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Abstract

In this paper, a novel two-stage observer strategy for improving the measurement of tool forces is presented. The mass-
spring-damper system which inevitably occurs when a tool and a (compliant) force sensor are combined is studied
and its adverse influence on the measurement signal is analyzed. The proposed observer consists of two stages. The
first stage captures the input-output characteristics from the control input to the tool force by a recursive least-squares
estimation algorithm. The estimated tool characteristics are used in a second stage to suppress the oscillations in the
measurement signal, which mainly occur due to the mass-spring-damper nature of the tool-sensor combination. In
a tailored experimental test rig, which mimics the conditions in magnetic levitation, magnetic bearings, or magnetic
strip positioning devices in hot-dip galvanizing lines, the efficacy and the high estimation accuracy of the developed
observer strategy are demonstrated.

Keywords: Sensor response correction, Model based disturbance observer, Tool force sensor, Reduced Luenberger
observer, Model adaption, Measurement results

1. Introduction

The dynamic measurement of the true tool or actuator forces is a challenging field of research. Real (non-ideal)
force sensors often suffer from unwanted effects due to their internal design, e.g., friction, damping, and inertia forces
[1]. Furthermore, a force sensor cannot be mounted such that the measurement is not disturbed by the actuator itself.
This issue is well studied in the literature, see, e. g., [2, 3, 4, 5, 6, 7, 8, 9, 10].

The disturbances occurring in the measurement of the cutting forces in a mill can be compensated by Kalman
filtering as proposed in [2, 3], transfer function inversion [4, 5], or by sensorless estimation [6].

In the field of robotics the measurement of manipulator forces is the topic of many scientific publications. For
example, the pre-planned robot trajectory is used for the compensation of the disturbances induced by the inertia of
the end effector in [7] and a sensor fusion approach is presented in [8]. In [11] inverse filtering is applied to a transfer
function which is identified with respect to the robot’s joint configuration. A reaction force observer was developed
for sensorless force estimation in [12]. This approach was extended in [13] to consider the environment by means of
an adaptive spring model. Another sensorless approach using a sliding-mode observer is presented in [14].

Force sensors are also used in gravimetric mass measurement. In this application, dynamic force measurement
can speed up the weighing process because the waiting time for the oscillations to decay is avoided. For this, adaptive
filters [9, 10, 15], time-variant filters [16], and neural networks [17] are used. Furthermore, a technique similar to the
pre-shaping of control signals, see, e. g., [18], can be used to suppress disturbances due to mechanical oscillations in
the force measurement [19].

Generally, if a force is applied by an actuator or an actuated tool, the control input of the actuator is usually known,
e. g., the current of an electromagnetic actuator. This a-priori knowledge (e. g., in [7] and [8] the robot movement)
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can be used to improve the force measurements. If the behavior of the actuator changes over time, the actuator model
has to be adapted. In this paper, a novel two-stage observer strategy for improving the measurement signal of the
actuator force is developed. In this strategy, the time-varying characteristics of the tool and its measured input signal
are systematically included. Furthermore, the disturbances in the measurement signal, which inevitably occur due to
the placement of the sensor, are taken into account utilizing a suitable mechanical model in the second observer stage.

An example for a tool with a time-varying characteristics is a magnetic actuator where the magnetic properties of
the handled workpiece may vary over time. For instance, magnetic actuators can be used for contactless transportation
of steel plates [20]. If the magnetic force applied to the conveyed material is measured, the weight of the transported
material or its magnetic properties can be determined. This can be valuable for production quality management. Fur-
thermore, magnetic actuators are also employed in hot-dip galvanizing lines [21]. Here, a steel strip is elastically
deformed and oscillations of the strip are damped [22]. If the magnetic force is measured, it can be used to determine
shape errors of the metal strip, which is important for monitoring the product quality. Another area of application is
the measurement of forces in active magnetic bearings. These bearings are used in applications, where high rotational
speed and/or low bearing losses are demanded [23]. The force on the bearing can be exploited for monitoring the
condition of the machine. Since correct measurement of magnetic forces has a broad field of applications, an exper-
imental test rig with an electromagnetic actuator is set up to demonstrate the feasibility of the proposed two-stage
observer strategy for the force measurement. It is worth noting that this strategy is not limited to the type of magnetic
actuators.

