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Model predictive control of an automotive waste heat recovery system

H. Koppauera,∗, W. Kemmetmüllera, A. Kugia

aAutomation and Control Institute, TU Wien, Gußhausstraße 27/29, 1040 Vienna, Austria

Abstract

This paper proposes a model predictive control strategy for an Organic Rankine Cycle based waste heat recovery system. The
control strategy uses a prediction model based on gain scheduling of local models, which results in a quadratic program to efficiently
calculate the optimal control inputs. To ensure an optimal system operation, the reference values are obtained from a steady-state
optimization. To capture a model-plant mismatch, the control concept features an EKF-based estimator of the model uncertainties.
Simulations on a validated simulation model show that this control strategy can track the optimal reference very well, even for a
large model-plant mismatch.

Keywords: Waste heat recovery, Organic Rankine Cycle, Nonlinear control, Model predictive control, Automotive systems

1. Introduction

Research on fuel efficient technologies for internal combus-
tion engines has become very important in the last years to re-
duce the fuel costs and to meet the strict regulations on CO2

emissions. Concerning this matter, heavy-duty trucks offer a
high fuel saving potential because they have a high fuel con-
sumption combined with a high yearly mileage.

A state-of-the-art heavy-duty diesel engine can reach fuel ef-
ficiencies of 45% in best operating points, while approximately
one third of the fuel energy is lost through the exhaust gas.
Thus, current research focuses on systems that recover waste
heat from the exhaust gas, to improve the overall system effi-
ciency, see, e.g., [1]. Among the investigated concepts, waste
heat recovery (WHR) systems based on the Organic Rankine
Cycle (ORC) are a promising technology for heavy-duty appli-
cations, cf. [2, 3, 4]. The expected fuel savings range from 5%
to 10%, see, e.g., [5].

Fig. 1 depicts an ORC WHR system with one evaporator,
where the hot exhaust gas evaporates an organic working fluid
at a high pressure level. The vaporized working fluid expands
over an expansion machine to a lower pressure level and its in-
ternal energy converts into mechanical energy, which can be
directly used for traction [6] or stored in an energy storage
system [5]. The hot working fluid then condenses in the con-
denser and the residual heat is transferred to the cooling water,
see, e.g., [5, 6].

In the past, research on ORC WHR systems was primarily
concerned with the cycle topology (number and arrangement
of the evaporators) and the suitability of certain working fluids,
see, e.g., [7, 8, 9, 10]. In this context, a former work of the
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authors focused on calculating optimal steady-state operating
points with the corresponding control inputs for given exhaust
gas mass flows and inlet temperatures, cf. [11]. The dynamic
operation of automotive ORC systems brings along additional
demands on the control design because the exhaust gas heat
flow rates are changing in a highly dynamic way and several
state constraints have to be met to ensure a safe system opera-
tion, see, e.g., [12, 13]. A suitable control strategy must avoid
dryout and temperature shocks of the evaporators, cf. [4], as
well as the decomposition of the working fluid. Moreover, the
control algorithm has to account for the considerable nonlinear-
ities of the ORC system, mainly of the heat exchangers, to yield
a high control and system performance. These challenges make
the control of the high-pressure part of the ORC WHR system
an interesting field of research.

The ORC systems examined in the literature differ in their
system topologies (e.g., the number of evaporators [10]), the
type of expansion machine (e.g., turbine [6], screw [8] or scroll
expander [14]), and the number and the type of the actuators.
The common control goal is to control the system states at the
evaporator outlet or at the inlet of the expansion machine. In
recent years, a number of different control concepts have been
presented in the literature. In [3], the authors propose a com-
bination of a model-based nonlinear feedforward controller in-
cluding a parameter adaption with a PID feedback controller. A
similar concept is presented in [15], but instead of a single PID
controller a gain scheduled PID controller is used to account for
the system nonlinearities. Moreover, in [16] a nonlinear feed-
forward controller is combined with a gain scheduling of LQR
controllers and corresponding Luenberger observers. To con-
sider a model-plant mismatch, the heat transfer parameters of
the feedforward model are adapted online and the linear mod-
els for the Luenberger observers are extended with an unknown
output disturbance. The authors of [4] use a Linear Quadratic
Integral (LQI) controller to control an ORC system with multi-
ple control inputs. Compared to a pair of single PID controllers,
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Figure 1: Sketch of the considered WHR system with one evaporator.

