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Optimal Torque Control of Permanent Magnet Synchronous Machines Using
Magnetic Equivalent Circuits

Wolfgang Kemmetmüllera,∗, David Faustner, Andreas Kugia

aAutomation and Control Institute, Vienna University of Technology, Gusshausstr. 27-29, Vienna, Austria

Abstract

In recent years, permanent magnet synchronous machines (PSMs) are often designed in a mechatronic way to obtain
e.g. special torque characteristics at zero currents or maximum efficiency. These designs are often characterized by
a pronounced magnetic saturation and non-sinusoidal properties. This paper describes the optimal torque control of
such PSMs utilizing a magnetic equivalent circuit (MEC) model. In contrast to approaches based on fundamental wave
models (dq0-models), which utilize the Blondel-Park transformation and typically consider saturation and non-sinusoidal
characteristics only in a heuristic way, MEC models allow to systematically account for these effects. Given the MEC
model, optimal values for the coil currents are obtained from a constrained, nonlinear optimization problem, which can
be efficiently solved by exploiting the special mathematical structure of the model. The results of the optimization are
used in a flatness-based torque control strategy. The performance and practical feasibility of the proposed torque control
concept are demonstrated by experiments on a test stand. Finally, it is shown that using this torque control in an outer
angular speed control loop also proves to be beneficial.

Keywords: Optimal torque control, magnetic equivalent circuit, permanent magnet synchronous motor, flatness based
control

1. Introduction

The accurate control of the torque is essential in many
applications of permanent magnet synchronous machines
(PSMs), which makes this topic an active field of research
in recent years. The industrial standard to control PSMs5

is field oriented control (FOC), which is based on a fun-
damental wave model and the application of the Blondel-
Park transformation, see, e.g., [1, 2]. A number of research
papers have discussed the development of advanced (non-
linear) control strategies based on this model. E.g., [3–5]10

propose exact feedback linearization, [6–8] use backstep-
ping control and passivity based methods are applied in
[9–11] to the control of PSMs. Furthermore, sliding mode
control is examined in [12–14], model predictive control is
used in [15–17] and direct torque control concepts can be15

found in [18–20]. These control strategies in general ex-
hibit a good performance for PSMs and operating regions,
which can be accurately described by a (magnetically lin-
ear) fundamental wave model (dq0-model).

For applications with high demands on torque, speed20

or position accuracy, it happens more often in recent years
that motor designs are employed which do not satisfy the
assumptions that have to be made for the derivation of

∗Corresponding author
Email addresses: kemmetmueller@acin.tuwien.ac.at

(Wolfgang Kemmetmüller), (faustner,kugi)@acin.tuwien.ac.at
(David Faustner, Andreas Kugi)

classical dq0-models. In particular, fractional slot concen-
trated windings and rotors with interior permanent mag-25

nets are preferred by industry due to the simpler and
cheaper construction. Moreover, to shape the torque char-
acteristics especially for zero currents, inhomogeneous air
gap geometries are frequently used in a mechatronic de-
sign approach. These constructions often yield pronounced30

nonsinusoidal (non-fundamental wave) characteristics of
the back-emf and the inductances of the motor. Moreover,
PSMs are often operated in a region, where significant sat-
uration of the iron parts occurs.

Heuristic extensions of the dq0-model are typically pro-35

posed in literature to account for saturation and non-fun-
damental wave characteristics. E.g., the control strategies
in [21–31] are based on an extension of the dq0-model by
higher harmonics in the back emf, the inductances or the
resulting torque. In these works, however, the influence of40

saturation and the resulting cogging or reluctance torque
are not considered. Saturation is again incorporated into
the dq0-model in a heuristic manner, see, e.g., [32–37].

The limitations of these approaches clearly result from
the underlying dq0-model such that a more rigorous mod-45

eling approach is preferable. A magnetic equivalent cir-
cuit approach was described in [38, 39] for the modeling
of PSMs with internal or surface mounted magnets. It
was shown that an accurate description of the behavior
of PSMs with non-fundamental wave characteristics and50

significant saturation can be achieved with this approach.
Since the resulting models feature a limited model com-
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plexity, these models can be considered a good basis for
the controller design.

In this work, the optimal torque control of PSMs which55

show both significant magnetic saturation and non-sinusoi-
dal characteristics is considered. As a test case, a PSM
with interior permanent magnets is used, which was de-
signed for a rear steering system of a car. In this applica-
tion, a motion of the PSM has to prevented in case of a60

failure of the power electronics. This is achieved by design-
ing an inhomogeneous air gap geometry which results in a
large cogging torque. This in turn prevents undesired rota-
tion of the motor at zero currents. However, the significant
non-sinusoidal behavior and saturation complicates the ac-65

curate torque control of such PSMs. The corresponding
mathematical model is described in [38], which will serve
as a basis for the controller design. The control strategy
is based on the solution of a nonlinear, constrained op-
timization problem in combination with a flatness-based70

feedback control. In [40], also the optimal torque control of
a PSM, which exhibits significant saturation, based on an
MEC model is considered. For this surface magnet PSM it
is, however, possible to accurately approximate the charac-
teristic quantities like the flux linkage of the coils by means75

of fundamental wave components, with only their ampli-
tudes and phase angles being nonlinear functions of the coil
currents. It is demonstrated in [40] how the fundamental
wave characteristics can be beneficially utilized to solve
the resulting optimal control problem. The present work80

deals with the more general case containing both magnetic
saturation and non-fundamental wave characteristics.

The paper is organized as follows: The mathematical
model of [38] is briefly summarized in Section 2. In Section
3, the calculation of optimal currents is described, which is85

used in the flatness based control strategy outlined in Sec-
tion 4. Measurement results of a test stand presented in
Section 5 demonstrate the good control performance and
the practical feasibility of the proposed control strategy.
Finally, Section 6 elaborates the benefits of using the op-90

timal torque control strategy in an outer control loop for
the angular speed.

2. Mathematical Model

In [38], a general framework for the mathematical mod-
eling of permanent magnet synchronous machines based95

on a magnetic equivalent circuit approach was derived.
This approach was successfully applied to the modeling of
both a surface-mounted PSM [39] and a PSM with internal
magnets [38]. In this work, the same motor as in [38] will
be used and therefore, the mathematical model derived in100

[38] serves as the basis for the development of the optimal
torque control strategy.

