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An analytical approach for modelling asymmetrical hot rolling of heavy plates

Thomas Kiefer* and Andreas Kugi

Complex Dynamical Systems Group, Automation and Control Institute, Vienna University of
Technology, Vienna, Austria

(Received 28 January 2007; final version received 2 August 2007)

During the hot rolling process of heavy plates, asymmetries in the roll gap due to
different circumferential velocities, different work roll radii or vertical temperature
gradients lead to a bending of the outgoing material. This so-called ski-effect brings
along a degradation of the plate quality with respect to the flatness properties and may
lead to problems in the further processing steps. Thus, it is aimed at designing a strategy
to minimize the ski or even better to avoid the occurrence of the ski-effect. This work is
devoted to the development of a mathematical model that can be used for online
execution in process control as a basis of a ski control concept. Although most models
in the literature are based on numerical methods (e.g. finite elements), we will present a
semi-analytical approach utilizing the upper bound theorem for ideal rigid-plastic
materials. Starting from a detailed model, simplifications are made to decrease the
execution time. The results thus obtained are compared both with numerical data from
finite element simulations and measurement data taken in a rolling mill by CCD-camera
measurements.

Keywords: ski-ends; hot rolling; upper bound method

1. Introduction

In heavy plate mills, the demands on product thickness and flatness quality are steadily
increasing. The quality is primarily influenced by the processing at the finishing mill stand
where the thickness of plates of different widths and lengths is decreased in several passes.
As a consequence, the improvement of the process control is a permanent subject of
research. In the last years it has turned out that especially the development of accurate
physics-based models that serve as a basis for the controller design and for the system
optimization leads to very good results in view of a further improvement of the product
quality.

One form of flatness defects that often occurs during hot rolling of plates is the front
end bending of the rolled plates resulting from asymmetries in the roll gap, for example
caused by different circumferential velocities of the work rolls, different friction
parameters or by a vertical temperature gradient. Due to the form of the bended plate
this effect is sometimes also referred to as the ski-effect. In addition to the decrease in the
product quality, large ski-ends may even damage the roller table and the measuring
equipments behind the roll gap and are known to cause severe problems in the further
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processing steps, for example at the hot leveler and in the cooling zone. Consequently,
the ski-effect has to be avoided or at least minimized by the use of an effective control
concept.

In general, the ski-effect can be quantified by the curvature of the outgoing plate ends.
The interesting point of the front end bending phenomenon is the fact that the curvature
depends not only on the asymmetries themselves but also on the geometry of the roll gap.
In particular, it turns out that for identical asymmetrical rolling conditions the curvature
even changes sign when rolling plates of different thicknesses with different thickness
reductions. In this context, the so-called shape factor, that is the ratio of the arc length of
contact to the medium plate thickness, is usually used to characterize the roll gap
geometry. If we take for example the case of rolling a homogeneous plate where the only
asymmetry in the roll gap is due to different circumferential velocities of the work rolls,
then, as one would intuitively expect, the plate tends to bend away from the faster work
roll for small shape factors. In contrast to this, for larger shape factors, the curvature
changes sign and the plate bends toward the faster work roll.

Clearly, a mathematical model has to be able to describe this effect to serve as a
suitable basis for designing control strategies to avoid front end bending in the hot rolling
process. Several methods for predicting the curvature of the rolled material can be found
in the literature. In general, these models are only of limited benefit in process control
because either the computational costs are too high or the models are not accurate enough
to describe the basic phenomena as discussed above. In this article, we will present a
physically motivated mathematical model of the front end bending phenomenon that has
proven to be a good compromise between a high degree of accuracy and low
computational costs for executing the model in the process control unit. We will
especially focus on the influence of an asymmetry in the work roll circumferential speeds
because such a difference can be used later on as a control input for the avoidance of ski-
ends, see [1,2].

The article is organized as follows: in Section 2 we will have a closer look at the
literature dealing with this subject. This will also give an explanation for the choice of the
methods being used in this work to model the ski-effect. The mathematical model of
the asymmetrical roll gap is based on the upper bound theorem for ideal rigid-plastic
materials and will be presented in detail in Section 3. A reduction of the computational
costs of this model can be achieved by using a simplified model that results from the
analogy between rolling and flat compression. In Section 4 these models are compared
with finite element (FE) simulations and the results obtained with measured data taken by
a CCD-camera for two characteristic plates. In Section 5, the article will close with a short
summary and an outlook to future research activities.

