e AICIIN
UNIVERSITAT
WIEN

Vienna University of Technology

This document contains a pre-print version of the paper

Trajectory Tracking of a 3DOF Laboratory Helicopter Under Input and
State Constraints

authored by T. Kiefer, K. Graichen, and A. Kugi
and published in IEEFE Transactions on Control Systems Technology.

The content of this pre-print version is identical to the published paper but without the publisher’s final layout or
copy editing. Please, scroll down for the article.

Cite this article as:

T. Kiefer, K. Graichen, and A. Kugi, “Trajectory tracking of a 3dof laboratory helicopter under input and state
constraints”, IEFE Transactions on Control Systems Technology, vol. 18, pp. 944-952, 2010. por: 10.1109/TCST.
2009.2028877

BibTex entry:

@article{Kieferi0,
author = {Kiefer, T. and Graichen, K. and Kugi, A.},
title = {Trajectory Tracking of a 3DOF Laboratory Helicopter Under Input and State Constraints},
journal = {IEEE Transactions on Control Systems Technology},
year = {2010},
volume = {18},
pages = {944--952},
doi = {10.1109/TCST.2009.2028877}

Link to original paper:
http://dx.doi.org/10.1109/TCST.2009.2028877

Read more ACIN papers or get this document:

http://www.acin.tuwien.ac.at/literature

Contact:

Automation and Control Institute (ACIN) Internet: www.acin.tuwien.ac.at
Vienna University of Technology E-mail: office@acin.tuwien.ac.at
Gusshausstrasse 27-29/E376 Phone: 443 1 58801 37601

1040 Vienna, Austria Fax: +43 1 58801 37699

Copyright notice:

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


http://dx.doi.org/10.1109/TCST.2009.2028877
http://dx.doi.org/10.1109/TCST.2009.2028877
http://dx.doi.org/10.1109/TCST.2009.2028877
http://www.acin.tuwien.ac.at/literature
www.acin.tuwien.ac.at
mailto:office@acin.tuwien.ac.at

AIC|IIN

SUBMITTED TO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOI®Y 1

Trajectory tracking of a 3DOF laboratory
helicopter under input and state constraints

Thomas Kiefer, Knut Graichen, and Andreas Kugember, IEEE,

Abstract

This paper deals with the tracking control design of a helieo laboratory experimental set—-up. In order
to be able to realize highly dynamic flight maneuvers bothuirgmd state constraints have to be systematically
accounted for within the control design procedure. The pratitical model being considered constitutes a
nonlinear mathematical mechanical system with two corityputs and three degrees—of-freedom. The control
concept consists of an inversion—based feedforward deertfor trajectory tracking and a feedback controller for
the trajectory error dynamics. The design of the feedfodwamtroller for a setpoint to setpoint flight maneuver
is traced back to the solution of a 2—point boundary valuélpra in the Byrnes—Isidori normal form of the
mathematical model. By utilizing special saturation fimes$ the given constraints in the inputs and states can
be systematically incorporated in the overall design mecén order to capture model uncertainties and external
disturbance an optimal state feedback controller is desigm the basis of the model linearization along the
desired trajectories. The proposed control scheme is imgaiéed in a real-time environment and by means of
experimental results the feasibility and the excellenfqrarance is demonstrated.

Index Terms

laboratory helicopter, nonlinear control, feedforwarchtrol, input constraints, state constraints, boundary
value problem.

|. INTRODUCTION

The 3DOF helicopter under consideration is a laboratoryesrgent which is often used in control research
and education for the design and implementation of (naredii control concepts, see also [1], [2]. As depicted
in Fig. 1, the helicopter basically consists of three hingeanted rigid body systems. The helicopter base,
which can turn about the travel angje, carries the arm which can rotate about the elevation apgl©ne
end of the arm is attached to a counterweight that tares thightvef the third mechanical subsystem, i.e.
the helicopter body. The rotation of this body is describgdtte pitch anglegs. Two propellers driven by
dc—motors are attached to each end of the body. The voltagesd«, supplied to the dc—motors serve as
control inputs to the system. They generate the thrfistand f; acting on the helicopter body. Since only two
control inputs are available for controlling 3 degreesfrefedom, the helicopter represents an underactuated
mechanical system. This makes the controller design moadleciying compared to the fully actuated case
where the number of degrees—of—freedom equals the numlzentbl inputs. Starting with the presentation of
the nonlinear mathematical model of the helicopter, thenntask of this contribution is the trajectory planning
and the tracking control design of the helicopter. Specmpleasis is laid on an approach to systematically
account for the input constraints in the voltages and u, of the dc—motors and the state constraint in the
pitch anglegs.

T. Kiefer is with the Rolling Mill Technology department ofi¢ AG der Dillinger Huttenwerke, 66763 Dillingen, Germafgmail:
thomas.kiefer@dillinger.biz).