The considered PSM with internal magnets comprises
12 coils and eight NdFeB-magnets. Figure 1 depicts the
cross section of a quarter of the motor. As already briefly
discussed in the introduction, the PSM is used in an auto-
motive application, where it is absolutely important that

coil 1

coil 2

coil 3

magnet 2

magnet 1

stator

rotor

Figure 1: Cross section of the considered PSM [38].

no motion occurs in the case of e.g. a failure of the power
electronics. This behavior is achieved by designing an in-
homogeneous air gap which yields a large cogging torque,
see Fig. 1. Moreover, this design also results in a non-
sinusoidal back emf and a significant influence of satura-
tion in the stator and rotor. As shown in [38], the motor
can be accurately described by a (magnetically nonlinear)
MEC, comprising magneto-motive force (mmf) sources de-
scribing the coils and the permanent magnets, and mag-
netically nonlinear or position dependent permeances de-
scribing the stator, the rotor, the air gap and the leakages.
The mathematical equations of this MEC are derived us-
ing network theory, well established in the modeling of
electric networks, see, e.g., [41–43]. For this purpose, a
tree being composed of elements of the MEC and connect-
ing all nodes of the network without forming a mesh is
defined. The choice of this tree is arbitrary except for
the fact that all mmf sources of the MEC have to be
part of the tree. The remaining elements of the network
form the corresponding co-tree of the network. The in-
terconnection of the tree and co-tree elements, i.e. the
topology of the MEC, is described by the incidence matrix
D̄T =

[
D̄T

c ,D
T
m,DT

g

]
, where D̄c = NcDc, with the wind-

ing matrix Nc = diag[Nc, Nc, Nc] and the number Nc of
windings per coil. Therein, Dc is the part of the incidence
matrix which is related to the coils, Dm is related to the
permanent magnets and Dg is related to the permeances
of the tree. The permeances of the tree and co-tree are
combined in the (diagonal) permeance matrices Gt and
Gc, respectively. Both, Gt and Gc, are nonlinear func-
tions of the rotor angle and the corresponding mmfs. The
mathematical model of the MEC can then be formulated

2
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in the form, see [38],

d

dt
ψI

c = −Rci
I
c +

(
D̄I

c

)T
vc (1a)

0 = K

[
iIc
utg

]
−
[
ψI

c

0

]
+

[(
D̄I

c

)T
D̄c

Dg

]
GcD

T
mutm (1b)

with

K =

[
(D̄I

c)
T D̄cGcD̄

T
c H

I
1 (D̄I

c)
T D̄cGcD

T
g

DgGcD̄
T
c H

I
1 Gt +DgGcD

T
g

]
. (2)

Therein, ψI
c is the vector of independent flux linkages,

iIc is the corresponding vector of independent coil currents
and Rc is the electrical resistance of a coil. The influ-105

ence of the coil voltages vc on the flux linkage is described

by the matrix
(
D̄I

c

)T
, which reflects the magnetic con-

nection of the coils. The set of algebraic equations (1b)
describes the independent coil currents iIc and the mmfs
utg of the permeances of the tree of the magnetic network110

as a function of the flux linkage ψI
c of the coils and the

mmfs uT
tm = [ums,−ums] of the permanent magnets, cf.

[38]. Finally, HI
1 results from the inverse of a transforma-

tion matrix T1c, which has been used in [38] to eliminate
the redundancies of the nonlinear algebraic equations, in115

the form T−1
1c = [H⊥

1 ,H
I
1].

The torque produced by the motor is given by

τ =
1

2
p
(
uT
tg

∂Gt

∂ϕ
utg+

[
(HI

1i
I
c)

T ,uT
tm,uT

tg

]
D̄
∂Gc

∂ϕ
D̄T



HI

1i
I
c

utm

utg



)
,

(3)

with p = 4 being the number of pole-pairs of the motor.
A detailed derivation of this model and a evaluation of

the model accuracy is given in [38], where a slightly differ-
ent notation is used. It should be noted that the optimal120

control strategy developed in this manuscript can be ap-
plied to any motor construction which can be described by
an MEC model of the form (1)-(3).

3. Calculation of optimal coil currents

The main goal of this work is to derive a control strat-125

egy which calculates the control inputs vc in a way that
the torque τ tracks a desired torque τ∗. As an intermedi-
ate step to this goal, the currents ic are determined such
that the resulting torque is equal to the desired torque for
a given angle ϕ and the copper losses of the motor are130

minimal. In the following subsections, the calculation of
optimal coil currents is discussed for the general magnet-
ically nonlinear case, the magnetically linear case and the
magnetically linear fundamental wave case.

3.1. Optimal currents: Magnetically nonlinear case135

Calculating optimal currents for the magnetically and
geometrically nonlinear case directly leads to a nonlinear
optimization problem of the form

min
ic,utg

1

2
(ic)

T
ic = min

iIc ,utg

1

2

(
iIc
)T (

HI
1

)T
HI

1︸ ︷︷ ︸
Q

iIc (4)

subject to the nonlinear equality constraints

g = τ(iIc ,utg)− τ∗ = 0 (5a)

h =
[
DgGcD̄

T
c H

I
1,Gt +DgGcD

T
g

] [ iIc
utg

]
(5b)

+DgGcD
T
mutm = 0,

with the positive definite matrix Q > 0. Please note that
by means of the constraint (5a) it is ensured that a solution
is found which yields the desired torque τ∗. Moreover,
(5b), which results from the second row of (1b), guarantees
that the solution is compatible with the MEC-model of the140

motor.
To solve this optimization problem, the Lagrange func-

tion L is introduced in the form

L =
1

2

(
iIc
)T

QiIc + λg + µTh, (6)

with the Lagrange multipliers λ and µ. The first order nec-
essary optimality condition states that the partial deriva-
tives of L with respect to iIc , utg, λ and µ must be equal to
zero. In [44] and [45], a similar approach is chosen for the145

magnetically linear case, i.e. without taking into account
the cogging torque, the reluctance torque and saturation.

The partial derivative of L with respect to iIc reads as

(
∂L
∂iIc

)T

= QiIc + λp
[(
HI

1

)T
,0,0

]
D̄
∂Gc

∂ϕ
D̄T



HI

1i
I
c

utm

utg




+λ
p

2

[(
HI

1i
I
c

)T
,uT

tm,uT
tg

]
D̄

∂2Gc

∂ϕ∂iIc
D̄T



HI

1i
I
c

utm

utg




+
[(
HI

1i
I
c

)T
,uT

tm,uT
tg

]
D̄
∂Gc

∂iIc
DT

g µ+
(
HI

1

)T
D̄cGcD

T
g µ

(7)

and the partial derivative with respect to utg can be for-
mulated as given in (8). The partial derivatives with re-
spect to λ and µ of course yield the nonlinear equality150

constraints (5).
The solution of the constrained optimization problem

(4), (5) is thus traced back to the solution of a system of
nonlinear equations (5), (7) and (8). For a real-time im-
plementation of the optimal control strategy, this set of155

equations must be solved in each sampling interval with
sampling time Ts. Typically, Ts is in the order of 50µs
to 200µs according to pulse-width-modulation (pwm) fre-
quencies of 20 kHz to 5 kHz. Thus, high numeric efficiency