The paper is organized as follows: The working principle of the electrical and mechanical part of a general
sensor-actuator configuration is analyzed in Section 2. Furthermore, the source of actuator-induced disturbances,
which deteriorate the measurements, is examined. Finally it is shown, how additional measurements can be used to
compensate for the induced mechanical disturbances. In Section 3, an observer strategy is derived, which is able to
suppress the actuator-induced disturbances without additional measurements. An experimental test rig, consisting of
a magnetic actuator and a force sensor, is presented in Section 4. Experimental results obtained on this test rig using
the developed two-stage observer strategy are also discussed in this section. The results are summarized in Section 5.

2. Measurement Principle and Actuator-Induced Disturbances

It is a common task to measure the force applied by an actuated tool to a workpiece. The tool can for instance be
an end effector of a robotic arm or an actuator mounted on a fixed ground position. The tool is usually much heavier
than the force sensor and thus, the mass of the sensor is neglected in the following. However, whenever the true tool
force should be measured, it is in most cases not directly accessible to the force sensor. Either the tool (or parts of
it) or the workpiece separates the position of the sensor from the position of the true tool force. Since force sensors
always exhibit a certain compliance and damping behavior, a spring-mass-damper system emerges that disturbs the
force measurement. In an ideal configuration, the force sensor is located between the workpiece and the plant, as
shown in Fig. 1(a). Here, the force transferred by the sensor equals the tool force. A real configuration, in contrast, is
shown in Fig. 1(b). Figure 1(c) shows another possibility where the force sensor is placed between the workpiece and
the environment. This configuration suffers from the same disadvantages as for the one shown in Fig. 1(b), which is
why it will not be discussed in more detail.

There exist a number of different force-sensing principles, e. g., sensors based on surface acoustic waves, magne-
toelastic effects, vibrating wires or optic effects, cf. [24]. But almost all commercially available force sensors measure
the force-induced strain in an elastic element by means of strain gauges, mainly because of its accuracy and simplicity.
Thus, the force is indirectly measured by a displacement according to Hooke’s law

Fs = kz , (1)

where Fs is the force measurement reading, k is the stiffness and z the deflection of the sensor [24]. As it will be seen,
Fs may differ from the true force exerted on the sensor. If the sensor is placed as shown in Fig. 1(b), the combination
of the force sensor and the tool can be described by a spring-mass-damper system as shown in Fig. 2. Here, the mass
of the tool or the relevant parts of it is denoted by m and d is the viscous damping coefficient associated with the
sensor, which is due to the energy dissipation in the sensor and its mounting. Based on Fig. 2, the tool force Ft and
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Figure 1: Configuration of a force sensor and a tool in (a) an ideal and (b and c) in a real force measurement setup.
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Figure 2: Combination of tool and force sensor.

the measurement reading Fs are related in the form

m
d2 z
d t2 + d

d z
d t

+ Fs
︸     ︷︷     ︸

force transferred
by the sensor

= Ft . (2)

Even if the sensor is not mounted on a rigid base as shown in Fig. 2, but on a flexible structure with a negligible mass,
equation (2) is still applicable. In this case, d and k denote the effective stiffness and damping coefficient, respectively,
of the combination of the sensor and its mounting. Clearly, if d2 z

d t2 , 0 and d z
d t , 0, the measurement reading of the

force sensor is disturbed by the inertia and damping forces, respectively. As an example, Fig. 3 shows measurement
results of a laboratory experiment. In this experiment, a ferromagnetic workpiece is loaded with a piecewise constant
force applied by an electromagnetic actuator. Some key parameters of the utilized equipment can be found in Tab. 1.
The true tool force Ft (pink) can be determined from the steady-state response of the measurement reading. The
gray line represents the measurement reading of the force sensor, i. e., Fs in (2). The measurement results show
that large oscillations with the natural frequency are contained in the measured signal. In the considered setup, the
natural frequency is about 47 Hz. This systematic measurement error is caused by the first two terms in (2) and can be
eliminated or at least reduced by using additional sensors, by measuring the acceleration or the position of the tool.