K. Graichen, and A. Kugi are with the Automation and Contnastitute, Vienna University of Techology, GuRRhausstr.287-1040
Vienna, Austria (emaif,graichen, kugi@acin.tuwien.ac.at, internet: http://cds.acin.tuvaerat).
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Fig. 1. Schematics of the laboratory experiment 3DOF hptio

Some works dealing with the modeling and control of the 3D@cbpter can already be found in the
literature. For example, [3] is devoted to the derivationaomathematical model of the helicopter but no
control strategy is presented therein. By contrast, thbaastof [4] focus on a neural-network based adaptive
feedback control without going into detail with the matheicel structure of the helicopter. Although the
experimental results in [4] are quite satisfactory, themdriawback of this work results from the fact that the
(SISO-) controller is developed only for the pitch anglethe essential motion in the travel and elevation axes
¢q1 and g, is neglected. Furthermore, an adaptive identification efrfpdel parameters is topic of [5] which
are used in [6] to design adaptive PID—controllers for therall motion of the helicopter. The results of the
controller design are validated by means of experimenti@ daa 360deg—rotation of the helicopter about the
travel axis in abouf” = 15s.

In this contribution, a mathematical model of the helicopsederived by means of Lagrange’s formalism.
Based on the approach presented in [7], the very extensideim® simplified for the purpose of controller
design. This simplified model still captures the essentiallinearities of the helicopter system in an accurate
way.

Furthermore, the simplified model turns out to be differahtiflat [8], [9]. This system property is advanta-
geously utilized in [7] for the design of a flatness—basedkireg controller. The controller aims at steering the
helicopter along desired trajectories for the flat outplitee flathess—based control concept achieves accurate
tracking but does not directly account for the above meetibimput and state constraints. For instance, a
desired trajectory for the rotation about the travel axisnust be sufficiently slow in order to comply with the
constraints. Thus, the goal of this contribution is to syst8cally incorporate input and state constraints into
the controller design to be able to perform the desired matica more aggressive manner.

The control concept presented in this work relies on a twoeksg-of—freedom control structure consisting of
an inversion—based feedforward controller and a feedbeankaller for stabilizing the trajectory error system.
The procedure is an extension of the one presented in [10ine-tarying input constraints. The design of
the inversion—based feedforward controller is formula&sda two—point boundary value problem (BVP) in
the Byrnes—Isidori normal form of the system under consitien, see [11]. Moreover, this approach allows
for the systematic incorporation of input constraints [&2jd output constraints [13], [14]. By choosing the
outputs of the helicopter model as dedicated state vagalibe state constraints can be interpreted as output
constraints such that the feedforward control design asepted in [14] can directly be applied. In order to
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reject disturbances and account for model uncertaintiesdalitional feedback controller has to be developed.
Here, a time—variant LQ—controller based on the lineaomadf the system along the desired trajectories will
be used.

The paper is organized as follows: the model of the helicoptewell as a detailed formulation of the
control task under consideration is given in Section Il. Ti@n section, Section lll, is devoted to the design
of a feedforward controller, starting from the unconstegircase and successively introducing the constraints
on both the inputs;y andw, and the pitch anglgs. At the end of this section, a time—variant LQ—feedback
controller is designed to stabilize the trajectory errateyn. The feasibility of the proposed control approach is
demonstrated by means of experimental results in Sectiofrinally, the paper closes with a short conclusion
in Section V.

Il. PROBLEM FORMULATION

The mathematical model of the helicopter laboratory experital set—-up can be derived by means of
Lagrange’s formalism. The equations of motion can be writtematrix notation in the well-known form

D(q)i+C(q,4)4+g(q) =Q, 1)

with the generalized inertia matri (¢), the Coriolis matrixC (g, ¢), the gravity vectoy (¢) and the generalized
forcesQ, see, e.g., [15], [16].

A detailed derivation of the helicopter model can be found7h Therein, the rotation of the propellers,
described by the angles andgs according to Fig. 1, and the dynamics of the dc—motors amntako account
in addition to the three degrees—of—freedom given by thestr@levation, and pitch anglg, ¢» andgs. For the
controller design, the model has to be simplified such theaiit be handled within the framework of nonlinear
control theory. However, this simplified model should stépture the essential nonlinearities of the system. In
this context, the fast dynamics of the electrical subsystgimen by the dc—motors and the dynamics of the
propellers, described by the anglgsandgs, can be approximated in a quasi—static way utilizing thesiar
perturbation theory, see, e.g., [17]. As a consequencemib@el can be very well described by only three
degrees—of-freedom, namejy, ¢» andgs, with the voltagesu; andwu, as the control inputs of the system.
Neglecting the rotor dynamics of the propellers results stadic relation between the thrusfg and f, and
the voltagesu; and w;, applied to the dc—motors. It can be shown that this relationstitutes a quadratic
characteristics of the form, see, e.g., [18]

kyu?, u; >0
= T i e df,b). 2
f {ku?,ui<0 {f.0} )
The coefficients:,. andk_ of (2) are identified by measurements, cf. Fig. 2. The nurakrialues are given

in Table I.