2. Literature survey

Most of the early contributions in the 1950s and 1960s in the field of front end bending
were devoted to experimental studies. Thus, for instance [3] describes asymmetrical rolling
experiments of steel and lead caused by unequal diameters of the working rolls in a pinion
drive. These results were extended in [4] where the asymmetry in the roll gap results from
different circumferential velocities of the work rolls or from different friction conditions
on the upper and the lower rolls. All these experiments were performed with lead because
the material properties of lead at room temperature are similar to those of steel at higher
temperatures. Furthermore, in [5] different experimental results for asymmetrical hot
bar rolling are presented. Summarizing, these experiments show that one of the main
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reasons for the front end bending phenomenon is a mismatch in the circumferential
velocities of the work rolls and that the curvature strongly depends on the geometry of the
roll gap.

First attempts to provide an analytical solution to the problem of the ski-effect under
asymmetrical rolling conditions were given in [6,7]. The authors use the so-called slip-line
field analysis which is a method of characteristics. In this case, the characteristics are the
lines of the main shear stress. This method can only be used to solve plane-strain steady-
state deformation problems. The slip-line model is capable of predicting the change of sign
of the curvature of the outgoing material for sticking friction, but the qualitative
agreement with measured data is moderate. The application of this method to the general
problem fails because the construction of slip-line fields can become complicated and it is
known that this method is in general still limited in predicting results that give good
correlations with experimental work, see [8].

In the last years, FE methods have become more and more important in the
simulation of hot rolling processes, in particular in the case of asymmetrical rolling
conditions. Kobayashi et al. [8] describes the basic formulation of the FE method for
metal forming and in [9] one finds the FE method applied to asymmetrical rolling. Further
FE simulation results can be found in [10], where a mismatch in the lubrication of the
upper and the lower work roll is the reason for the occurrence of the ski-ends, or in
[11,12], where the main focus is laid on the investigation of the influence of different work
roll circumferential velocities on the curvature of the outgoing plate. In [13], FE
simulations are compared with measured data taken in a pilot plant. In addition, [14]
combines the FE results with a neural network to get an empirical model for the
prediction of the curvature. The FE simulations could be reproduced by the neural
network model in a quite satisfactory way. However, a drawback of this model is the
restriction to the specific set of FE data used to train the neural network, an extrapolation
to other plate geometries and/or other asymmetrical rolling conditions is not possible. In
general, FE models allow an exact prediction of the shape of the material but the required
execution time constitutes the main deficiency of this approach, in particular in view of its
real-time application in the process control unit.

In steel industries, the calculation of the shape of the rolled plate is often based on the
classical slab method where it is assumed that the cross-sectional area of the rolled plates
remains plane during the rolling process. Clearly, this assumption does not apply to the
hot rolling of plates, see, for example the measurements reported in [15]. Even though
this theory leads to feasible results for the prediction of the rolling torque and the rolling
force, it does not serve as a suitable basis for describing the front end bending
phenomenon.

To sum it up, it can be stated that all these methods have their advantages but they are
not feasible to provide a mathematical model that meets the demands on accuracy and
short execution time for process control at the same time. As a consequence, we decided to
use the so-called upper bound method, which can also be found in the literature in the
context of the front end bending phenomenon. Henceforth, we will show that this
approach brings up a mathematical model with a good tradeoff between accuracy and
complexity and thus execution time.

3. Modelling the ski-effect

Exact solutions for problems in metal forming processes are in general difficult to
obtain. It is known from the mathematical theory of elasticity that the principles
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of minimum of potential energy can be used to provide good results for diffi-
cult boundary value problems. Similar methods are also valid for plastic materials. The
role of these extremum principles in plasticity is steadily increasing because they
also serve as a basis for the numerical solution of problems in plasticity, for example
in FE simulations as shown in [8] Apart from their relevance for numerical appli-
cations the extremum principles can also be used to calculate approximate solutions
of metal forming problems. We will take advantage of this fact for the derivation of
a semi-analytical model for the problem of front end bending in the hot rolling
process.

In the theory of plasticity, there are two methods that use extremum principles,
namely the upper bound and the lower bound method, see, for example [8,16,17].
In the theory of the lower bound method a so-called statically admissible stress field
is assumed and optimized with respect to some free parameters. It can be shown that
any statically admissible stress field yields a lower bound for the total power of
deformation, see, for example [17]. The drawback of this method lies in the fact
that one has to guess a statically admissible stress field which is in general difficult to
obtain.

Therefore, we will use the upper bound method (UBM). Thereby, we have to determine
a so-called kinematically admissible velocity field, that is a velocity field satisfying the
continuity equation and the velocity boundary conditions, where some of the parameters
are not directly fixed. These parameters are referred to as pseudo-independent parameters.
The extremum principle guarantees that any kinematically admissible velocity field yields
an upper bound for the total power of deformation, see, for example [17]. In the UBM the
pseudo-independent parameters of the kinematically admissible velocity field are
determined by minimizing the total power of deformation with respect to these
parameters. The so-obtained resulting kinematically admissible velocity field is assumed
to be close to the real velocity field and serves as a basis for calculating the curvature of the
outgoing plate ends.