First, let us assume that the position z is known with a sufficiently high accuracy. In the considered experimental
test rig, this is achieved by a laser interferometer. This assumption is in most practical cases infeasible and will thus
not be considered in the upcoming sections, but is assumed only here to analyze the potential of compensating the
inertia and damping forces in the measurement reading. Based on the position information z(t), the velocity and the
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Table 1: Experiment specification data.

Force sensor: Inelta KMM30
Force range 0 − 500N
Resolution 10 mN
Frequency range 0 − 900Hz

Laser interferometer: Polytec OFV-5000
Position range ±1000 µm
Resolution 30 nm
Frequency range 0 − 250kHz

Acceleration sensor: Kistler 5165A4 / 8640A50T
Acceleration range 500 m s−2

Resolution 10 mm s−2

Frequency range 0.5 − 3000Hz
Magnetic tool: custom made

Tool mass 9 kg
Control input range ±15 A
Number of windings 280
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Figure 3: Raw force signal and force signal with compensated mechanical oscillation.

acceleration can be approximated by the difference quotients

d
d t

z(t) ≈ z(t) − z(t − ∆t)
∆t

(3a)

d2

d t2 z(t) ≈ z(t) − 2z(t − ∆t) + z(t − 2∆t)
∆t2 , (3b)

with an appropriately chosen time step ∆t. Here, ∆t is chosen as ∆t = 1/ fs, where fs = 1 kHz is the sampling
frequency at which the measurement is recorded. The blue line in Fig. 3 represents (the time evolution of) Ft based
on (2) with d2 z

d t2 and d z
d t from (3). The disturbances due to the mechanical oscillations are suppressed, as the results

in Fig. 3 show. The remaining error in the compensated force signal can be attributed to measurement noise in the
position signal, which is amplified due to the second order derivative. Still, the correction of the force measurement
based on the position measured by the laser interferometer is performing well.

Another possibility is to assume that the acceleration of the tool

a =
d2

d t2 z(t) (4a)

can be measured by an acceleration sensor. Most acceleration sensors which are used in industrial environments
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are based on the piezoelectric effect. These sensors are known to be prone to disturbances, especially in the low
frequency range, see, e. g., [25]. Thus, the measured acceleration signal needs to be high-pass filtered before it can be
used for compensation of the mechanical disturbances in the measured force signal. The velocity of the tool can be
approximated by integration of the acceleration signal a, e. g., with Euler’s method

d
d t

z(t) ≈
∑

{∀n|n∆t<t, n∈N}
a(n∆t)∆t . (4b)

Inserting (4) into (2) again leads to a suppression of the disturbances in the measured force signal. Figure 3 shows
the measured force signal compensated with the measured acceleration signal as red line. Compared to the previous
compensation method, using the acceleration sensors leads to a larger remaining error. This error is due to a time
delay caused by the pre-amplifier of the measurement signal.

In conclusion, it was shown in this section that the measured force signal can be corrected by measurements of the
mechanical movements of the tool. Since additional sensors always entail higher costs and more effort in construction
and assembling, a compensation strategy solely based on the already existing measurements will be developed in the
next section.

3. Two-Stage Observer

In the following, a two-stage observer strategy will be developed for the tool force Ft. It is assumed that the
tool force Ft is the sum of a known static component Ft,e (stage 1), which describes the steady-state input-output
characteristics between the control input u and the tool force, and a generally unknown component ∆Ft (stage 2),
which has to be estimated, i.e.,

Ft = Ft,e + ∆Ft . (5)

For the first stage, it is assumed that the known static input-output characteristics from the control input u to the tool
force Ft,e can be approximated in the form

Ft,e =

N∑

n=0

unan = uTa , (6)

where the polynomial coefficients and the control input can be expressed as vectors a =
[
a0 a1 . . . aN