the LQI controller shows a superior control performance.
The control schemes presented so far do not allow to con-

sider state constraints in a systematic way. Several other works,
e.g., [13, 17, 18], examined the application of model predic-
tive control (MPC) to automotive ORC systems. MPC takes
into account the state and the actuator constraints as well as the
measured disturbances and can handle multi-input multi-output
control problems, cf. [19, 20]. To allow for a real-time im-
plementation on an automotive electronic control unit (ECU),
a linear MPC based on three reduced order system models is
presented in [13], which considers the system nonlinearities by
switching the prediction models depending on the actual ex-
haust gas heat flow rate. This switching may cause bumps of the
estimated states and consequently larger control deviations after
changing the prediction model. To avoid this, the rate of change
of the control inputs has to be restricted for this control concept.
Further investigations show that using a nonlinear MPC could
improve the control performance (time with superheated vapor
at the evaporator outlet) by ≈ 10%, but it is not feasible for
a real-time implementation, cf. [13]. Nonlinear MPC using a
simplified model is also investigated in simulations in [17]. To
account for the system nonlinearities, the authors of [18] pro-
pose an adaptive linear MPC for the evaporating temperature,
which uses a system model of two first order transfer functions
plus time delay with gain and time constants depending on the
actual superheating of the working fluid and the exhaust gas
mass flow. Both quantities were identified for several operat-
ing points and fitted with two-dimensional polynomials. This
method considers only one actuating variable and no coupling
between the output variables.

Analyzing the results of these articles concerning MPC in-
dicates that the system control performance can be improved
by systematically taking into account the system nonlineari-
ties. However, a nonlinear MPC is not real-time capable for
an automotive ECU. Thus, this article presents an MPC con-

cept that approximately considers the system nonlinearities, but
only requires a similar computational effort as linear MPC. As
mentioned in [16], an appropriate control strategy for an ORC
WHR system must be able to cope with an unavoidable model-
plant mismatch. Therefore, a suitable method is investigated to
identify the model-plant mismatch and consider it in the MPC
model.

In general, an ORC system with two evaporators in parallel
offers a high recovering potential, but brings along higher re-
quirements on the control strategies, see, e.g., [10, 11]. Hence,
as a first step for designing an appropriate MPC strategy for
dual evaporator WHR systems, this article focuses on control-
ling the working fluid state at the turbine inlet of an ORC WHR
system with one evaporator, as it is presented in Fig. 1.

This article is organized as follows: First, Section 2 describes
the system under investigation and its specific properties. Next,
the mathematical system model and its gain scheduling approx-
imation is given in Section 3. Section 4 explains the developed
control scheme in detail. Finally, Section 5 discusses the simu-
lation results for the presented control scheme.

2. System description

Fig. 1 shows the considered test-bench setup of the WHR
system. An Euro VI six cylinder diesel engine, coupled to an
electrical brake, discharges hot exhaust gas with highly varying
mass flows and temperatures. The pump delivers the working
fluid (ethanol) to a counterflow evaporator, which is placed in
the exhaust gas path after the exhaust aftertreatment. There, the
exhaust heat is used to heat up and evaporate the working fluid.
If the system restrictions do not allow any further heat transfer
to the working fluid, the proportional exhaust gas bypass valve
can reduce the exhaust gas mass flow through the evaporator.
Possible system restrictions are, e.g., the maximum temperature
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of the working fluid or the maximum pressure due to the system
construction.

A radial turbine is utilized to convert the internal energy of
the vaporized working fluid into mechanical power. It also
drives the generator, which is operated to yield an optimal ro-
tational speed of the turbine, cf. [5, 13]. To prevent droplet
erosion, a minimum vapor quality has to be ensured at the tur-
bine inlet. If the vapor quality is too low or no turbine power is
required, the bypass switching valve is actuated and the work-
ing fluid expands over the bypass throttle. After the expansion,
the superheated or two-phase fluid condenses in the condenser.
The tank control valve allows to connect the low-pressure part
of the WHR system to the working fluid tank, but it is closed
during normal operation. Several components, which are nec-
essary for safety reasons, are not displayed in Fig. 1, since they
are not relevant for the subsequent controller design.