3
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(
∂L
∂utg

)T

= λp


∂Gt

∂ϕ
utg + [0,0, I] D̄

∂Gc

∂ϕ
D̄T



HI

1i
I
c

utm

utg




+

(
Gt +DgGcD

T
g

)
µ

+
1

2
λp


uT

tg

∂2Gt

∂ϕ∂utg
utg +

[
(HI

1i
I
c)

T ,uT
tm,uT

tg

]
D̄

∂2Gc

∂ϕ∂utg
D̄T



HI

1i
I
c

utm

utg






+

([
Dg

∂Gc

∂utg
D̄T

c H
I
1,

∂Gt

∂utg
+Dg

∂Gc

∂utg
DT

g

] [
iIc
utg

]
+Dg

∂Gc

∂utg
DT

mutm

)T

µ

(8)

is indispensable for a practical implementation. For this160

purpose, two assumptions are made, which have proven to
be practically feasible: First, the partial derivatives of Gt

and Gc with respect to iIc and utg are neglected in (7) and
(8). This significantly simplifies the complexity of the set
of nonlinear equations to be solved. Second, it is assumed165

that a good initial guess of the solution at sampling in-
terval k is given by the solution of the previous sampling
interval k−1. This assumption is obviously valid if the an-
gle ϕ and the desired torque τ∗ do not significantly change
from one step to the next. The angle ϕ is of course suffi-170

ciently smooth due to physics and the desired torque τ∗ is
defined in sufficiently smooth manner, i.e. step-like desired
torques are not considered.

If these prerequisites are met, then the set of nonlinear
equations




(
∂L
∂iIc

)T
(

∂L
∂utg

)T
(
∂L
∂λ

)T
(

∂L
∂µ

)T



=




fnl,1
fnl,2
fnl,3
fnl,4


 = fnl (x) = 0, (9)

with the vector of unknowns xT =
[(
iIc
)T

, (utg)
T , λ,µT

]
,

can be solved by applying Newton iteration in the form1

xj+1
k = xj

k − J−1
nl (x

j
k)fnl(x

j
k), for j = 0, . . . , ni − 1,

(10)

with the initial condition x0
k = xni

k−1 and the number of
iterations ni per sampling interval. The Jacobian Jnl of175

fnl can be calculated analytically from (5), (7) and (8).
Here again, neglecting the derivatives of the permeance
matrices with respect to utg and iIc is meaningful and sig-
nificantly simplifies the calculation. The entries of Jnl are
summarized in Appendix A.180

Summarizing, the proposed approach allows to calcu-
late optimal coil currents i∗c for a given desired torque τ∗

in real-time for a magnetically nonlinear, non-fundamental

1Of course, the Jacobian Jnl if fnl is not inverted in (10) but

the corresponding set of linear equations is solved for xj+1
k . For this

purpose, efficient solvers for linear equations are used.

wave PSM based on a magnetic equivalent circuit model.
Before proceeding with the calculation of the real control185

inputs, i.e. the voltages vc, two simplifications frequently
used in literature are analyzed from an optimal torque
control point of view. First, magnetic saturation is ne-
glected which yields a magnetically linear model. Still the
non-sinusoidal flux characteristics is present. Afterwards,190

by assuming only fundamental wave components, the opti-
mal torque control problem is discussed for the well-known
dq0-model yielding the well-known results from literature.

3.2. Optimal currents: Magnetically linear case

If the iron is not saturated, then the permeance matri-
ces Gt and Gc are independent of the mmfs and (1b) is
a set of linear equations which can be solved analytically
for ψI

c as a function of iIc by utilizing the matrix inversion
lemma

ψI
c =

(
D̄I

c

)T
D̄cTl(ϕ)

(
D̄T

c H
I
1i

I
c +DT

mutm

)
, (11)

with

Tl(ϕ) =
(
G−1

c +DT
g G

−1
t Dg

)−1
. (12)

Using (11) and (12) in (1a), the transformed coil currents
iIc are given by

LI
c

d

dt
iIc = −∂ψI

c

∂ϕ
ω −Rci

I
c +

(
D̄I

c

)T
vc, (13)

with the inductance matrix LI
c

LI
c(ϕ) =

(
D̄I

c

)T
D̄cTl(ϕ)D̄

T
c H

I
1, (14)

which is, as was expected, non-singular. Furthermore, the
partial derivative of the flux linkages with respect to ϕ can
be written as

∂ψI
c

∂ϕ
=
(
D̄I

c

)T
D̄c

∂Tl

∂ϕ

(
D̄T

c H
I
1i

I
c +DT

mutm

)
. (15)

The mathematical model in the magnetically linear case is
completed by the torque equation

τ =
1

2
p
[(
HI

1i
I
c

)T
,uT

tm

] [ D̄c

Dm

]
∂Tl

∂ϕ

[
D̄T

c ,D
T
m

] [HI
1i

I
c

utm

]
.

(16)

4
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Based on this mathematical model for the magnetically
linear case, the optimal independent coil currents can be
found by solving the optimization problem

min
iIc

1

2

(
iIc
)T

QiIc (17)

subject to the (nonlinear) scalar equality constraint

g = τ
(
iIc
)
− τ∗. (18)

Introducing the Lagrange function L = 1/2(iIc)
TQiIc + λg,

the first order necessary optimality conditions take the
form

(
∂L
∂iIc

)T

= QiIc + λp(HI
1)

T D̄c
∂Tl

∂ϕ

[
D̄T

c ,D
T
m

] [HI
1i

I
c

utm

]

(19a)
(
∂L
∂λ

)T

= τ − τ∗, (19b)

which still constitutes a set of nonlinear equations. Thus,
again Newton iteration is employed, as proposed in (10)
for the general magnetically nonlinear case. The elements
of the Jacobian Jl of (19) read as

Jl,11 = Q+ λp
(
HI

1

)T
D̄c

∂Tl

∂ϕ
D̄T

c H
I
1 (20a)

Jl,12 = JT
l,21 = p

(
HI

1

)T
D̄c

∂Tl

∂ϕ

[
D̄T

c ,D
T
m

] [HI
1i

I
c

utm

]
(20b)

Jl,22 = 0. (20c)

Thus, the method for the calculation of the optimal cur-195

rents iI∗c for a given desired torque τ∗ in the magnetically
linear case is similar to the magnetically nonlinear case
but significantly less complex.

