanh(\omega/\omega_0)$, where ω_0 is used to parameterize the steepness at $\omega = 0$.

In a cascaded controller design it is usually assumed that the torque controller is very fast and thus the er- error between the desired torque τ^* and the real torque τ generated by the PSM is negligible. Setting $\tau = \tau^*$ in (47), τ can be considered as a virtual control input to the system. A two degrees-of-freedom flatness-based control concept of the form $\tau = \tau^{**} + \tau^{*c}$ is frequently employed for the speed control of such a system in literature. The feedforward part τ^{**} and the feedback part τ^{*c} are given by

$$\tau^{**} = d_\ell \omega^* + d_c \tanh \left(\frac{\omega^*}{\omega_0} \right) + \theta_m \frac{d}{dt} \omega^* \quad (48a)$$

$$\tau^{*c} = \theta_m \left(-\lambda_1 \omega e_\omega - \lambda_0 \int_0^t e_\omega dt \right), \quad (48b)$$

with the at least twice continuously differentiable desired angular speed ω^*, the controller parameters $\lambda_1, \lambda_0 > 0$ and the speed error $e_\omega = \omega - \omega^*$.

Remark 3. For the control strategies developed in Sections 3 and 4, the time derivative of the desired torque τ^* is necessary, cf. (29) for the magnetically nonlinear case, (39) for the magnetically linear case and (44) for the fundamental wave case. The controller part τ^{*c} includes the measured speed ω, which can cause problems when performing this differentiation. Thus, for the practical application it is often useful to set $\tau^* \approx \tau^{**}$, with τ^{**} from (48a). A similar idea can of course also be used for the simplified derivations given by (30) and (41).

Fig. 9 presents the measurement results of the speed controller for constant desired speed ω^*. Therein, the speed controller (48) was used with the three torque control strategies of Sections 3 and 4 in the subordinate control loop. It can be seen that for the fast angular speed of 200 rpm only small differences between the three torque control strategies are visible, while for slow angular speeds the magnetically nonlinear and the magnetically linear control strategies yield significantly better results compared to the fundamental wave case. The main reason for the errors in the speed are the errors in the subordinate torque control, where the frequency of the resulting disturbance is proportional to the angular speed. The high frequency disturbances for 200 rpm are well suppressed by the mechanical inertia, while for lower angular speed an increased influence can be seen. Only small differences can be seen between the magnetically linear and the magnetically nonlinear case since the average torque necessary to drive the mechanical setup is rather small. As depicted in Fig. 7, the magnetically linear and magnetically nonlinear control strategies show similar performance in this torque range. This result proves that the proposed torque control strategy is beneficial also for speed control, in particular for slow angular speeds as they typically occur for precision position tasks in robotics.

Remark 4. A number of papers dealing with the speed and position control of PSMs with pronounced cogging torque (as the PSM under consideration) has been reported in literature, see, e.g., [46-49]. A frequent approach to tackle this problem is to consider the torque ripple in the form of a periodic disturbance for the speed controller, which is compensated by more or less involved control strategies. In comparison to these approaches, using a torque controller as presented in Sections 3 and 4 already ensures that only small torque ripples are produced.
by the PSM. Thus, the accurate control of the speed is significantly simplified. Especially for drive trains with small inertia or low angular stiffness, this approach can be considered advantageous.

To analyze the current control accuracy, the desired and the measured coil current i_{c1}^* and i_{c1}, respectively, are presented in Fig. 10. The corresponding control input, i.e. the coil voltage v_{c1}, is also depicted there. It can be seen that, although the current has to track a rather complex desired current, a very good tracking accuracy can be achieved.

Finally, in Fig. 11 the results of an experiment, which drives the PSM to its operational limits, are given. Here, the desired speed is changed from -600 rpm to 600 rpm (half of the rated speed) within 0.6 s using approx. 2.5-times the rated torque of the PSM. An almost perfect tracking accuracy of the desired speed is obtained using the speed control strategy from (48) and the magnetically nonlinear torque control strategy of Section 4.1. The corresponding coil current i_{c1} and coil voltage v_{c1} are also depicted in Fig. 11.

In conclusion, the experiments performed in this section and in Section 3.4 prove the practical feasibility and demonstrate the improvements in control accuracy compared to classical control strategies based on a fundamental wave model.

7. Conclusion

In this work, an optimal torque control for PSMs described by MEC models was presented and tested on an experimental setup. It was shown that by systematically incorporating the magnetic saturation and the non-fundamental wave characteristics into the model and the controller design, significant improvement of the control accuracy and the performance can be obtained. Moreover, the practical feasibility was demonstrated by means of measurements on an experimental setup.