3. Mathematical Model

This section summarizes the control-oriented mathematical
system model for describing the dynamics of the high-pressure
part of the WHR system and analyzes the impact of the model-
plant mismatch. Based on these results, a suitable approxima-
tion of the dynamical model is proposed that is based on a gain
scheduling of local system models.

3.1. Control-oriented model

In [11], a detailed model of the considered WHR system is
given and investigated in a parallel dual evaporator setup. It is
shown that this model is able to accurately reproduce the dy-
namic system behavior measured on a test-bench in the entire
operating range. This section gives a control-oriented mathe-
matical model of the high-pressure part of the considered single
evaporator system that is based on the validated model given in
[11]. For a detailed derivation of the given equations, the reader
is referred to [11].

The original model according to [11] of the single evaporator
high-pressure part features a high accuracy, but also a high com-
plexity with 65 states. Thus, this model is not directly suitable
for a model based controller design, as e.g., model predictive
control. To reduce the model complexity, several effects are ne-
glected that have only small influence on the system dynamics:
(i) The increase of enthalpy from the pump inlet to the pump
outlet is small and thus neglected. This entails that the specific
evaporator inlet enthalpy hine is equal to the specific enthalpy
hinp at the inlet of the working fluid pump. (ii) The short piping
from the bypass switching valve to the turbine is neglected and
consequently the turbine mass flow ṁt is calculated using the
states at the inlet of the bypass switching valve. This is feasi-
ble because the enthalpy loss from the bypass switching valve
inlet to the turbine inlet has only little influence on the turbine
mass flow. (iii) Investigations showed that the dynamics of the
exhaust gas temperature along the evaporator is significantly
faster than the temperature dynamics of the working fluid and
the separating wall. Thus, a quasi-stationary approach is used
for the exhaust gas temperature, see, also, [3, 21].

The dynamics of the evaporator is described by the conser-
vation of mass and energy. For this, it is assumed that the
multi-channel plate evaporator can be described by an equiva-
lent model with one effective channel for the working fluid, one
for the exhaust gas, and the separating wall. For the mathemati-
cal model equal pressure is assumed in the entire high-pressure
part and thus the working fluid pressure in the evaporator is
equal to the turbine inlet pressure pH . Furthermore, constant
density ρw and isobaric heat capacities cw, cp,ex of the wall and
the exhaust gas are presumed. To derive a finite-dimensional
model, the computational region is discretized along the spatial
coordinate z into i = 1, . . . , n = 20 finite volumes of length
∆z and the finite-volume method is applied, see [11]. The re-
sulting set of ordinary differential equations for the averaged
specific enthalpy of the working fluid h̄e,i and the averaged wall
temperature T̄w,i in each finite volume is given as, see [11] for
more details,

dh̄e,i
dt

=
ṁe,i−1

∆z (he,i−1 − he,i)− ∂Acᾱe,i(T̄e,i − T̄w,i)

Ace

(
ρ̄e,i +

∂ρ̄e,i
∂h̄e,i

(
h̄e,i − he,i

))

(1a)

dT̄w,i
dt

=
∂Acᾱe,i

(
T̄e,i − T̄w,i

)
+ ∂Acαex

(
T̄ex,i − T̄w,i

)

Acwcwρw
,

(1b)

with the specific enthalpies he,i−1, he,i at the finite volume
borders. The averaged exhaust gas temperature T̄ex,i =
(Tex,i−1 + Tex,i)/2 results from

Tex,i−1 =
2ṁex,evcp,exTex,i + ∂Acαex∆z(Tex,i − 2T̄w,i)