3.3. Optimal currents: Fundamental wave case

The inductance matrix LI
c and Tl in (14) and (12)

depend on the angle ϕ. If only fundamental wave compo-
nents, i.e. components multiplied by sin(pϕ) or cos(pϕ),
are considered, then the well-known dq0-transformation
(Blondel Park transformation, see, e.g., [1, 2]) can be ap-
plied using the transformation matrix Tdq

Tdq(ϕ) =



cos(pϕ) cos(pϕ− 2π

3 ) cos(pϕ− 4π
3 )

sin(pϕ) sin(pϕ− 2π
3 ) sin(pϕ− 4π

3 )
1
2

1
2

1
2


 .

(21)

The resulting transformed magnetically linear fundamen-
tal wave model is given by, see also [1, 2, 38]

d

dt
id =

2

3

1

Lm

(
−3

2
Lmpωiq −Rcid + vd

)
(22a)

d

dt
iq =

2

3

1

Lm

(
3

2
Lmpωid −

3

2
Ĵω −Rciq + vq

)
, (22b)

with the transformed currents and voltages



id
iq
i0


 = Tdq



ic1
ic2
ic3


 ,



vd
vq
v0


 = Tdq



vc1
vc2
vc3


 (23)

and the inductance Lm. Since the electrical interconnec-
tion forces v0 = 0, the zero component i0 also vanishes,
i.e. i0 = 0. The corresponding transformed torque reads
as, cf. [1, 2, 38]

τ = 2pM̂umsNciq. (24)

The constant coefficients Lm, Ĵ and M̂ can be obtained200

from the magnetically linear model (11)-(16), e.g., by ap-
plying a Fourier analysis, see, also [38]. The determination
of optimal currents for a given desired torque τ∗ is triv-
ial, since (24) implies i∗q = τ∗/(2pM̂umsNc) and minimal
losses are obtained by setting i∗d = 0.205

3.4. Simulation results

In this section, the optimal currents are evaluated based
on the magnetically nonlinear model presented in [38],
which was calibrated and validated by measurement re-
sults on a test stand. Basically, two major points should be210

discussed: What is the improvement by using the magnet-
ically nonlinear or the magnetically linear model in com-
parison to the fundamental wave model typically used in
literature? How does the number of Newton iterations ni

used in (10) influence the accuracy of the optimal solution?215

As already shortly discussed in Section 3.1, besides the
number of iterations ni, the quality of the initial guess
x0
k used in the Newton iteration has an important influ-

ence on the accuracy. Obviously, it can be expected that
the quality of the initial guess increases if the solution of220

the nonlinear equations – (9) for the magnetically non-
linear case and (19) for the magnetically linear case –
only slightly changes from one sampling time (k − 1)Ts

to the next kTs. Clearly, the solution of the nonlinear
equations changes due to changes in the rotor position ϕ225

and the desired torque τ∗. For the subsequent discussions,
it is assumed that the desired torque τ∗ is chosen con-
stant. Additionally assuming a constant angular speed
ω = ϕ̇, ∆ϕ = ϕk − ϕk−1 = ωTs holds. The largest value
of ∆ϕ arises at maximum speed ωmax, which is given by230

ωmax = 2 π20 rad s−1 (1200 rpm). In the subsequent sim-
ulation results, an angular speed of 830 rpm is chosen,
which corresponds to a typical operating point of 70% of
the maximum speed. Using a sampling time Ts = 100µs,
this results in ∆ϕ = 0.5◦.235

Fig. 2 shows the results of the optimal currents ob-
tained from the magnetically nonlinear model for different
values of the desired torque τ∗ from 0Nm to 3Nm, which
corresponds to the maximum torque of the motor. In the
left column, the three coil currents ic1, ic2 and ic3 are240

depicted, which result from (10) with (9) for ni = 2 itera-
tions. The right column shows the resulting errors τ − τ∗
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Figure 2: Optimal currents and torque error τ − τ∗ for the magnetically nonlinear case for different desired torques τ∗.
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in the torque. It can be seen that the proposed method to
calculate the optimal currents for the magnetically nonlin-
ear model results in very small errors in the torque over the245

entire operating range of the motor. Taking a closer look
at the optimal currents also reveals that the motor under
consideration shows a significant nonlinear behavior due to
magnetic saturation and non-fundamental wave character-
istics of the coil fluxes. Especially, the case τ∗ = 0Nm em-250

phasizes the need to actively control the currents in order
to suppress the pronounced cogging torque of the motor.

Since the calculation of the optimal currents given in
Fig. 2 is based on the same magnetically nonlinear model
which was used for the simulations, the torque errors given255

in Fig. 2 result solely from the non-exact solution of the
constrained optimization problem (4), (5). Although two
Newton iterations already yield a good accuracy in the
torque, in Fig. 3 the influence of the number of iterations
ni on the accuracy of the torque is examined in more de-260

tail. As expected, a higher number of iterations improves
the accuracy. For ni = 20 almost perfect tracking of the
desired torque is achieved. For the practical application,
however, a compromise between accuracy and computa-
tion time must be found. As it will be shown in the mea-265

surement results discussed later on, a number of ni = 2
iterations turns out to be a good choice. Since the mag-
netically linear case is numerically less expensive, a higher
number of iterations could be used. However, the errors
resulting from the numeric solution of the optimization270

problem are very small already after 2 iterations such that
ni = 2 is also a good choice for the magnetically linear
case.
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m

N
m

1 it.
2 it.
5 it.
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Figure 3: Influence of the number of Newton iterations on the accu-
racy of the optimal solution for the magnetically nonlinear case for
τ∗ = 2Nm.

Finally, the results given in Fig. 4 show the advan-
tages gained from the usage of the magnetically nonlinear275

model for the calculation of optimal coil currents. Taking
a look at the case τ∗ = 0Nm first, it turns out that the
optimal currents obtained from the magnetically nonlinear
and the magnetically linear model exhibit a similar behav-
ior. Even though the results of the magnetically nonlinear280

model show better torque accuracy, the results of the mag-
netically linear model are still comparably good. This is
due to the fact that for the resulting small values of the

currents the influence of the magnetic saturation of the
core is negligible. The results based on the fundamental285

wave model (dq0-model), however, are significantly worse.
As a matter of fact, it is not possible to systematically in-
clude the cogging torque in the dq0-model, which results
in ic1 = ic2 = ic3 = 0 as the optimal values. Then, the
resulting torque τ is equal to the cogging torque of the mo-290

tor. The advantages of using the magnetically nonlinear
model instead of the magnetically linear model can be rec-
ognized for large values of τ∗. The results for τ∗ = 2Nm
in Fig. 4 show that neglecting magnetic saturation entails
an error in the torque of approximately 150mNm.295

In conclusion, these first simulation results demonstrate
that considering the magnetic nonlinearities in the cal-
culation of the optimal currents yields a significant im-
provement of the accuracy of the torque in comparison
to methods based on a magnetically linear model or the300

dq0-model.