In a second step, the complexity of the model structure cafutiber reduced by neglecting terms with
small influence on the overall kinetic energy. This procedguarantees that the Lagrangian structure of the
system is preserved. In this way, the kinetic energy is sfredlsuch that the generalized inertia matfixq)
reduces to a diagonal matrix with constant entdes j = 1,2,3, i.e. D (¢) = diag (di1, d22, ds3) with the
consequencé’ (¢, q) = 0 in (1), see [7] for more details.

For small angles of the elevation axs, it is further possible to neglect certain expressions & eRkternal
forces on the right hand side of (1). The latter simplificatcan also be interpreted in a geometrical way,
namely it is assumed that the rotors always lie in a planellpata the z;-axis, see [7]. Then, the equations
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Fig. 2. Measured and identified characteristics of the thras a function of the motor voltages.

of motion read as

g1 = by cos (g2) sin (g3) v1 (39)
Go = aq sin (q2) + ag cos (q2) + bz cos (q3) v1 (3b)
{3 = az cos (g2) sin (g3) + bzvz (3¢)

with the sum and the differenag andwv, of the front and back thrust§; and f;
vr = fr+ fo (4a)
v2=fr—fp (4b)

as the new control inputs and the coefficieatsb;,j = 1,2,3 depending on the masses and the geometric
parameters. The numerical values of the coefficients aengiv Table |. Based on the mathematical model (3),

ky | 4.855e 3% || ko | —1.503¢ 3%

a1 | 1171370 [ by | —0.6354 20

az | 0.3946™% [ bo | —0.6523720

az | —0.53262% || bs 4.6276 2
TABLE |

PARAMETERS OF THE MATHEMATICAL MODEL.

a transition of the 3DOF helicopter between stationary @atp (qf_rqu;,o,qgﬂo) — (quqipq;T) within
the finite time interval € [0, 7] is formulated as a two—point boundary value problem (BVRje Trajectory
of such a flight maneuver has to satisfy the following boupdamnditions (BCs)

q1 (0) = q*,Ov q1 (T) = qT,T7 q’l‘oyT - 07 (Sa)
a2(0) = g3, a2(T) = a5 1, Galo.r =0, (5b)
q3(0) = g3 =0, q3(T) = q37 =0, dslor =0 (5¢)

due to the steady state conditions of the starting and thmirtal point at¢ € {0,7}. The design of the
feedforward controller has to account for the input coristsa

uppy € [u”,ut] (6)

and for given constraints in the pitch angle
a3 € g5, 43 @)
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Henceforth, a 360deg-rotation of the helicopter about theet axis in7T = 10s will be considered for
demonstration purposes, i.e.

q>1k,o = q;,o = QE,T =0 and QI,T = 2. (8)
Furthermore, the constraints according to (6) and (7) aeeipd by the limits
u” =1V, vt =11V and ¢ = +50deg. 9)

Note that in contrast to the constraints on the input vobagieere is no specific physical reason for the choice
of qét = £50deg for the state constraints in the pitch angle This is just used to demonstrate the design
method for the trajectory planning with state constraihtsprinciple all values ofq3i between+10deg and
+80 deg would be possible. Furthermore, the boundaries for therebimputs in (9) are chosen in such a way
that they are close to the physical limitstai~ = 1V andu™ = 11 V. Consequently there are still some
reserves for the contribution of the feedback controller.

I11. CONTROLLER DESIGN WITH CONSTRAINTS

In order to systematically account for the constraints iwitthe controller design for the helicopter, we
will henceforth benefit from the method presented in [10]efEby, the design of the tracking controller is
based on the two degrees—of-freedom control scheme astetepicFig. 3. On the assumption of an exact
mathematical model of the plahtand that no disturbances are acting on the system, the feetfibcontroller
YT is designed to ensure an exact tracking of the referencectomy yy*. In order to stabilize the trajectory
error system and to account for model uncertainties andrttiahces a feedback controllef'Z is used. The
reference trajectory generatti provides a sufficiently smooth reference trajectgty(t) for both the feedback
and the feedforward controller.

Elg

Fig. 3. Structure of the two degrees—of—freedom controesghwith systent, feedback controlleB2*" B, feedforward controlle® ¥
and reference trajectory generafor.

The main part of this section is concerned with the desighef¢edforward controlle " and the reference
trajectory generator* in consideration of input and state constraints. From a ema#tical point of view the
12 BCs (5) together with the 3 second—order ODEs (3) form a-psmt boundary value problem for the states
g1, 41, 92, 42, g3, ¢3 depending on the inputs; and v, (resp.uy anduy). In order to find a solution of this
BVP, the so—called inversion—based feedforward controhécoordinates of the Byrnes—Isidori normal form,
see, e.g., [11], [19], [20], will be used.