]T
and

u =
[
1 u1 . . . uN

]T
, respectively. The control input u is the coil current of the electromagnetic actuator considered

in this work, but it may also be another quantity like the valve opening of a pneumatic actuator or the voltage of an
electrostatic actuator. Using the steady-state input-output model (6) can be justified if the transient response of the
actuator decays much faster than the transient response of the spring-mass-damper system according to Fig. 2. If this
requirement is not fulfilled, a dynamic model has to be used instead of (6). The coefficients a can be identified based
on a dedicated measurement campaign. Due to the different materials of the workpieces, an a-priori identification is
not always feasible and its results would not be valid for a long period. Such differences and variations of material
properties are further examined in Section 4. Thus, the coefficients a are estimated online by a recursive least-squares
algorithm with exponential forgetting according to [26]. For this purpose, the integrated quadratic error

min
a(t)

1
2

∫ t

0
exp (γ(τ − t))

(
Fs(τ) − uT(τ)a(t)

)2
d τ , (7)

between the force measurement reading Fs and the force estimate due to the control input is minimized. In (7),
exp (γ (τ − t)) is a weighting factor and γ ≥ 0 denotes the forgetting factor. From the first-order optimality condition,
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it follows that [26]
∫ t

0
exp (γ(τ − t)) u(τ)uT(τ) d τ

︸                                  ︷︷                                  ︸
=P

a = Pa =

∫ t

0
exp (γ(τ − t)) u(τ)Fs(τ) d τ . (8)

Using the identity

d
d t

P = −γP + uuT , P(0) = P0 , (9)

in the time derivative of (8) gives
(

d
d t

P
)

a + P
(

d
d t

a
)

= −γPa + uuTa + P
(

d
d t

a
)

= −γ
∫ t

0
exp (γ(τ − t)) u(τ)Fs(τ) d τ

︸                                  ︷︷                                  ︸
=Pa

+uFs . (10)

This yields the update law

d
d t

a = P−1u
(
Fs − uTa

)
, a(0) = a0 (11)

for the estimated parameters a. For a time t > 0 the matrix P and the estimated parameters a can be computed by
integration of (9) and (11). The computationally expensive inversion of P can be omitted by direct integration of
d
d t P

−1. In fact, insertion of (9) into

(
d
d t

PP−1
)

= 0 =

(
d
d t

P
)

P−1 + P
(

d
d t

P−1
)

(12)

yields

d
d t

P−1 = γP−1 − P−1uuTP−1 , P−1(0) = P−1
0 . (13)

The nominal parameters of the tool model (6) serve as initial parameters a0. In order to ensure a good convergence
behavior, the matrix P0 is chosen as P0 = p0I, with the identity matrix I and a sufficiently small positive parameter p0.

For the second stage, a reduced Luenberger observer is designed, for the theory, see, e. g., [27]. It systematically
takes into account the mass-spring-damper system resulting from the sensor configuration according to Fig. 2. For
the observer design, it is assumed that the unknown component of the tool force ∆Ft is constant, i.e. d

d t ∆Ft = 0.
Combining the disturbance model for ∆Ft with (2) and (5) yields

d
d t


kz
v

∆Ft

 =


0 k 0
− 1

m − d
m

1
m

0 0 0




kz
v

∆Ft

 +


0
1
m
0

 Ft,e (14a)

Fs =
[
1 0 0

]


kz
v

∆Ft

 , (14b)

with v = d
d t z. Equation (14b) indicates that the first state Fs = kz can be directly measured, cf. (1). This means that

(14a) is formulated in sensor coordinates. For the measured state Fs = kz and for the unmeasured states x =
[
v ∆Ft

]T
,

the dynamics can be written as

d
d t

Fs = Fx , F =
[
k 0

]
(15)
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and

d
d t

x = Ax + B
(
Fs − Ft,e

)
, (16)

with

A =

[− d
m

1
m

0 0

]
and B =

[− 1
m

0

]
. (17)

For the dynamic system (16), there does not exist a measurable output. However, an output according to (15) can be
defined. If this output is used for an observer design, the time derivative d

d t Fs of the force measurement reading is
required. Differentiation of measured variables is undesirable because of measurement noise. Thus, as suggested in
[27], a state transformation

w = x − LFs , (18)

with a constant vector L ∈ R2, is introduced. With this transformation and the relation (15), the dynamic model

d
d t

w = (A − LF) (w + LFs) + B
(
Fs − Ft,e

)
(19)

is obtained. A trivial observer for the transformed state w reads as

d
d t

ŵ = (A − LF) (ŵ + LFs) + B
(
Fs − Ft,e

)
. (20)