4. Flatness-based current control

In the previous section, optimal values of the currents
iIc have been calculated such that the torque τ tracks a de-
sired torque τ∗ and the copper losses are minimized. These305

results are the basis for a flatness-based feedforward and
feedback control strategy to be developed in this section.

4.1. Magnetically nonlinear case

The solution of the optimization problem (4), (5) re-
sults in optimal currents iI∗c and optimal values u∗

tg of the
mmfs of the tree permeances. Considering (1b) with (2),
the corresponding optimal values of the flux linkages ψI∗

c

are given by

ψI∗
c =

(
D̄I

c

)T
D̄cGc

(
D̄T

c H
I
1i

I∗
c +DT

g u
∗
tg +DT

mutm

)
.

(25)

Using this result in (1a), i.e. in

d

dt
ψI∗

c = −Rci
I∗
c +

(
D̄I

c

)T
v∗
c , (26)

with (D̄⊥
c )

Tv∗
c = 0, yields the feedforward part v∗

c of the
control input vc in the form

v∗
c = HI

1

(
d

dt
ψI∗

c +Rci
I∗
c

)
. (27)

The time derivative of the optimal coil flux linkage ψI∗
c

can be calculated from (25)

d

dt
ψI∗

c =
(
D̄I

c

)T
D̄cGc

(
D̄T

c H
I
1

d

dt
iI∗c +DT

g

d

dt
u∗
tg

)
+

(
D̄I

c

)T
D̄c

∂Gc

∂ϕ

(
D̄T

c H
I
1i

I∗
c +DT

g u
∗
tg +DT

mutm

)
ω,

(28)

7

Post-print version of the article: W. Kemmetmüller, D. Faustner, and A. Kugi, “Optimal torque control of permanent magnet synchronous
machines using magnetic equivalent circuits”, Mechatronics, vol. 32, pp. 22–33, 2015. doi: 10.1016/j.mechatronics.2015.10.007
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.mechatronics.2015.10.007


−150

−100

−50

0

50

100

150
i∗ c

1
in

m
A

τ∗=0N m

−80
−60
−40
−20

0
20
40
60
80

τ
−
τ
∗

in
m

N
m

τ∗=0N m

0 10 20 30 40 50 60 70 80 90

−4
−3
−2
−1
0
1
2
3
4

rotor position in ◦

i∗ c
1

in
A

τ∗=2N m

nonlinear
linear
dq0

0 10 20 30 40 50 60 70 80 90
−25

0
25
50
75

100
125
150
175

rotor position in ◦
τ
−
τ
∗

in
m

N
m

τ∗=2N m

Figure 4: Optimal current i∗c1 and torque error τ − τ∗ for the magnetically nonlinear, the magnetically linear and the fundamental wave case
for different desired torques τ∗.

where again the partial derivatives of Gc with respect to
iIc and utg have been neglected. To obtain the time deriva-
tives of the optimal current iI∗c and the optimal mmfs of
the tree permeances u∗

tg, the first order optimality condi-
tions (9) are utilized. The total time derivative of fnl reads
as

d

dt
fnl = Jnl

d

dt




iI∗c
u∗
tg

λ∗

µ∗


+

∂fnl
∂ϕ

ω +
∂fnl
∂τ∗

d

dt
τ∗ = 0, (29)

with the Jacobian Jnl and the partial derivatives ∂fnl/∂ϕ
and ∂fnl/∂τ

∗ summarized in Appendix A. The time deriva-310

tives can be easily obtained from this set of linear equa-
tions, since Jnl is non-singular.

Remark 1. The calculation of dψI∗
c /dt as described in

(28) and (29) is computationally expensive, even if the
Jacobian Jnl needed in (29) has already been calculated in
the Newton iteration (10). Given the fact that the control
strategy is implemented using a fixed sampling time Ts, the
approximation

d

dt
ψI∗

c (kTs) ≈
ψI∗

c,k −ψI∗
c,k−1

Ts
(30)

can be obtained. Using this approximation in (27) signifi-
cantly simplifies the calculation of the feedforward control
part and is therefore preferable for the practical applica-315

tion. The errors resulting from this approximation are
typically small due to the small sampling time Ts.

With (27) an optimal feedforward control law v∗
c is

given. To cope with model inaccuracies and external dis-
turbances, in addition a feedback controller has to be de-320

signed. In a practical application, measurement of the coil
flux linkage is not reasonable. Thus, a control strategy
based on the measured coil currents has to be developed.

Using the feedforward control (27) in (1a), the follow-
ing differential equation for the error in the coil flux linkage
can be formulated

d

dt

(
ψI

c −ψI∗
c

)
= −Rce

I
i +

(
D̄I

c

)T
vc
c, (31)

with the current error eIi = iIc − iI∗c and the feedback part
vc
c of the input voltage vc = vc

c +v∗
c . The coil flux linkage

error can be found as a function of the current error eIi
and the error eu in the mmfs of the tree permeances, eu =
utg − u∗

tg, from the following set of equations

[
I
0

] (
ψI

c −ψI∗
c

)
=

[(
D̄I

c

)T
D̄cGcD̄

T
c H

I
1

DgGcD̄
T
c H

I
1

]
eIi

+

[(
D̄I

c

)T
D̄cGcD

T
g

Gt +DgGcD
T
g

]
eu.

(32)

This equation results from (1b) assuming2 Gc(−D̄T ūt, ϕ) ≈
Gc(−D̄T ū∗

t , ϕ) and Gt(utg, ϕ) ≈ Gt(u
∗
tg, ϕ). The solution

of (32) for the coil flux linkage error reads as

ψI
c −ψI∗

c =
(
D̄I

c

)T
D̄cTlD̄

T
c H

I
1e

I
i = LI

c (ū
∗
t , ϕ) e

I
i , (33)

2Note that this assumption is basically equal to assuming that
the control errors are small.
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with Tl from (12). Please note that, in contrast to the
magnetically linear case, the inductance matrix LI

c is both
a function of ū∗

t and ϕ in the magnetically nonlinear case.
Using (33) in (31), the error dynamics is given by

LI
c

d

dt
eIi = −

(
D̄I

c

)T
D̄c

(
∂Tl

∂ϕ
ω +

∂Tl

∂ū∗
t

dū∗
t

dt

)
D̄T

c H
I
1e

I
i

−Rce
I
i +

(
D̄I

c

)T
vc
c.