A. Byrnes—Isidori normal form of the helicopter

Before applying the control design procedure accordind 8) fo the helicopter model (3), the system has to
be transformed to Byrnes—Isidori normal form. For this aprapriate outputy = {y1,y2} has to be defined.
Although the choice of this output is in general free, onepatiis chosen as the pitch angle, iig.= ¢s, in

1The propellers are not designed to produce considerablistthwhen applying negative voltages, cf. Fig 2.
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order to be able to interpret the state constraint (9) as gguboonstraint. The only restriction for the remaining
outputy, is that it must be independent g§. It turns out that); = ¢» is a reasonable choice leading to simple
expressions for the system inversion. The relative degf€8)awith respect to the output

y=1{q,q} (10)

calculates tof2,2}. Thus, by choosing = ¢; for describing the internal dynamics, the system (3) in Bgrn
Isidori normal form follows as

i1 = aisin(yr) + az cos(y1) + ba cos(y2)v1 (11a)
2 = ascos(yr)sin(y2) + bsve (11b)
i = bysin(y2)cos(yr)vr. (11c)

The BCs (5) and (8) for the reference trajectory formulatethe coordinateg;, y» andn take the form

n(0) =n5 = a0 n(T) =nr = ai,r Mo =0, (12a)
y1(0) = y1 0 = @20, yi(T)=yir=db1, Y1l =0, (12Db)
y2(0) = y30 =0, y2(T) = yor =0, Y2lor = 0. (12c)

B. Feedforward controller without constraints

In a first step, let us consider the solution of the BVP (11) €} when neglecting the constraints (6) and
(7). The inversion—based design of the feedforward cdetraé based on the inverse input—output dynamics
[20]. Clearly, in view of (11a) and (11b), the feedforwarchtoller’

. i — a1 sin(y}) — as cos(y)

vy = 13a

! by cos(ys) (133)

U; _ 'U; —as Coi(yik) Sin(yS) (13b)
3

can be algebraically determined for the desired outpuedtajiesy;(t) € C* andy;(t) € C3. Note that the
feedforward controller (13) is independent of the stgiteof the internal dynamics representing the travel axis
of the helicopter. Nevertheless, in order to ensure thaBie (12a) are satisfied by the trajector(t), the
BVP of the internal dynamics (11c), (12a) is rewritten byerigg (13a) into (11c)

it = étan(yz)(yl — aysin(yy) — az cos(yy)) cos(yy)
= B, it v5) (14a)
n0) = do ") =air: Nlor=0 (14b)

with the desired output trajectorieg (¢) andys(¢) serving as the input to (14a). Obviously, the BVP (14a) is
overdetermined since 4 BCs (14b) have to be satisfied for ecensl-order ODE (14a). Following the basic
idea of the approach presented in [11], the solvability ef BVP requires 2 free parameters= (p1, p2) in the
desired output trajectorieg (¢) andys(¢). Thereby, some freedom exists concerning how the free peam
are distributed to the two output functions. From a physpaaht of view, the acceleratioij = §; of the travel
axis is directly related to the pitch angl¢ = ¢; of the helicopter body, see Fig. 1. Thus, it is reasonable to
provide both parametes in the second outpug;(t) = Ya(t,p), whereas the first output is determined as a
predefined setup functiog (t) = Y1 ().

2Henceforth, the index of a quantity always refers to the corresponding desirgédiaries.
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The setup function&’;(t) and Y»(¢,p) are constructed as polynomials, see, e.g. [21], and havatisfys
the BCs (12b) and (12c). The solution of the resulting BVPhvWitee parameters comprises the parameter set
p as well as the trajectory™(¢) of the travel axis of the helicopter. Thereby, the paramséep determines
the shape of the output trajectogy(t).

The solution of this type of BVP with free parameters is a déad task in numerics. Here, the MATLAB
function bvp4c is used where a linear interpolation between the correspgrBiCs on a uniform mesh with
50 grid pointst;, € [0,T], k= 1,...,50, serves as an initial guess for the trajectgtyt;). The initial values
for the unknown parametegsare set to zero. The robustness and convergence of the masoiution are
enhanced by providing the analytical Jacobian matrix of @¥Es (14).

n*=gqjindeg y;=gq;jindeg yj=gq; indeg

400 6
50 ARSI
300 7
200 ' qf 2
0 N oo
100 \ G |
0
50\ | -4
-10 -6
0 5 10 0 5 10 0 5 10
vy, vi in N up, up inV
3 14—
o 12| Uy

2 G \

1 ’/ AR R \‘ 6 -
. - - ° =
N e a*

0 ) b
0 5 10 0 5 10

tins tins

Fig. 4. Results of the feedforward control design withoutstaaints.