In the present contribution, we use the upper bound theorem for ideal rigid-plastic
materials to derive a semi-analytical model for the asymmetrical hot rolling process of
heavy plates. As one might expect, the crucial point in the application of the UBM is the
formulation of a suitable kinematically admissible velocity field. An approach for
describing asymmetrical rolling using the UBM can be found in [18] where a stream
function is used to derive a kinematically admissible velocity field. In this contribution,
we will use polynomial velocity fields as ansatz functions. In a first attempt, this velocity
field is formulated in such a way that the roll gap geometry including its boundaries is
described as exact as possible. This leads to a model with five pseudo-independent
parameters that can be evaluated in a few seconds. For process control, we will use a
simplified velocity field with four pseudo-independent parameters similar to that
presented in [19] taking advantage of the analogy between rolling and flat compression.
The resulting expression for the total power of deformation can be minimized within
300 ms on a standard PC. The models are compared with each other and it turns out
that the accuracy of the simplified model suffices to describe the asymmetrical rolling
process.

Before starting with the derivation of the model, we must have a closer look at the
basic relations that are necessary to formulate the total power of deformation, which is the
basis for the application of the upper bound theorem. After these preliminaries of
plasticity theory, we will present a detailed and a simplified model utilizing the upper
bound method.
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3.1. Basic preliminaries of plasticity theory

In the following we will consider a three-dimensional Euclidean space with coordinates
x ¼ (x1, x2, x3). For a more general formulation the reader is referred to [20]. Let u denote
the (spatial) velocity with the components ui ¼ @

@t x
i; i ¼ 1; 2; 3. Then the equation of

continuity reads as

_rþ rdivðuÞ ¼ 0 ð1Þ

with the mass density r(x,t), the divergence operator div and _r ¼ @
@trþ

P3
j¼1 u

j @
@xj r. If we

take into account the external body force b(x,t) the balance of momentum yields

r _u ¼ rbþ divðsÞ ð2Þ

with the Cauchy stress tensor s and _ui ¼ @
@t u

i þ
P3

j¼1 u
j @
@xj u

i.
For the investigation of the plastic deformation regime we consider the (quasi-)static

case, that is _u ¼ 0. Furthermore, the external body force b(x,t), which in our case is the
gravitational force, is negligible and the material is assumed to be incompressible, that is
r is constant. Under these assumptions the equation of continuity (1) and the balance of
momentum (2) expressed in Euclidean coordinates x simplify to

X3
j¼1

@uj

@xj
¼ 0 and

X3
j¼1

@sij

@xj
¼ 0; i ¼ 1; 2; 3; ð3Þ

where sij ¼ sji, i 6¼ j ¼ 1,2,3 denote the components of the Cauchy stress tensor s. In the
literature the first equation in (3) is also referred to as the incompressibility condition and
the second equations are known as the equations of equilibrium.

Next we will summarize the constitutive relations of a rigid-plastic material.
Thereby, it is assumed that the yielding of the material is unaffected by a hydrostatic
pressure or tension [16,21]. The hydrostatic component sm of the stress s is given by
the relation

sm ¼
1

3
s11 þ s22 þ s33
� �

: ð4Þ

Thus, for the formulation of the constitutive equations only the deviatoric stress
components

�sij ¼ sij � dijsm; ð5Þ

with the Kronecker delta dij ¼ 1 for i ¼ j and dij ¼ 0 otherwise, are taken into account.
The so-called yield criterion of von Mises [16,22–24] states that yielding occurs when the
second invariant J2;�s of the deviatoric stress tensor �s, given by the relation

J2;�s ¼
1

2

X3
i¼1

X3
j¼1

�sij�sij; ð6Þ
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reaches the critical value (k)2 with the shear yield stress k

J2;�s ¼ ðkÞ2: ð7Þ

Furthermore, it is known that the shear yield stress k is related to the yield stress kf (for
tension) via kf ¼

ffiffiffi
3
p

k. In the plastically deformed regions the constitutive equation is
given by a relationship between the deviatoric stress �s and the so-called strain-rate tensor
or rate-of-deformation tensor d whose components are defined in the form

dij ¼
1

2

@ui

@xj
þ @u

j

@xi

� �
: ð8Þ

In the literature this constitutive equation for the plastic deformation is also referred to
as the flow rule. Henceforth, we will use the flow rule of Lévy and von Mises given in
[8,21,24]