(34)

The feedback control law vc
c

vc
c = HI

1

[(
D̄I

c

)T
D̄c

(
∂Tl

∂ϕ
ω +

∂Tl

∂ū∗
t

dū∗
t

dt

)
D̄T

c H
I
1 +Rc

]
eIi

+HI
1L

I
c

(
−λ1ie

I
i − λ0i

∫ t

0

eIi dt

)
,

(35)

with λ1i, λ0i > 0, finally yields an exponentially stable
current error dynamics.325

Remark 2. The feedback control law (35) again includes
some parts which are computationally expensive. However,
in a practical implementation, neglecting the first part on
the right hand side of (35) turns out to be a feasible sim-
plification if the current error eIi is small. Then, the sim-
plified feedback control law reads as

vc
c = HI

1L
I
c

(
−λ1ie

I
i − λ0i

∫ t

0

eIi dt

)
. (36)

The inductance matrix LI
c is, in the magnetically nonlin-

ear case, both a function of ϕ and ū∗
t . Thus, it reflects the

changes due to the rotor position ϕ and saturation of the
iron. Fig. 5(a) shows the entries LI

c,kj, k, j = 1, 2 of LI
c

for τ∗d = 0Nm of the motor under consideration. It can be
seen that the inductances show a significant variation with
respect to a change in the rotor position. A comparison
of the self inductance LI

c,11 for τ∗d = 0Nm with LI
c,11 for

τ∗d = 3Nm in Fig. 5(b) reveals that the influence of sat-
uration on the inductance matrix LI

c is rather small and
can therefore be neglected in a practical application, i.e.
LI
c (ū

∗
t , ϕ) ≈ LI

c

(
ū0
t , ϕ
)
using a nominal operating point

ū0
t . As will be discussed in Section 5 a further simplifica-

tion using the average value L̄I
c ,

L̄I
c =

2

π

∫ π
2

0

LI
c(ū

0
t , ϕ)dϕ, (37)

does not significantly deteriorate the current control accu-
racy for the considered motor. Of course, it is required to
check if the above prerequisites are fulfilled for a specific
motor before these simplifications can be made.

4.2. Magnetically linear case330

The calculation of the feedforward control v∗
c is signif-

icantly simplified for the magnetically linear case. Given
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Figure 5: (a) Entries of the inductance matrix LI
c for τ∗ = 0Nm.

(b) Comparison of LI
c,11 for τ∗ = 0Nm and τ∗ = 3Nm.

the optimal values iI∗c of the coil currents, the correspond-
ing voltage can be obtained from (13) in the form

v∗
c = HI

1

(
LI
c

d

dt
iI∗c +

∂ψI∗
c

∂ϕ
ω +Rci

I∗
c

)
, (38)

with ∂ψI∗
c /∂ϕ resulting from using the optimal currents

iI∗c in (15). The time derivative of iI∗c in (38) can be ob-
tained as a solution of

dfl
dt

= Jl
d

dt

[
iI∗c
λ∗

]
+

∂fl
∂ϕ

ω +
∂fl
∂τ∗

d

dt
τ∗ = 0, (39)

using fl, being the right-hand side of (19), and Jl from
(20). The partial derivatives of fl with respect to ϕ are
given by

∂fl,1
∂ϕ

= λp
(
HI

1

)T
D̄c

∂2Tl

∂ϕ2

[
D̄T

c H
I
1i

I
c

DT
mutm

]
(40a)

∂fl,2
∂ϕ

=
1

2
p
[(
HI

1i
I
c

)T
,uT

tm

] [
D̄c

Dm

]
∂2Tl

∂ϕ2

[
D̄T

c ,D
T
m

] [HI
1i

I
c

utm

]

(40b)

and ∂fl,1/∂τ
∗ = 0, ∂fl,2/∂τ

∗ = −1 holds. For the prac-
tical implementation, it again proves to be useful to ap-
proximate diI∗c /dt by

diI∗c
dt

(kTs) ≈
iI∗c,k − iI∗c,k−1

Ts
, (41)

cf. Remark 1.
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The dynamics of the current error eIi = iIc− iI∗c is given
by

LI
c

d

dt
eIi = −

(
D̄I

c

)T
D̄c

∂Tl

∂ϕ
D̄T

c H
I
1e

I
iω −Rce

I
i +

(
D̄I

c

)T
vc
c

(42)

and the feedback control law vc
c

vc
c =HI

1

((
D̄I

c

)T
D̄c

∂Tl

∂ϕ
D̄T

c H
I
1e

I
iω +Rce

I
i

)

+HI
1

(
−λ1ie

I
i − λ0i

∫ t

0

eIi dt

)
, (43)

with λ0i, λ1i > 0, renders the error dynamics exponentially
stable. As discussed in Remark 2 for the magnetically
nonlinear case, also in the magnetically linear case the
first part of the right hand side of (43) can be neglected335

and LI
c(ϕ) can be approximated by the average L̄I

c for the
considered motor without introducing significant errors.

4.3. Fundamental wave case

For the fundamental wave model, again a flatness-based
control strategy in the form of vd = v∗d+vcd and vq = v∗q+vcq
is developed. In this case, the feedforward part is simply
given by

v∗d =
3

2
Lmpωi∗q (44a)

v∗q = Rci
∗
q +

3

2
Ĵω +

3

2
Lm

d

dt
i∗q, (44b)

where i∗d = 0 and i∗q = 2τ∗/(pM̂) are used. It can be easily
seen that the feedback control law

vcd = Rceid +
3

2
Lmpωeiq +

3

2
Lm

(
−λ1ieid − λ0i

∫ t

0

eiddt

)

(45a)

vcq = Rceiq −
3

2
Lmpωeid +

3

2
Lm

(
−λ1ieiq − λ0i

∫ t

0

eiqdt

)
,

(45b)

in combination with the feedforward control (44) yields an
exponentially stable dynamics for the errors eid = id − i∗d
and eiq = iq − i∗q with λ0i, λ1i > 0. A simplified version of
(45) in the form

vcd =
3

2
Lm

(
−λ1ieid − λ0i

∫ t

0

eiddt

)
(46a)

vcq =
3

2
Lm

(
−λ1ieiq − λ0i

∫ t

0

eiqdt

)
, (46b)

which is frequently used in practical applications, only
yields a small reduction of the control accuracy.340

5. Measurement results

To compare and to evaluate the performance of the pro-
posed torque control concepts, measurement results on the
test stand depicted in Fig. 6 are presented. The test stand
comprises the PSM under consideration which is coupled345

to a harmonic drive (load motor) via a torque sensor and a
high resolution encoder. By means of the harmonic drive
it is possible to fix the angular speed of the motor at a de-
sired value. The torque generated by the PSM is measured
by the torque sensor. The PSM is controlled by a three-350

phase bridge using MOSFETs as power switches. A fixed
pulse-width modulation frequency of 10 kHz is used and
the duty cycles of the individual half-bridges are utilized
to adjust the voltages vck, k = 1, 2, 3, applied to the coils.
The control strategies described in the Sections 3 and 4355

were implemented on a dSPACE 1103 real-time hardware
equipped with a 1GHz PowerPC processor. The funda-
mental wave control strategy was implemented at a sam-
pling time of 100µs, while for the magnetically linear and
the magnetically nonlinear control strategy an increased360

sampling time of 200µs had to be used due to the higher
numerical complexity. Moreover, average values L̄I

c of the
inductance matrix according to (37) and ni = 2 Newton
iterations have been used. For the subsequent measure-
ments, a fixed angular speed of 4 rpm was chosen. Please365

note that this slow speed prevents excitation of resonances
of the mechanical setup which would deteriorate the accu-
racy of the measured torque. In the next section, it will be
proven that the proposed control concept also works well
for fast angular speeds.370

PSM torque sensor angle sensor fly wheel

harmonic drive

Figure 6: Setup of the test stand.