The results are presented in Fig. 4 where the upper threerggcshow the nominal trajectorigs, y; and
y5 for the rotation of the helicopter about the travel-axis B@@eg within a transition time df’ = 10s. The
trajectoryn*(t) = ¢; (t) is strictly monotonically increasing and constitutes a sthanotion of the helicopter.
While the elevation angle?(t) = ¢5(t) = 0 remains in the same position, the under— and over—shoots in
the outputys = ¢; are required to accelerate and decelerate the helicopter &fve travel axis. Clearly, the
trajectoryy; of the pitch angle violates the required constraints giver{#).

The pictures in the lower part of Fig. 4 show the correspogdiontrol inputsv; andvj and the resulting
voltagesu; andu;, due to (2). It can be seen that both voltaggsand v, exceed the upper constraint
according to (6).

However, this approach does not yet allow to incorporateitipeit and state constraints (6) and (7) in a
systematic way. The only possibility so far is to change thadition timeT" and subsequently check whether
the constraints are fulfilled or not.

C. Reformulation of the constrained problem

In this subsection, the procedure presented in Subsedti@i$ extended in such a way that the constraints
in the real control inputs according to (6) and the constrairthe pitch angle (7) are systematically taken into
account within the feedforward control design.
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In contrast to the considerations in [10], where constapttinconstraints are taken into account for the
transformed (virtual) control inputs; andwv, as they appear in the input—output representation (11)ingnet
constraints (6) in this paper are formulated in the (reafjtiad inputs, namely the voltages; andw; or the
thrusts f; and f;,, respectively. As a result, the constraints of the virtuahtool inputsv; and v, become
time-varying.

In the following, we will extend the results derived in [1@] éxplicitly tackle this more general case. Since
it is preferable to maintain the decoupled structure of timut—output representation (11) with respect to the
inputsv; andwvs, the real input constraints (6) are formulated as congdor the transformed inputs; and
vy due to (4). An illustration of this transformation of the utpconstraints is depicted in Fig. 5. Obviously,
the constraints in the transformed inputsand v, are no longer constant.

fo v1

+
b

Fig. 5. Transformation of the input constraints.

By combining (2), (4) and (6) with

k) w0
fi - { k'_ (u;)Z’ u; < 0 , S {f7 b} (15)
and

ki (uf)™, wi >0 )
fl*—{k*EZ;;Q;Z;O Lie{f,0} (16)

the transformed inputs; andv, have to meet the inequality conditions

2ff_ < v+ < Qf?

17
be_<’l)1—1)2<2f;r. ( )
It is easy to see that (17) is equivalent to
fr—f <va < ff—fp (18)
| ~——
Vg v;
and
vy (v2) < w1 < vf (v2) (19)
with
vy (v2) = max [<2f; - Ug) (2f, + vg)} (20a)
v (v2) = min {(Qf;' — v2> , (be+ + U2)} . (20b)

In this formulation,v, has fixed bounds whereasuli depend onv, as illustrated in Fig. 5. This procedure
entails some advantages in the further design steps asevididgtussed subsequently.

3An equivalent representation can be found by choosing fixathts forv; with v = f; + f, and vf = ff+ + f;r and varying
bound5112i (v1).
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Although at first glance it seems more meaningful to forneutae problem in the real inputs; andw,, the
approach presented in this work is based on the transformetot inputsv; and v, mainly for two reasons.
Firstly, the decoupled structure of the mathematical md@glor (11), respectively, enables a very compact
formulation of the inversion—based feedforward controlibé. (13). Secondly, the resulting BVP can be solved
in a straightforward manner also for time—variant boundthefinput constraints.

In order to directly incorporate the input constraints (X&9) into the design procedure, let us take advantage
of the fact that the feedforward control inputs(¢) andv; (¢) from (13) are directly influenced by the highest
time derivativesj; (t) andy;(t) of the desired outputs. As it is suggested in [13], [14], thlations (11a) and
(11b) can be used to reformulate the input constraints (28)(&9) with respect taj; (t) and (), i.e.

iy <ih <7 (21a)
5 <2 <95, (21b)
where
jE = arsin(yp) + az cos(yp) + by cos(y3)vf (v2) 2
= al(yfvygvv]_i(UQ))
and
Lt N * + * %
§y = agcos(yy)sin(y3) + bsvy = c2(y1, ¥5,v5). (23)

hold. Note that the limitgj® andjj;~ are not constant but depend on the outpgtand ;.
In addition it can be stated that the constraints in the péiebley, = g3 according to (7), i.e.

s € laz . a3 ], (24)

yield constraints directly in the outpyt. As a consequence of (21) and (24), both the input conssramtvell

as the constraints in the pitch angle can be interpreted @straints in the outputs and their higher derivatives.
This fact is used in Section III-D to reformulate a new BVP ghisystematically takes into account these
constraints.