�sij ¼ kffiffiffiffiffiffiffiffi
J2;d

p dij with J2;d ¼
1

2

X3
k¼1

X3
l¼1

dkldkl: ð9Þ

3.2. Upper bound theorem

Let us assume that in the considered region with the volume V the surface velocities and
tractions are such that the entire material is in a state of plastic flow. Then, the total power
of deformation comprises three parts. The first part describes the internal power of
deformation and is given by

PV ¼
Z
V

X3
i¼1

X3
j¼1

sijdijdv ¼
Z
V

X3
i¼1

X3
j¼1

�sij þ dijsm
� �

dijdv

¼
Z
V

X3
i¼1

X3
j¼1

�sijdijdv ð10Þ

with the volume element dv. Note that for the last equality in equation (10) the
incompressibility condition from equation (3)

P3
j¼1

@uj

@xj ¼
P3

i¼1
P3

j¼1 d
ijdij ¼ 0 was used.

Inserting the flow rule of Lévy and von Mises due to equation (9) into equation (10), we
obtain

PV ¼
ffiffiffi
2
p

k

Z
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

X3
j¼1

dijdij

vuut dv: ð11Þ

The second part of the total power of deformation is due to the shear losses at the
boundary surface Sd where tangential discontinuities in the velocity field do occur.
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With jDuSd
j as the amount of tangential velocity discontinuity along the surface Sd we get

for the shear losses the relation

PSd
¼ k

Z
Sd

jDuSd
jds ð12Þ

with the area element ds. The friction losses at the contact surface Sw of the workpiece and
a tool constitute the third part. Thereby, the power dissipated on the contact surface takes
the form

PSw
¼
Z
Sw

tfjDuSw
jds; ð13Þ

where jDuSw
j denotes the amount of tangential velocity discontinuity between the

workpiece and the tool and tf is the frictional stress on the contact surface Sw. Clearly,
the power balance ensures that the power Pext supplied by the work tool (in our
case the work rolls) is equivalent to the total power of deformation, that is
Pext ¼ PV þ PSd

þ PSw
.

As already mentioned in the introductory part of this section the components ũ i of a
velocity field are called kinematically admissible if they satisfy the incompressibility
condition from equation (3) throughout the body and those boundary conditions where a
certain surface velocity is prescribed. Then the extremum principle of the UBM guarantees
that for any kinematically admissible velocity field the following inequality holds, see, for
example [8,17]

Pext � ~PV þ ~PSd
þ ~PSw

: ð14Þ

Here ~PV; ~PSd
and ~PSw

stand for the expressions of equations (11)–(13) evaluated for
ui ¼ ũ i. To get a good approximation of the actual velocity field a kinematically
admissible velocity field with free parameters, the so-called pseudo-independent
parameters, is chosen and the right-hand side of equation (14) is minimized with respect
to these parameters.

3.3. Detailed model

Throughout the following application of the UBM to the front end bending problem some
further assumptions have to be made to keep the complexity and the computational costs
to a minimum. The lower and upper work rolls are considered to have a perfect cylindrical
shape with radius R, cf. Figure 1. Thus, flattening and bending of the rolls are neglected.
Furthermore, we assume a plane plastic flow in the roll gap, that is the velocities of all
points are in planes parallel to the (x1, x2)-plane or the component of the velocity u3 ¼ 0.
As a consequence of this assumption the volume or surface integrals of equations (11)–(13)
simplify to surface or line integrals, respectively. In addition, no backward and no front
tension is applied to the entry and exit cross section of the plate in the roll gap. Thus, the
only external power supplied to the deformation process is due to the work rolls and is
given by Pext ¼ Tuou þ Tlol with the roll torques Tu and Tl and the angular velocities ou
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and ol of the upper and the lower work roll. The material in the roll gap is assumed to
behave as an ideal rigid-plastic material that can be described by the flow rule of Lévy and
von Mises according to Equation (9). The friction between the material in the roll gap and
the work rolls is described by a friction factor model of the form

tfu ¼ muk and tfl ¼ mlk; ð15Þ

where tfu and tfl denote the frictional stresses on the contact surface between the material
and the upper and lower work roll, respectively, and mu and ml are the so-called friction
factors, see, for example [8].