Fig. 7 shows the measurement results of the coil cur-
rent ic1 and the torque τ for the three control strategies
of Sections 3 and 4, and for τ∗ = 0, 1 and 2Nm. In accor-
dance with the simulation results in Fig. 4, the fundamen-
tal wave model performs worst, especially for τ∗ = 0Nm.375

This is, as has been already discussed, due to the fact that
the cogging torque is not included in the fundamental wave
model. The magnetically linear and the magnetically non-
linear control strategies, however, show almost identical
behavior for τ∗ = 0Nm. The benefits of the nonlinear380
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Figure 7: Comparison of the measured coil current ic1 and torque τ of the fundamental wave (dq0), the magnetically linear and the magnetically
nonlinear control strategy for τ∗ = 0, 1 and 2Nm.

control strategy in comparison to the linear and the fun-
damental wave strategy is evident for increased desired
torques τ∗ = 1Nm and τ∗ = 2Nm, see Fig. 7.

In Fig. 8 the corresponding control input vc1 and the
current control error ic1 − i∗c1 for the nonlinear control385

strategy for τ∗ = 2Nm are depicted. Taking a closer look
at the control input, characteristic steps can be seen in
the measurements. These steps result from the compensa-
tion of the nonlinearities of the three phase bridge in the
vicinity of zero currents. The measurement of the current390

control error shows that the current is controlled to the
desired value within the measurement accuracy, which is
in the order of ±7mA in the present experimental setup.

It has to be mentioned that in comparison to the sim-
ulation results an increased deviation from the desired395

torque values is present in the measurements. This can
be attributed to two facts:

1. The mechanical setup, in particular the flexible cou-
plings, introduces small periodic disturbances which
are also measured by the torque sensor.400

2. The model, as a matter of fact, does not perfectly

represent the real system behavior, see also [38]. These
model errors are then reflected in the measured torque.

It is worth mentioning that the measurements of the
torque sensor are only used to evaluate the control quality405

but are, of course, not part of the feedback loop. Thus,
even if the current perfectly tracks the desired current, cf.
Fig. 8, the errors in the model from current to torque
are still present. However, it is well documented that the
proposed nonlinear control concept which is based on the410

magentic equivalent circuit model of [38] brings along a
significant improvement of the torque control accuracy. In
conclusion, the measurement results show that the pro-
posed nonlinear control concept is practically feasible and
yields good tracking results of the desired torque.415

6. Control of angular speed

There are a number of applications where the PSM
is used in a torque-controlled mode as e.g. in electrical
power steering systems or traction applications. Therein,
it is evident that an improvement of the torque control420
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accuracy directly yields an improved system performance.
In most cases, however, the torque (or current) controller
is used as a subordinate control loop for an outer speed or
position control. In this section, it will be outlined that
the improved accuracy of the proposed nonlinear torque425

control strategy also entails an improvement of a cascaded
speed control loop.

To do so, the test stand depicted in Fig. 6 is adapted
by removing the torque sensor and the harmonic drive,
directly coupling the fly wheel and the angle sensor to the
PSM. The angular speed ω = ϕ̇ of the resulting system
can be described in the form

d

dt
ω =

1

θm

(
−dvω − dc tanh

(
ω

ω0

)
+ τ

)
, (47)

with the moment of inertia θm of the PSM including the
fly wheel and the viscous damping coefficient dv. The
Coulomb friction of the setup is approximated by the term430

dc tanh(ω/ω0), where ω0 is used to parameterize the steep-
ness at ω = 0.

In a cascaded controller design it is usually assumed
that the torque controller is very fast and thus the er-
ror between the desired torque τ∗ and the real torque τ
generated by the PSM is negligible. Setting τ = τ∗ in
(47), τ can be considered as a virtual control input to the
system. A two degrees-of-freedom flatness-based control
concept of the form τ∗ = τ∗∗ + τ∗c is frequently employed
for the speed control of such a system in literature. The
feedforward part τ∗∗ and the feedback part τ∗c are given

by

τ∗∗ = dvω
∗ + dc tanh

(
ω∗

ω0

)
+ θm

d

dt
ω̇∗ (48a)

τ∗c = θm

(
−λ1ωeω − λ0ω

∫ t

0

eωdt

)
, (48b)

with the at least twice continuously differentiable desired
angular speed ω∗, the controller parameters λ1ω, λ0ω > 0
and the speed error eω = ω − ω∗.435

Remark 3. For the control strategies developed in Sec-
tions 3 and 4, the time derivative of the desired torque
τ∗ is necessary, cf. (29) for the magnetically nonlinear
case, (39) for the magnetically linear case and (44) for the
fundamental wave case. The controller part τ∗c includes440

the measured speed ω, which can cause problems when per-
forming this differentiation. Thus, for the practical appli-
cation it is often useful to set τ̇∗ ≈ τ̇∗∗, with τ∗∗ from
(48a). A similar idea can of course also be used for the
simplified derivations given by (30) and (41).445

Fig. 9 presents the measurement results of the speed
controller for constant desired speed ω∗. Therein, the
speed controller (48) was used with the three torque con-
trol strategies of Sections 3 and 4 in the subordinate con-
trol loop. It can be seen that for the fast angular speed of450

200 rpm only small differences between the three torque
control strategies are visible, while for slow angular speeds
the magnetically nonlinear and the magnetically linear
control strategies yield significantly better results com-
pared to the fundamental wave case. The main reason455

for the errors in the speed are the errors in the subordi-
nate torque control, where the frequency of the resulting
disturbance is proportional to the angular speed. The high
frequency disturbances for 200 rpm are well suppressed by
the mechanical inertia, while for lower angular speed an460

increased influence can be seen. Only small differences
can be seen between the magnetically linear and the mag-
netically nonlinear case since the average torque necessary
to drive the mechanical setup is rather small. As depicted
in Fig. 7, the magnetically linear and magnetically non-465

linear control strategies show similar performance in this
torque range. This result proves that the proposed torque
control strategy is beneficial also for speed control, in par-
ticular for slow angular speeds as they typically occur for
precision position tasks in robotics.470