Remark 1:Note that the consideration of the input constraints (18l @®) is rather simple for the helicopter
model (11) because the input—output dynamics (11a) and @rébdecoupled with respect to the inputs, iie.
and jj» are affected separately by, and v,. The general case of feedforward control design under input
constraints for general nonlinear MIMO systems is addieas¢13], [21].

D. Incorporation of constraints in the BVP formulation

In [13], [14], the feedforward control design is extendedatttount for constraints in the outputs and their
time derivatives as they are given by (21) and (24). Ther#éi®,constrained output is represented by means
of a saturation function with a new state variable. By susiwe$y differentiating this output and introducing
new saturation functions in each step, it is possible tovdea new dynamical system which considers the
constraints in the output and in its derivatives. The oagjitiynamical system for the unconstrained output is
then replaced by this new dynamical system.

In a first step, the more general case with saturationg iandjj, (i.e. in vs) is treated in more detail, the
consideration of the saturation only i (i.e. in v;) follows as a special case. The output constraint (24) is
considered by introducing the smooth saturation function

ys =1 (&,97) (25)

which depends on the new state variaplét) and the respective saturation limits
Ui =43, (26)
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see Fig. 6. Thereby, it is assumed thigt andy;” are asymptotic limits ang (&, z/;f) is strictly monotonically

increasing, i.edyy/0& > 0. One possible choice of an appropriate saturation fundsagiven by
vy — Yy

1+exp[mé&]’

The parametem influences the slope & = 0 and is specified as = 4/(x]" — ;) which corresponds to

the slopedy /0¢ =1 at&; = 0. The function (27) is depicted in Fig. 6.

U1 (&,9F) =9 + (27)

Fig. 6.  Smooth saturation functiog; = 1 (gl,zﬁ) with the limits ¢, fr depending on the new state varialgle

In order to formulate the BVP in the new state variables, (25 to be differentiated two times with respect
to the timet. The first derivative is given by

Ot
x 7 28
Ya 96, & (28)
whereby the state variablg(¢) is introduced in the form
& =6. (29)
A further differentiation of (28) yields
. 0%y 2 OYr
5 = + — & 30
i3 06,7 (&) 96 & (30)

At this stage, the input constraints < v, < v according to (18) and (23) come into play. The consideration
of these constraints is guaranteed by the use of a secon@tiatufunction

Ea = oD, ) (31)

depending on a new inpudt. Due to the assumption that); /0¢, > 0 the inequalityjj, < i3 < {5 can be
rewritten by means of (30)

Fa 224, 2 S 8%y, 2

Uy = ez (&2) ~ s — ey (&2)

6—1;1S¢2(v2,¢§)§ — (32)
051 851

where i = aq(yf, 1 (&1, v5)) represent the substituted constraints (23). The left agiat thounds in (32)
directly determine the IimitspgE of the saturation function,

st 9%y 2
Yo — 2 (f )
v = v (6,6) = — G (33)

061

Since no further differentiation of (30) is requiredCé ramp—shaped function of the form

Yy i 0y <9y
b (02, 05) = Qf if By > f (34)
0y else
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vt | —

— |y

Fig. 7. Ramp-shaped saturation functign <627w2i> with the limits ", 1p2+ depending on the new input.

suffices for all further calculations, see also Fig. 7.

The ODEs (29) and (31) form a dynamic system with the stateand {&; and the new input;. The
output trajectoryy; and its time derivativegs andij; satisfying the constraints (24) and (21b) can be retraced
algebraically from (25), (28), and (30).

In order to formulate the overall BVP for the helicopter ®dijto the input and state constraints, the BCs
(12c) have to be transformed into the new coordingteand &». By inverting the saturation function (25)

& =91 (5, 97) (35)

the BCs for the first stat€; (¢) for t = 0,7 are determined by3(0) = g3, = 0 andy5(T) = ¢35 = 0.

Inserting the homogeneous B@$(0) = 73 (7) = 0 in (28) leads tat; (0) = &,(T") = 0 (with 9y, /8&; > 0).
In view of (29), the boundary values f@p follow as

£(0) =0, &(T)=0. (36)

Since the input constraints (19) fog do not directly influence the output constraints as it is thsecfor
vg, cf. (23), the input constraints (19) can be identicallydiad as in (31) by introducing a third ramp-shaped
saturation function, see also Fig. 7,

i1 = s(01,97) (37)

depending on the new inpat and the IimitSyli according to (22). Thus summarizing the BVP (14a), (29),
(31), (34), (36) and (37) leads to

it = vs(0n,97), 41 (0) = a3, ¥i(T) = d5r, (38a)
91(0) =0, (7)) =0,

& =6, &(0)=0, &(T)=0, (38b)