Figure 1 depicts the roll gap geometry and the zone of plastic deformation. For
determining a suitable kinematically admissible velocity field, we divide the plastic
deformation zone into an upper and a lower part. Subsequently, the quantities referring to
the upper or the lower zone will be distinguished by an index u or l, respectively. For the
two zones a 2 {u,l} we take the following ansatz for the kinematically admissible velocity
field

~u1a ¼ a1aðx1Þ x2 � x20
� �

þ a2aðx1Þ

~u2a ¼ �
1

2

@a1aðx1Þ
@x1

x2 � x20
� �2� @a2aðx1Þ

@x1
x2 � x20
� �

;
ð16Þ

where a1a(x
1) is a polynomial of third order and the function a2a(x

1) will be determined by
the boundary conditions. It can be easily seen that the velocity field in equation (16)
satisfies the incompressibility condition (3) throughout the whole plastic deformation

Figure 1. Roll gap geometry for asymmetrical rolling.
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zone. The parameter x20 describes the vertical displacement of the upper and the lower
zones with respect to the symmetry axis (x1-axis), cf. Figure 1. The choice of Equation (16)
also ensures that for x2 ¼ x20 the velocity component ~u2a ¼ 0 for a 2 {u,l}. Thus, the
boundary �d : x2 ¼ x20 between the upper and the lower deformation zones constitutes a
surface with tangential velocity discontinuity only, because the normal velocity
components are equal to zero.

The second demand on a velocity field to be kinematically admissible is that it has to
satisfy the velocity boundary conditions. Clearly, at the upper and lower contact zones
between the work rolls and the material, described by the relations (Because of the
assumption of a perfect cylindrical shape of the work rolls, the real boundaries between
the material and the rolls are clearly described by segments of a circle. Here we take a
Taylor series expansion of order 3 because only small values for x1 are necessary to
describe the contact zone in this case.)

�u : x2 ¼ juðx1Þ ¼
hex
2
þ ðx

1Þ2

2R

�l : x2 ¼ jlðx1Þ ¼ �
hex
2
� ðx

1Þ2

2R
;

ð17Þ

the velocity must be tangential to the work roll surface. Thus, the components
~u1a and ~u2a; a 2 fu; lg, have to meet the conditions

~u2a
~u1a

����
�a

¼ @jaðx1Þ
@x1

; a 2 fu; lg: ð18Þ

Inserting Equation (16) into Equation (18) gives two ordinary differential equations of first
order for the functions a2u(x

1) and a2l(x
1) which can be solved analytically. With the eight

free parameters of the polynomials a1u(x
1) and a1l(x

1) and the two integration constants of
the solutions of the odes (18) we have 10 free parameters at our disposal to satisfy the
velocity boundary conditions. At the rigid-plastic boundary of the roll gap exit we assume
that the normal velocity components are zero, that is ~u2að0; x2Þ ¼ 0, and that the tangential
velocity ~u1að0; x2Þ is an affine function of x2. With these assumptions we get the following
six conditions

@a1a
@x1

����
x1¼0
¼ 0;

@a2a
@x1

����
x1¼0
¼ 0; a 2 fu; lg

a2uð0Þ � a2lð0Þ ¼ 0 and a1uð0Þ � a1lð0Þ ¼ 0;

ð19Þ

of which only four are linearly independent.
A systematic treatment of the rigid-plastic boundary at the roll gap entry �en

u and �en
l

cf. Figure 1, turns out to be much more difficult. If we were exact in our formulation we
would have to calculate the shape of this boundary and a kinematically admissible velocity
field would have to satisfy the boundary conditions ~u2a

��
�en
a
¼ 0 and ~u1a

��
�en
a
¼ uen with the

constant entry velocity uen of the rigid plate. Without going into further details here it can
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be shown that this approach leads to an algebraic equation for the determination of the
boundary �en

u and �en
l which cannot be solved analytically and thus drastically com-

plicates the solution procedure. For this reason it is usual within the UBM to fix the
boundaries before starting the solution of the problem. In our case we take advantage of
the results from FE studies to gain information about the shape of the rigid-plastic
boundary at the roll gap entry. Figure 2 depicts the simulated plastic strain intensity at the
roll gap entry indicating the beginning of the plastic deformation zone of the material in
the roll gap, see [25] for further details.

Based on this result we use a parabolic approximation of the boundary �en
a in the form

�en
a : x1 ¼ caðx2Þ ¼

lda � l0

jaðldaÞ � x20
� �2 ðx2 � x20Þ

2 þ l0; a 2 fu; lg ð20Þ

with the parameter l0 as the length of the plastic deformation zone at x2 ¼ x20 and the
parameters ldu and ldl denoting the arc lengths of contact for the upper and the lower work
rolls, respectively. Note that the parameters ldu and ldu are related via the entry and exit
thicknesses in the form, cf. Equation (17)

hen ¼ hex þ
ðlduÞ2

2R
þ ðldlÞ

2

2R
: ð21Þ

As it can be seen from Figure 2 this approximation fits quite well the actual
rigid-plastic boundary at the roll gap entry. Now we demand from the velocity field that at

Figure 2. Plastic strain intensity at the roll gap entry as an indicator for the rigid-plastic boundary.
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the contact points Cu and Cl as well as at the point Cm on the boundaries �en
u and �en

l ,
see Figure 1, there is no velocity discontinuity in the normal components. These
assumptions provide four additional conditions for determining four of the 10 free
parameters of the velocity field, but further free parameters are provided by means of
ldu, ldl, l0 and uen which are not independent because of Equation (21). Please keep in
mind that we would have to guarantee this condition for the whole rigid-plastic
boundary �en

u and �en
l but with the choice of Equation (16) this turns out to be impossible.