Remark 4. A number of papers dealing with the speed
and the position control of PSMs with pronounced cog-
ging torque (as the PSM under consideration) has been
reported in literature, see, e.g., [46–49]. A frequent ap-
proach to tackle this problem is to consider the torque rip-475

ple in the form of a (periodic) disturbance for the speed
controller, which is compensated by more or less involved
control strategies. In comparison to these approaches, us-
ing a torque controller as presented in Sections 3 and 4
already ensures that only small torque ripples are produced480
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Figure 9: Comparison of the speed control for constant desired speed
using the torque control strategies of Sections 3 and 4.

by the PSM. Thus, the accurate control of the speed is sig-
nificantly simplified. Especially for drive trains with small
inertia or low angular stiffness, this approach can be con-
sidered advantageous.

To analyze the current control accuracy, the desired485

and the measured coil current i∗c1 and ic1, respectively, are
presented in Fig. 10. The corresponding control input,
i.e. the coil voltage vc1, is also depicted there. It can
be seen that, although the current has to track a rather
complex desired current, a very good tracking accuracy490

can be achieved.
Finally, in Fig. 11 the results of an experiment, which

drives the PSM to its operational limits, are given. Here,
the desired speed is changed from −600 rpm to 600 rpm
(half of the rated speed) within 0.6 s using approx. 2.5-495

times the rated torque of the PSM. An almost perfect
tracking accuracy of the desired speed is obtained using
the speed control strategy from (48) and the magnetically
nonlinear torque control strategy of Section 4.1. The cor-
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Figure 10: Control input vc1 and current control accuracy for ω∗ =
200 rpm.

responding coil current ic1 and coil voltage vc1 are also500

depicted in Fig. 11.
In conclusion, the experiments performed in this sec-

tion and in Section 3.4 prove the practical feasibility and
demonstrate the improvements in control accuracy com-
pared to classical control strategies based on a fundamen-505

tal wave model.

7. Conclusion

In this work, an optimal torque control for PSMs de-
scribed by MEC models was presented and tested on an
experimental setup. It was shown that by systematically510

incorporating the magnetic saturation and the non-fun-
damental wave characteristics into the model and the con-
troller design, significant improvement of the control accu-
racy and the performance can be obtained. Moreover, the
practical feasibility was demonstrated by means of mea-515

surements on an experimental setup.
Up to now, limitation of the control input, i.e. the

coil voltages, has not been taken into account. Thus, fu-
ture research will be devoted to the question how to ex-
tend the proposed nonlinear control strategy to the field520

weakening range of the motor. Moreover, since the MEC
modeling approach is not limited to PSMs, the application
of this method to other motor designs as switched reluc-
tance, synchronous reluctance or induction machines will
be examined. Finally, the usage of the MEC model in a525

model predictive control setup is a further topic of current
research.
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Appendix A. Entries of the Jacobian Jnl of fnl

This appendix summarizes the entries of the Jacobian
Jnl for the magnetically nonlinear case3. Given (fnl,1)

T =
∂L/∂iIc , the corresponding partial derivatives are given by

∂fnl,1
∂iIc

= Q+ λp
[
(HI

1)
T ,0,0

]
D̄
∂Gc

∂ϕ
D̄T



HI

1

0
0


 (A.1a)

∂fnl,1
∂utg

= λp
[
(HI

1)
T ,0,0

]
D̄
∂Gc

∂ϕ
D̄T



0
0
I


 (A.1b)

∂fnl,1
∂λ

= p
[
(HI

1)
T ,0,0

]
D̄
∂Gc

∂ϕ
D̄T



HI

1i
I
c

utm

utg


 (A.1c)

∂fnl,1
∂µ

=
(
HI

1

)T
D̄cGcD

T
g (A.1d)

The partial derivatives of (fnl,2)
T = ∂L/∂utg result in

∂fnl,2
∂utg

= λp


∂Gt

∂ϕ
+ [0,0, I] D̄

∂Gc

∂ϕ
D̄T



0
0
I




 (A.2a)

∂fnl,2
∂λ

= p


∂Gt

∂ϕ
utg + [0,0, I] D̄

∂Gc

∂ϕ
D̄T



HI

1i
I
c

utm

utg






(A.2b)

∂fnl,2
∂µ

= Gt +DgGcD
T
g (A.2c)

3Note that the derivatives of the permeance matrices Gt and Gc

with respect to utg and iIc are assumed to be negligible.

and the partial derivatives of (fnl,3)
T = ∂L/∂λ and (fnl,4)

T =
∂L/∂µ are given by

∂fnl,3
∂λ

= 0 (A.3a)

∂fnl,3
∂µ

= 0 (A.3b)

∂fnl,4
∂µ

= 0. (A.3c)

The remaining entries of Jnl result from the symmetry of
this matrix.530
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The partial derivatives of fnl with respect to ϕ read as

∂fnl,1
∂ϕ

= λp
[(
HI

1

)T
,0,0

]
D̄

∂2Gc

∂ϕ2
D̄T



HI

1i
I
c

utm

utg




+
(
HI

1

)T
D̄c

∂Gc

∂ϕ
DT

g µ (A.4a)

∂fnl,2
∂ϕ

= λp


∂2Gt

∂ϕ2
utg + [0,0, I] D̄

∂2Gc

∂ϕ2
D̄T



HI

1i
I
c

utm

utg






+

(
∂Gt

∂ϕ
+Dg

∂Gc

∂ϕ
DT

g

)
µ (A.4b)

∂fnl,3
∂ϕ

=
1

2
p
(
uT
tg

∂2Gt

∂ϕ2
utg+

[
(HI

1i
I
c)

T ,uT
tm,uT

tg

]
D̄
∂2Gc

∂ϕ2
D̄T



HI

1i
I
c

utm

utg



)

(A.4c)

∂fnl,4
∂ϕ

=

[
Dg

∂Gc

∂ϕ
D̄T

c H
I
1,

∂Gt

∂ϕ
+Dg

∂Gc

∂ϕ
DT

g

] [
iIc
utg

]

+Dg
∂Gc

∂ϕ
DT

mutm (A.4d)

and ∂fnl,1/∂τ
∗ = 0, ∂fnl,2/∂τ

∗ = 0, ∂fnl,3/∂τ
∗ = −1 and

∂fnl,4/∂τ
∗ = 0.
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