& =1a(B2,95),  &(0)=0, &(T)=0,

i = Byi,91,y3), 17(0) =dio 0" (1) =di 1, (38c)
7"(0) =0, #(T)=0

The solvability of the BVP (38) defined /second—order ODEs ari@ BCs requires at leastfree parame-
ters. Therefore, the new inpuiis andv, are parametrized by means of ansatz functigns ®;(¢,p;), i = 1,2
with the sets of free parameteps = (pi1,...,Dix;),¢ = 1,2 Wherex; + k2 = 6 holds. The numbers;
characterize the distribution of thi free parameters to the functiods (¢,p1) and ®»(¢,p2). A convenient
choice for®;(t, p;) is given by the polynomials, see, e.g., [12], [14]

Ki ¢ k+1 "
O, (t,p;) = vak <(—> — —> , =12 (39)
Pt T T

May 6, 2009 DRAFT

Pre-print version of the article: T. Kiefer, K. Graichen, and A. Kugi, “Trajectory tracking of a 3dof laboratory helicopter under input and
state constraints”, IEEE Transactions on Control Systems Technology, vol. 18, pp. 944-952, 2010. por: 10.1109/TCST.2009.2028877
The content of this pre-print version is identical to the published paper but without the publisher’s final layout or copy editing.


http://dx.doi.org/10.1109/TCST.2009.2028877

AIC|IIN

SUBMITTED TO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOI®Y 12

It is obvious from (39) that the new inpat satisfies the homogeneous BG$0) = v;(7') = 0,7 = 1,2. The
BVP (38) is overdetermined by 12 BCs for 6 ODEs. Following tligcussions in [10], the free parameter set
pi = (pi1,....Dix,) in the setup functiord; (¢, p;) must contain at least elements to provide a sufficiently
large number of free parameters for the solvability of theadpled BVP, i.ex; > 2, i = 1, 2. Following the
discussion in Subsection IlI-B, the free parameters forhtbkcopter tracking maneuver are chosen as

K1 = 2, Ko = 4 (40)

in order to leave more “freedom” for the planning of the tcagey for the pitch angles = ¢3.

The solution of the BVP (38) with the boundaries (8) is agaditculated using thdvp4c—algorithm of
MATLAB now using the trajectories from Fig. 4 as initial gue$gg. 8 shows the resulting trajectories and the
corresponding feedforward controls. It can be directlynstat the constraints in both the pitch angleas
well as the constraints in the control inputs andu; are kept by the nominal trajectories. In order to comply
with the constraints iy; = ¢; the control inputy; has to be further increased during the rotation which result
in an aggressive behavior of the control inpufs v; andu}, u;, respectively, which can especially be seen
att = 5s in Fig. 8.

n*=gqjindeg y3;=gq;indeg yi=g;indeg

400 5
50 7
300
4
200 0 SN O~
100 4
0 -50 5
0 5 10 0 5 10 0 5 10
vy, vi in N up, up inV
3 " ’U/+\
+(¢ ---U 10 el V=
) Uy ( ) 1)5 /] \‘ ‘\‘
Irap =~ 5 Y
Ofer< Y
Uy t) - -uZ
1 5 10 O 5 10
tins tins

Fig. 8. Results of the feedforward control design taking iatcount input and output constraints.

Remark 2:Since both the outpugi and its second time derivatiig are constrained, special care has to be
taken that no conflicts occur between the constraints (2d)2ib). If the outpuy’ approaches the constraints
Y3 — g3 orys — g4, the time derivatives (28) and (30) will approach zero,jg— 0 and{j; — 0. Hence, it
must be guaranteed that the projected constraints (21k);fsatisfy the inequalityj, < 0 < 45 if y3 — ¢35
or y3 — ¢4 holds. In view of (21b) and (23), the inequality

az cos(yy) sin(ys) + bavy < 0 < agcos(y;)sin(ys) + bavy (41)

can be ensured by estimating conservative bounds for the egnstraintss, and vy . With the parameters

“Note that the initial guess for the new statasand &» in the new BVP (38) can be determined from the guesg;pby means of
(25), (28), respectively.
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az < 0 andbs > 0, the above inequality can be written as

bsvy < —agcos(y;)sin(ys) < bvy . (42)

—las| <0 < |as|
Hence, if the input constrainliagIE satisfy
@<Jg,@>%k (43)
the conditionjj, < 0 < 43 is ensured. With the helicopter parameters in Table |, thisservative estimation
vy < —0.11N andvy > 0.11N is satisfied by the actual constrain§ = +0.58 N resulting from (18).