To ensure the overall mass balance, a further parameter can be fixed by imposing the
condition

Zx20
�hex=2

~u1l ð0; x2Þdx2 þ
Zhex=2
x2
0

~u1uð0; x2Þdx2 ¼ henuen: ð22Þ

Summarizing, we may use the following five parameters as pseudo-independent
parameters in the kinematically admissible velocity field for the optimization problem
within the UBM: the entry velocity uen, the vertical displacement x20 of the upper and the
lower plastic deformation zones, the arc length of contact of the upper work roll ldu,
the length l0 of the plastic deformation zone at x2 ¼ x20 and the slope a1u(0) ¼ a1l(0) of the
tangential velocity ~u1að0; x2Þ at the roll gap exit. Clearly, all these parameters do have a
physical meaning and this allows us to give a physical interpretation of the optimization
results within the UBM.

The internal power of deformation in the two deformation zones with volumes Vu and
Vl takes the form, cf. Equations (11) and (8),

~PVa ¼
ffiffiffi
2
p

k

Z
Va

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

@~u1a
@x2
þ @~u2a
@x1

� �2

þ @~u1a
@x1

� �2

þ @~u2a
@x2

� �2
s

dv ð23Þ

with a 2 {u,l}. The power dissipated in the contact zones between the work rolls
and the material, �u and �l, can be calculated by means of Equations (13) and (15) in the
form

~P�a ¼ mak

Zlda
0

Ua �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~u1aÞ

2 þ ð~u2aÞ
2

q� �
�a

�����
�����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @jaðx1Þ

@x1

� �2
s

dx1 ð24Þ

with the circumferential velocity of the upper and lower work rolls Ua, a 2 {u,l}. Following
Equation (12) the shear losses due to the tangential velocity discontinuities on the
boundary �d between the upper and the lower deformation zone reads as

~P�d
¼ k

Zl0
0

ð~u1u � ~u1l Þ�d

��� ���dx1: ð25Þ
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Analogously, the tangential velocity discontinuities at the rigid-plastic boundaries
�en
u and �en

l at the roll gap entry cause shear losses of the form

~P�en
a
¼ k

Z
�en
a

~u1 � uen
~u2

� 	
�en
a

; t�en
a

* +�����
�����dg; ð26Þ

where t�en
a
denotes the tangential vector to the boundary �en

a , a 2 {u,l}, and h�,�i stands for
the standard inner product.

In the sense of the UBM the expression

~PVu
þ ~PVl

þ ~P�u
þ ~P�l

þ ~P�d
þ ~P�en

u
þ ~P�en

l
ð27Þ

is minimized with respect to the pseudo-independent parameters uen, x
2
0, ldu, l0 and a1u(0)

by using the MATLAB optimization toolbox, in particular the algorithm fminsearch
which is based on a simplex algorithm. The curvature of the outgoing plate end, which is a
measure for the front end bending, is calculated by the velocity distribution at the roll gap
exit in the form, see, for example [19]

k ¼ 2

hex

~uexu � ~uexl
~uexu þ ~uexl

ð28Þ

with ~uexu ¼ ~u1 0; hex2
� �

and ~uexl ¼ ~u1 0; hex2
� �

.

3.4. Model simplification

Following the suggestions in [19], a simplification of the model and as a
consequence a decrease in execution time can be achieved by taking into account the
analogy of flat rolling and flat compression. The flat compression process is extended in
such a way that a horizontal movement of the compression stamps is introduced.
This horizontal movement allows us to account for the (different) circumferential
velocities of the work rolls. The vertical velocity component is assumed to be zero at the
lower stamp and the upper stamp moves downward with a velocity v that will be
calculated later on.

The advantage of this formulation is due to the fact that the area of integration
becomes a simple rectangle, see Figure 3. As a consequence, the expression for the total
power of deformation according to Equation (27) evaluated for a kinematically admissible
velocity field is quite simple.

For the geometry given in Figure 3, the following ansatz

~u1ðx1; x2Þ ¼ �uen �
v

hex
ðld � x1Þ �

Xn
i¼l

oi 1� x1

ld

� �i
 !

x2 � hex
2

� �

~u2ðx1; x2Þ ¼ � v

hex
x2 �

Xn
i¼1

oi

2ld
1� x1

ld

� �ði�1Þ !
ðx2 � hexÞx2

ð29Þ
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is taken as a suitable choice for a kinematically admissible velocity field, see also [19].
Thereby, ld denotes the average arc length of contact and oi, i ¼ 1, . . . , n, constitute the
pseudo-independent parameters for minimizing the total power of deformation.