With the observer error

ê = ŵ − w , (21)

the error dynamics takes the form

d
d t

ê = (A − LF) ê . (22)

By choosing L, the observer error dynamics (22) can be arbitrarily defined because the pair (F,A) is observable. In
any case, the observer dynamics should be slower than the natural frequency of the mass-spring-damper system to
ensure the assumption of a constant disturbance is valid. As it is desired to directly specify the dynamics of (22),
pole placement is the first choice. Thus, L can be computed by Ackermann’s pole-placement formula. Note that in
principle, it would be also possible to use a reduced-order Kalman filter, see, e. g., [28], but this does not have any
advantages in the considered application. Instead of employing a reduced-order Luenberger observer for (16), a full
state observer could be designed for the system (14). However, since the sensor reading Fs features low noise, the
selection was made for the reduced-order Luenberger observer because it is simpler and easier to tune.

Finally, the estimated value of the unknown tool force component can be computed in the form, (see (18)),

∆F̂t =
[
0 1

]
(ŵ + LFs) . (23)

If the reduced Luenberger observer for ∆Ft is combined with the static estimation Ft,e of the tool force according to
the steady-state tool model, an estimation of the total tool force

F̂t = Ft,e + ∆F̂t (24)

is obtained. The structure of the two-stage observer, including the online recursive least-squares estimation (LSQ) of
the steady-state tool characteristics and the reduced Luenberger observer, is shown in Fig. 4.

In contrast to [13], the estimated parameters are not directly utilized in the model of the second stage. Thus, the
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second stage is a linear time invariant (LTI) system, where stability of the estimation error is readily ensured by proper
choice of L, cf., (22). Exponential convergence of the estimation in the first stage of the observer is ensured under the
premise of a persistent excitation.

Luenberger observer

LSQ

B
∫
L

[
0 1
]

A − LF

−

u

Fs

Ft,e

Ft,e

ŵ x̂
∆F̂t

F̂t

Fs

Figure 4: Two-stage observer structure.

4. Experimental Setup and Measurement Results

To demonstrate the suitability of the proposed two-stage observer strategy, an experimental test rig was developed,
see, Fig. 5. The essential parts of the experimental setup are highlighted in the photo Fig. 5(a). In this setup, the tool
is an electromagnetic actuator. However, the proposed observer strategy is not limited to this configuration. The
electromagnetic actuator applies a force to a spatially fixed workpiece consisting of ferromagnetic material. It is
assumed that the coil current serves as control input u, which is realized by a fast subordinate current control loop.
Thus, the electromagnetic force can be considered as a nonlinear function of the coil current u, the magnetic properties
of the material and the distance (air gap) between the electromagnetic actuator and the workpiece, which, apart from
vibrations, is nearly constant in the considered case. The parallelogram structure holding the electromagnetic actuator

(a) Photo of the experiment.

y x

z

(b) Schematic representation of the experiment.

parallelogram
structure

compensation
coil

force sensor

electro magnetic
actuator (tool)

workpiece

Figure 5: Experimental test rig with electromagnetic actuator, workpiece and integrated force sensor.

in place, see, Fig. 5, results in a high deformation stiffness in y- and x-direction but low stiffness in z-direction.
Furthermore, this design inhibits rotational movements of the electromagnetic actuator. Thus, force on the force
sensor can only be applied along the z-direction. Hence, the experimental test rig can be represented by the equivalent
model according to Fig. 2. Note that this experimental test rig serves as a laboratory model for the actuators used in
hot-dip galvanizing lines to stabilize the transverse displacement of a moving metal strip, see, e. g., [21, 22].