E. Feedback controller

As it was mentioned in Section II, the model (3) for the feedfard control design in Section Il results
from a simplification of the model. Thus it is necessary toiglesan additional closed—loop controll&'?,
cf. Fig. 3, to reject errors due to resulting model uncettasnand other disturbances. The controller under
consideration is based on an optimal LQ—(linear quadrdgsjgn. Since the reference feedforward trajectories
qf, i =1,2,3, resulting from the solution of the BVPs (14) and (38), resipety, as well as the corresponding
control inputsvy andwv; are known the system (3) is linearized along these trajeston order to derive a
time—variant linear system. For this, the vectors

) . . \T T
= (q1, 41,492, G2,93,43)" andu = (vi,vz) (44)

are introduced which are used to write the equations of maiitzording to (3) in the general form

&= f(x,u). (45)
Then, the linearized system reads as
Az = A(t) Ax + B (t) Au (46)
with
A = i@ (47)
B ({9I r=x*,u=u*
B() = Zf(@uw (48)
B au ’ r=x* u=u*
andAz =z — 2%, Au=u—u*, z* = (qf,q;,q;,q;,qg,qg)T, U= (v{,vS)T
The LQ—controller design is based on the minimization of abgctive functional
T
I= / (2" Qz +u" Ru) dt + 2™ (T) Mz (T) (49)
0

with the positive semidefinite matrix/ € R*6, the positive definite matrice € R5*5, R € R?*2? and the
transition time7'. The LQ—controller results from the solution of the Rice@DE, see, e.g., [22]

—P(t) = AD"PW+PH)AM)+Q—
Pt)B{)R'B(t)" P(t) (50)
P(T) = M
in the form
Au=—-K@t)Az(t), K(t)=R'B({t)" P(t), (51)

where K (t) is the time—variant feedback gain matrix.
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The time evolution of the entries df (¢) for the given maneuver described in Section IlI-D are depidh
Fig. 9. Thereby, the two rows of the feedback gain maftixc R2*5 from (51) are plotted separately. In each
case, the solid lines (-) refer to the componentsgfor ¢1, the dashed lines (- -) to those fgs, ¢> and the
dotted lines {- -) to those forgs, ¢s.

15

tins

Fig. 9. K1,(t) (upper picture) and<2;(t), : = 1,...,6, (lower picture) of the LQ—controller (51) for the helicopt®tation with the
transition time7" = 10s.

IV. EXPERIMENTAL RESULTS

The control scheme presented in Section Il was implemeintéake rapid prototyping systemSPACE with
a sampling timeT, = 1ms. The experimental results in form of the trajectorigs ¢> and g3 can be seen in
Fig. 10. Furthermore, Fig. 11 shows the required contraliisp; andu,. The nominal trajectories and control
inputs are chosen according to Subsection IlI-D, see Fig. 8.

In Fig. 10 it can be seen that for the travel and the elevatimgiea the measured trajectorigs and ¢» fit
the nominal trajectorieg; andg; in an excellent way. Only small deviations occur in the-angle during the
rotation. In the pitch anglgs, the deviation is larger because of the intervention of tige-tontroller which
is designed to hold the trajectories for the travel axignd the elevation axig, near its desired pathes. Note
that the trajectory ofjs still remains within the constraints according to (7). Iig.FL1 the measured control
inputsuy andw;, are compared with the nominal ones. At the beginning and tideoé the flight maneuver, it
can be seen that the measured control input trajectory resiitie nominal trajectory very well. As it becomes
already apparent in the pitch anglg, especially aftet = 5s, i.e. during the reversion of the pitch angle, the
feedback controller has a large influence. This is due todhethat the LQ—controller is optimized to keep the
tracking error of the angleg andg, at a minimum. Consequently, the constraints in the voltageandw,
are not exactly met. Therefore, for the design of the feeddiod controller, the constraints have to be chosen
closer than the real constraints in order to provide resefwethe feedback controller.

Finally, it has to be stated that the main control task, ngrtted rotation about the travel axig in a finite
time interval while keeping the input and state constraistgery well performed. In addition, the LQ-controller
design turns out to be very robust against model uncertgirtnd external disturbances. A presentation of the
flight maneuver of the 3DOF helicopter laboratory experitakset—up can be found as an mpeg—video on the
website http://www.acin.tuwien.ac.at/fileadmin/cddgos/heliffwd.wmv.
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Fig. 11. Experimental results of the voltages for consedimotion of the helicopter.

V. CONCLUSION

This contribution is concerned with the systematic desigra dracking controller under input and state
constraints for a laboratory helicopter realizing a prigsxt flight maneuver. Since the laboratory helicopter
has three mechanical degrees—of—freedom but only two aoimputs it represents the important class of
nonlinear underactuated mechanical systems. The contratept being proposed relies on a combination
of a feedforward controller for trajectory tracking and a&dback controller to stabilize the trajectory error
system. The feedforward control design treats the finitee-tiransition between two stationary points as a
two—point BVP in the Byrnes—Isidori normal form of the systeThis allows the systematic consideration
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of constraints in the inputs and outputs in order to achievasa trajectory tracking of the helicopter. The
stabilizing feedback controller is designed as a time-avarLQ—controller which results from a linearization
of the system along nominal trajectories. Experimentallteprove the excellent tracking performance of the
proposed feedforward/feedback control scheme.
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