It can be easily verified that the velocity field (29) satisfies the incompressibility
condition @~u1

@x1
þ @~u2

@x2
¼ 0, cf. (3), as well as the velocity boundary conditions

~u2ðx1; 0Þ ¼ 0; ~u2ðx1; hexÞ ¼ �v and ~u1ðld; x2Þ ¼ �uen; ð30Þ

as it is required for (ũ1,ũ2) to be kinematically admissible. To ensure that the overall mass
balance of flat rolling is fulfilled, cf. Figure 1, the velocity v in Figure 3 is chosen to satisfy
the relation

Zhex
0

~u1ð0; x2Þdx2 ¼ �hexuen � vld ¼ �henuen: ð31Þ

Thus, we get

v ¼ uen
hen � hex

ld
: ð32Þ

The velocity field (29) can now be used to calculate the total power of deformation. ~PV

is according to Equations (8), (11) and (23). In contrast to the detailed model of Section
3.3, the integration limits of the double integral are now constant values. The expression
for the power dissipated in the contact zones between the work rolls and the material
according to Equations (13), (15) and (24) simplifies to

~P�a ¼ mak

Zld
0

Ua � j~u1aj
�� ��dx1; a 2 fu; lg ð33Þ

with ~u1u ¼ ~u1ðx1; hexÞ; ~u1l ¼ ~u1ðx1; 0Þ and the circumferential velocity of the upper and lower
work rolls Ua, a 2 {u,l}. Summarizing, the total power of deformation reads as

~PV þ ~P�u
þ ~P�l

ð34Þ

Figure 3. Simplified roll gap geometry for the analogy between rolling and flat compression.
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and can again be minimized w.r.t. the pseudo-independent parameters by means of the
MATLAB optimization toolbox. In our case, the pseudo-independent parameters are
chosen to be uen and oi, i ¼ 1, . . . , n. It turns out that the choice n ¼ 3 for the polynomial
ansatz functions (29) leads to accurate results with a significant decrease in the execution
time. The curvature of the outgoing plate end is again calculated from the velocity
distribution at the roll gap exit by the use of Equation (28).

4. Results

Both models are able to explain the curvature of the plates in the case of asymmetrical
rolling, in particular also the change of sign of the curvature when rolling plates with large
shape factors. To validate the quality of the models, two different approaches will be used
in the sequel. First, both models are compared with numerical data resulting from FE
simulations. It turns out that the simplified model shows a good tradeoff between accuracy
and computational complexity, so that this model will be used for further considerations.
Second, the simplified model provides a basis to validate the profiles of plates that were
taken with CCD-camera measurements at the finishing mill stand of the hot rolling mill of
the AG der Dillinger Hüttenwerke.

4.1. Comparison with finite element simulations

Before discussing the results of the front end bending obtained by the UBM, we have a
closer look at the results of FE simulations shown in Figure 4. These simulations are
performed with the commercial software product ANSYS [25]. To reduce the complexity
of the FE simulations, the spreading of the material in the roll gap is neglected. A plane
strain structural analysis is performed using a two-dimensional 4-node structural solid as
element type. The contact algorithm used in the ANSYS simulation environment is based
on a Coulomb friction model and the augmented Lagrangian method, see [25]. Although
the material is assumed to be ideal-plastic kf ¼ 108 N

m2

� �
with no temperature dependency,

the work rolls are assumed to be rigid with the identical radius R ¼ 0.5 m. The entry
thickness of the plate hen ¼ 60 mm remains constant for all simulations. Furthermore, the
only asymmetry in the roll gap is the difference of DU ¼ 5% in the circumferential
velocities of the upper and the lower work rolls, Uu and Ul. The lower work roll is assumed
to be the faster one and rotates with a circumferential velocity of Ul ¼ 2.1 ms71. Starting
with the picture in the top left and ending at the picture down right of Figure 4, we
gradually decrease the thickness reduction and thus the exit thickness hex by 6 mm. A
characteristic value often used in metal forming to describe the roll gap geometry is the so-
called shape factor ld/hm, with ld ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðhen � hexÞ

p
as the arc length of contact and

hm ¼ (hen þ hex)/2 as the medium thickness. As already discussed in the Introduction
section, we can see from Figure 4 that for identical asymmetrical conditions in the roll gap
the curvature of the outgoing plate ends strongly depends on the shape factor and even
changes sign for larger shape factors. Contrary to the expectation the plate bends toward
the faster work roll for larger shape factors.