8

Post-print version of the article: U. Knechtelsdorfer, M. Saxinger, M. Schwegel, A. Steinboeck, and A. Kugi, “A two-stage observer for the
compensation of actuator-induced disturbances in tool-force sensors”, Mechanical Systems and Signal Processing, vol. 146, pp. 106989-1–
106989-12, 2021, issn: 0888-3270. doi: 10.1016/j.ymssp.2020.106989
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

https://doi.org/10.1016/j.ymssp.2020.106989


The electromagnetic actuator induces magnetic stray flux which may also disturb the force sensor. Due to space
and weight limitations, it is not possible to overcome this issue by redesigning the magnet holder. Therefore, a method
will be presented which allows to compensate for the stray flux induced disturbances in the force measurement signal.
The force sensor measures the force indirectly by strain gauges in the sensor housing. The strain gauges form a
resistive bridge circuit, which allows the conversion of the strain value into an electric voltage. This is then amplified
by a factor β and the output of the amplifier represents the force measurement reading Fs. Unfortunately, conventional

Φ

β
F̌s

Figure 6: Induced disturbances due to changing magnetic flux.

force sensors are generally not shielded against magnetic fluxes. If a time-varying magnetic flux Φ flows through the
strain gauge bridge as outlined in Fig. 6, a voltage vs proportional to the change of the flux is induced according to
Faraday’s law of induction [29]. Thus, the measurement reading of the force sensor

F̌s = Fs + βvs (25)

is disturbed by the magnetically induced voltage vs. In order to measure and compensate for the disturbances caused
by the induced voltage, an additional coil is placed in the vicinity of the force sensor. In this coil, a voltage vc is
induced. The relation between vs and vc is given in the form

vs

vc
=

As

AcNc
, (26)

where As is the area spanned by the strain gauge bridge, Ac is the area of the coil, and Nc is its number of windings.
Here, it is assumed that the magnetic flux in the vicinity of the force sensor is homogeneous. The sensor reading can
thus be corrected by the compensation law

Fs = F̌s − β As

AcNc︸ ︷︷ ︸
βc

vc , (27)

where all the constants can be combined to one factor βc. Because As is effectively unknown, βc has to be identified,
which can easily be done by subjecting the unloaded force sensor to a varying magnetic field. In this case, the expected
force measurement Fs is 0 N. Therefore, the sensor reading F̌s shows only the magnetically induced disturbance, cf.
(25). The factor βc can thus be identified by minimizing the quadratic cost function

min
βc

∫ T

0

(
F̌s(τ) − βcvc(τ)

)2
d τ (28)

where T is the duration of the calibration measurement. A measurement campaign demonstrating the feasibility of
the compensation of magnetic disturbances is shown in Fig. 7. Here, the workpiece is removed, so the expected force
reading is 0 N. The control input of the electromagnetic actuator is a sinusoidal coil current with various frequencies.
These frequencies are also indicated in Fig. 7. The sensor noise level can be inferred from the section corresponding
to 0 Hz. The compensated force measurement signal according to (27) is within the boundaries of the sensor noise
level for low frequencies of the coil current. For frequencies > 15 Hz, the remaining disturbance increases but is still
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Figure 7: Force sensor reading and force signal with compensated disturbances due to the magnetic stray fluxes

significantly lower than the measurement error without compensation.
An experiment similar to the one presented in Fig. 3 is performed to demonstrate the feasibility of the proposed

two-stage observer strategy. A piecewise constant input current is applied to the electromagnetic actuator. Hence, a
piecewise constant tool force can be expected. In this experiment, the eigenvalues of the observer error dynamics,
cf. (22), are chosen as −50 s−1 and −60 s−1, which are slower than the natural frequency of the tool-sensor combi-
nation. The results are shown in Fig. 8. The force sensor reading (gray) is compared to the estimated force signal
according to the observer structure of Fig. 4 (red) and to the estimated force signal which is obtained by the observer
alone, i. e., when setting Ft,e = 0 (blue) in (5). In both cases, the disturbances in the measurement signal can be
very well suppressed. Moreover, Fig. 8 shows that the tool force can be estimated without a steady-state error. Ac-
cording to the detail views of Fig. 8, the two-stage observer strategy comprising the least-squares estimation of the
static input-output characteristics Ft,e exhibits a faster response to changes of the control input because the first stage
systematically exploits the information due to the changing tool actuation.

Another measurement campaign, shown in Fig. 9, mimics a scenario in a control application. Here, the electro-
magnetic actuator is excited with a sinusoidal control input (10 Hz) with a constant offset. This scenario is typical,
e. g. if the electromagnetic actuator is used for strip stabilization in a hot-dip galvanizing line [22]. The area labeled 1©
shows a nominal scenario. In the laboratory environment, the true tool force Ft can be determined by a lookup table
which maps the values of the control input u to the corresponding steady-state tool force. The lookup table must be
generated in an additional measurement campaign.