Up to now, limitation of the control input, i.e. the coil voltages, has not been taken into account. Thus, future research will be devoted to the question how to extend the proposed nonlinear control strategy to the field weakening range of the motor. Moreover, since the MEC modeling approach is not limited to PSMs, the application of this method to other motor designs as switched reluctance, synchronous reluctance or induction machines will be examined. Finally, the usage of the MEC model in a model predictive control setup is a further topic of current research.
Appendix A. Entries of the Jacobian J_{nl} of f_{nl}

This appendix summarizes the entries of the Jacobian J_{nl} for the magnetically nonlinear case. Given $(f_{nl,1})^T = ∂f_{nl,1}/∂t$, the corresponding partial derivatives are given by

\[
\frac{∂f_{nl,1}}{∂t} = Q + λp \left[(H_1')^T, 0, 0 \right] D \frac{∂G_c}{∂ϕ} D^T \begin{bmatrix} H_1' \\ 0 \\ 0 \end{bmatrix} \quad (A.1a)
\]

\[
\frac{∂f_{nl,1}}{∂u_{g\gamma}} = λp \left[(H_1')^T, 0, 0 \right] D \frac{∂G_c}{∂ϕ} D^T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad (A.1b)
\]

\[
\frac{∂f_{nl,1}}{∂λ} = p \left[(H_1')^T, 0, 0 \right] D \frac{∂G_c}{∂ϕ} D^T \begin{bmatrix} H_1' i_{1r}' \\ 0 \\ u_{tm} \\ u_{tg} \end{bmatrix} \quad (A.1c)
\]

\[
\frac{∂f_{nl,1}}{∂µ} = (H_1')^T D_c G_c D^T_g \quad (A.1d)
\]

The partial derivatives of $(f_{nl,2})^T = ∂L/∂u_{g\gamma}$ result in

\[
\frac{∂f_{nl,2}}{∂u_{g\gamma}} = λp \left(\frac{∂G_t}{∂ϕ} + [0, 0, I] D \frac{∂G_c}{∂ϕ} D^T \begin{bmatrix} 0 \\ 0 \\ I \end{bmatrix} \right) \quad (A.2a)
\]

\[
\frac{∂f_{nl,2}}{∂λ} = p \left(\frac{∂G_t}{∂ϕ} u_{g\gamma} + [0, 0, I] D \frac{∂G_c}{∂ϕ} D^T \begin{bmatrix} H_1' i_{1r}' \\ 0 \\ u_{tm} \end{bmatrix} \right) \quad (A.2b)
\]

\[
\frac{∂f_{nl,2}}{∂µ} = G_t + D_c G_c D^T_g \quad (A.2c)
\]

The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.
The partial derivatives of \(f_{nl} \) with respect to \(\varphi \) read as
\[
\frac{\partial f_{nl,1}}{\partial \varphi} = \lambda_p \left(H_{1,1}^T \frac{\partial G_{1,1}}{\partial \varphi} u_{tg} + \left(0, 0, 1 \right) \frac{\partial G_{2,1}}{\partial \varphi} D_{1,1}^T u_{tm} \right)
\]
\[
+ \left(H_{1,1}^T D_{1,1} \frac{\partial G_{1,1}}{\partial \varphi} D_{2,1}^T \mu \right)
\]
(A.4a)

\[
\frac{\partial f_{nl,2}}{\partial \varphi} = \lambda_p \left(\frac{\partial G_{1,1}}{\partial \varphi} u_{tg} + \left(0, 0, 1 \right) \frac{\partial G_{2,1}}{\partial \varphi} D_{1,1}^T u_{tm} \right)
\]
\[
+ \left(\frac{\partial G_{1,1}}{\partial \varphi} D_{1,1} \frac{\partial G_{1,1}}{\partial \varphi} D_{2,1}^T \mu \right)
\]
(A.4b)

\[
\frac{\partial f_{nl,3}}{\partial \varphi} = \frac{1}{2} \left(u_{tg} \frac{\partial G_{1,1}}{\partial \varphi} D_{1,1}^T u_{tm} + \left(H_{1,1}^T \frac{\partial G_{1,1}}{\partial \varphi} D_{1,1}^T \right) u_{tm} \right)
\]
\[
+ \left(D_{1,1} \frac{\partial G_{1,1}}{\partial \varphi} D_{1,1}^T + D_{2,1} \frac{\partial G_{2,1}}{\partial \varphi} D_{2,1}^T \right) u_{tm}
\]
(A.4c)

\[
\frac{\partial f_{nl,4}}{\partial \varphi} = \left(\frac{\partial G_{1,1}}{\partial \varphi} \right) u_{tg}
\]
\[
+ \left(\frac{\partial G_{1,1}}{\partial \varphi} \frac{\partial G_{1,1}}{\partial \varphi} u_{tm}
ight)
\]
(A.4d)

\[
\frac{\partial f_{nl,4}}{\partial \varphi} = 0, \frac{\partial f_{nl,5}}{\partial \varphi} = 0, \frac{\partial f_{nl,6}}{\partial \varphi} = 0
\]
and
\[
\frac{\partial f_{nl,1}}{\partial \tau^*} = 0, \frac{\partial f_{nl,2}}{\partial \tau^*} = 0, \frac{\partial f_{nl,3}}{\partial \tau^*} = -1
\]
\[
\frac{\partial f_{nl,4}}{\partial \tau^*} = 0.
\]

References