Figure 5 depicts the results obtained by FE simulations (pointed) and by both models
that use the UBM (solid line) as presented in the previous section. The curvature data of
the FE simulations are extracted from the resulting geometry of the outgoing plate. In the
left picture, we can see the curvature of the outgoing plate ends plotted over the shape
factor for the detailed model according to Section 3.3. For the simplified model according
to Section 3.4. the results are presented in the right picture. It can be seen that both models
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fit quite well the numerical FE results. The overall performance of the detailed model
shows it to be a little bit better, especially in the case of higher shape factors. Nevertheless,
the results of the simplified model are accurate enough, particularly because most plates

Figure 5. Comparison of UBM and FE for the detailed (left) and the simplified model (right).

Figure 4. FE simulations for a constant entry thickness hen ¼ 60 mm.
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are rolled with small or medium shape factors. However, because the model should be
used in process control, the advantage of less computational costs and thus shorter
execution times turns out to be the great benefit of the simplified model. Therefore, the
simplified model will be used in the next section for the validation with measured data.

4.2. Comparison with plant measurements

A measurement campaign was performed at the rolling plant of the AG der Dillinger
Hüttenwerke during normal process conditions. As no special flatness measurement device
was available directly behind the finishing mill stand, additional measurement devices had
to be installed. A CCD-camera with the corresponding PC-system was placed 10 m behind
the mill stand besides the roller table. With this system, a picture of the plate profile on one
side can be taken when stopping the plates in front of the camera, see Figure 6.

It is clear that only an upward bending of the plates can be observed and measured
because a downward bending is avoided by the roller tables. An algorithm was developed
to extract a curve representing the profile of the plate ends out of this picture. The
occurrence of the ski-ends was forced by the operator of the mill stand by manually
adjusting different circumferential velocities of the work rolls at the beginning of the pass,
see the lower two pictures in Figure 7. To restrict the influence of other parameters,
pyrometers were installed below and above the roller table to measure the surface
temperatures of the plates. The plates were chosen in such a way that there was no vertical
temperature gradient. In addition, the roughness of the rolls was measured before and
after the measurement campaign and it turned out that there was no significant difference
between the upper and the lower work rolls. From this we postulated that the friction
conditions between the plate and the upper and the lower work rolls are pretty much the
same.

The comparison of the results of the CCD-camera measurement campaign and the
simplified UBM model are depicted in Figure 7. The velocity profile was taken at every
sampling time of 4 ms to calculate the curvature due to Equation (28) and the
corresponding plate profile with the given roll gap geometry. The pictures on the right
hand side show the results for a plate with an entry thickness of 99.04 mm that is rolled
with a small shape factor. As a consequence, the material bends away from the faster roll,
which is in this case the lower one. In contrast to this, the pictures on the left present the
results for a plate of 36.91 mm entry thickness with a higher shape factor. In this case the
material bends toward the faster upper roll. For both scenarios, the model predicts

Figure 6. Picture of the CCD-camera measurement campaign.
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the plate profile in an excellent way so that it is considered feasible to serve as a basis for
designing control strategies to prevent the occurrence of ski-ends.

Note that in this work a special focus was laid on the investigation of the effects of a
difference in the work roll circumferential velocities on the development of ski-ends
whereas temperature effects are neglected. Clearly, an asymmetry in the temperature
distribution may also cause the development of ski-ends as it is shown in the literature, see,
for example [9,14]. The UBM model can be extended by introducing a temperature
dependency in the yield stress such that asymmetrical thermal effects are taken into
account, too. The calculations show that the material always bends toward the cooler part
of the rolled plate which is in accordance with the practical experiences and the results
known from the literature, for example [9,14]. However, because we have not performed
measurements that allow the quantitative analysis of this asymmetrical temperature effect,
we will not go into further details here.

5. Summary and outlook

In this article, we have presented a physically motivated model for the description of
asymmetrical rolling of heavy plates. The method being used is based on the upper bound
theorem for ideal-plastic materials. A detailed model taking into account the exact

Figure 7. Comparison of the UBM and CCD-camera measurement results for different shape
factors.
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geometry of the plastic deformation zone in the roll gap and a simplified model exploiting
the analogy of rolling and flat compression are derived. It turns out that the simplified
model suffices for the calculation of the curvature of the plate in terms of a good
compromise between accuracy and computational complexity. The quality of the models
was verified by means of FE simulations and measurement data from a CCD-camera
installed at the finishing mill stand at the AG der Dillinger Hüttenwerke. The future
research activities are focused on the design and the implementation of a control strategy
based on the models presented in this contribution to avoid or at least minimize the
occurrence of ski-ends.
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