The observed signal which is obtained by the observer alone, i. e., when setting Ft,e = 0, shows a significantly
damped amplitude and a phase shift, which can be seen in the detail view of Fig. 9. In contrast, the proposed observer
structure, which exploits the known actuation of the tool, is in good accordance with the true tool force. For the sake
of comparison, an observer with the structure shown in Fig. 4 but a static a-priori identification of the tool force (6) is
employed. Figure. 9 shows that the static approximation of the tool force performs similar to the online least-squares
identification of the tool force in the area labeled 1©.

Although hot-dip galvanizing is a continuous process, a sharp change between the magnetic properties of the
processed strip occurs frequently. This is because the processed endless strip consists of single strips which are
welded together and thus lead to piecewise constant material parameters, which influence the static input-output
characteristics of the tool. In the area labeled 2©, a change of the strip parameters is emulated. In the area labeled 3©,
the parameters of the workpiece are held constant again. At the beginning of the area labeled 3©, there is a notable
measurement error between Ft and the observed force F̂t. However, as soon as the estimated tool model (6) adapts, the
estimation error in amplitude and force converges to zero. This is not the case, if the tool characteristics are identified
in advance offline. Thus, it is shown that the developed two-stage observer with an online estimation of the static
input-output characteristics is also superior to an offline identification.
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As shown in the detail view of Fig. 9, the resulting force is nearly sinusoidal. Therefore, Fig. 10 shows the
amplitude and phase error of the first harmonics between F̂t and Ft. After the strip parameters are changed, the
phase and amplitude error between F̂t and Ft converge to negligibly low values in the case of online estimation of the
coefficients an. In contrast, if the estimation of the parameters an is done in advance, errors in the amplitude and phase
remain.

Furthermore, Fig. 10 shows the amplitude and phase error between Ft,e and Ft. Taking F̂t = Ft,e as estimation
of Ft equals the observer structure shown in Fig. 4 with ∆Ft = 0, meaning that the tool force is estimated only by
the least-squares algorithm. In this case, even if the amplitude error decays, an error in the phase remains. This
demonstrates that the proposed two-stage observer structure is also superior to a pure least-squares estimation of the
tool characteristics without consideration of the dynamical effects (i. e., ∆Ft = 0).
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Figure 8: Force sensor reading and estimated force signal obtained by the observer introduced in Sec. 3: Step-like changes of the tool force.
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Figure 10: Phase and amplitude error of the first harmonics of the signals in Fig. 9.

5. Conclusions

This paper proposes a novel two-stage observer strategy for improving the measurement of tool forces by reject-
ing unwanted disturbances. In Section 1, a brief overview of already existing methods for compensating mechanical
oscillations in the context of force measurements is given. Furthermore, potential areas of application of the proposed
observer strategy are discussed. In Section 2, it is analyzed why mechanical oscillations can disturb the measure-
ment of the tool forces and a simple dynamical model is derived. It is shown that the disturbances of the tool force
measurement can be compensated by additional position or acceleration measurements. In Section 3, a two-stage ob-
server strategy which is able to reject these disturbances without additional measurements is developed. The proposed
observer consists of a recursive least-squares estimation of the input-output characteristics of the tool and a reduced
Luenberger observer. The least-squares estimation of the tool force characteristics tracks fast changes of the tool force
caused by the system input. The influence of the mechanical setup of the sensor-tool configuration, in contrast, is
captured by the reduced Luenberger observer which also estimates the acceleration forces. This leads to an overall
observer strategy which

• does not use additional sensors except for the existing force sensor,

• can reject the influence of inertia forces on the measurement signal, and

• responds quickly to changes of the input of the actuator.

The efficacy of the developed observer strategy was tested on a laboratory experiment, which is explained in
Section 4. Additional disturbances induced by the stray fluxes of the magnetic actuator used in this experimental
setup were analyzed and a method was proposed for their compensation. The obtained measurement results prove the
feasibility of the proposed two-stage observer strategy.
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