2ṁex,evcp,ex − ∂Acαex∆z
,

(2)
where Tex,i−1 and Tex,i denote the exhaust gas temperatures at
the finite volume borders. At the exhaust gas inlet, the tem-
perature Tex,n is equal to the exhaust gas inlet temperature
T inex . The averaged density ρ̄e,i and temperature T̄e,i are cal-
culated from the averaged specific enthalpy h̄e,i and the tur-
bine inlet pressure pH using the constitutive equations for the
working fluid from [11], which are a modified version of the
working fluid model from [21]. Furthermore, the wall cross
sectional area Acw, the channel cross sectional area Ace, and the
heat exchanging boundary ∂Ac describe the evaporator geom-
etry. The heat transfer coefficient αex from the exhaust gas
to the wall is a function of the exhaust gas mass flow ṁex.
Moreover, the heat transfer coefficient ᾱe,i from the working
fluid to the wall depends on the working fluid inlet mass flow
ṁe,0, on the turbine inlet pressure pH , and on the vapor frac-
tion γ(he, pH) = (he − h′e(pH))/(h′′e (pH)− h′e(pH)), with
the saturation values h′e(pH) of liquid and h′′e (pH) of vapor.

The working fluid mass flow ṁe,i at the outlet of each finite
volume reads as

ṁe,i = ṁe,i−1 −∆zAce
∂ρ̄e,i
∂h̄e,i

dh̄e,i
dt

, i = 1, . . . , n, (3)

with the finite-volume inlet mass flows ṁe,i−1. At the first fi-
nite volume, the mass flow ṁe,0 is equal to the mass flow ṁp
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of the working fluid pump and he,0 = hinp holds. The exhaust
gas mass flow through the evaporator is calculated as

ṁex,ev = χexṁex, (4)

with the position of the exhaust gas bypass valve χex ∈ [0, 1]
and the exhaust gas mass flow ṁex at the outlet of the exhaust
aftertreatment.

The model for the average specific enthalpy h̄e,H in the high-
pressure part piping from the evaporator to the bypass switching
valve and for the average piping wall temperature T̄w,H reads
as [11]

Ve,H ρ̄e,H
dh̄e,H

dt
=ṁe,n

(
he,n − h̄e,H

)

− αe,HAse,H
(
T̄e,H − T̄w,H

)
, (5a)

Vw,Hcwρw
dT̄w,H

dt
=αe,HA

s
e,H

(
T̄e,H − T̄w,H

)

− αa,HAsa,H
(
T̄w,H − Tamb

)
, (5b)

with the volume Ve,H of the high-pressure part piping, the heat
transfer coefficient αe,H and the surface area Ase,H from the
working fluid to the wall, the wall volume Vw,H (specific heat
capacity cw, density ρw), and the heat transfer coefficient αa,H
and the effective surface area Asa,H to the ambiance (ambient
temperature Tamb). Furthermore, the averaged density ρ̄e,H
and the averaged temperature T̄e,H are calculated from the tur-
bine inlet pressure pH and the specific enthalpy h̄e,H .

As mentioned before, equal pressure pH is assumed in the
entire high-pressure part (evaporator and pipings). The mass
balance for this part yields

dpH
dt

=

ṁe,n − ṁsv − Ve,H
∂ρ̄e,H
∂h̄e,H

dh̄e,H
dt

ξ + Ve,H
∂ρ̄e,H
∂pH

(6)

with

ξ = Ace

n∑

i=1

∆z

(
∂ρ̄e,i
∂pH

)
, (7)

which takes into account the influence of the compressible fluid
in the evaporator. The mass flow ṁsv into the bypass switch-
ing valve is equal to the turbine mass flow ṁt or to the bypass
throttle mass flow ṁth, depending on the operation in turbine
mode or bypass mode. The turbine mass flow ṁt and the bypass
throttle mass flow ṁth are given as a function of the turbine in-
let pressure pH , the turbine outlet pressure pL, and the specific
inlet enthalpy. As described before, the piping at the turbine
inlet is neglected and h̄e,H is used as inlet enthalpy for the cal-
culation of both mass flows. For more details on the calculation
of the mass flow, see [11].

Subsequently, this model is summarized as

ẋ = fn(x,u,v) (8a)
y = Cx (8b)

with the system states

x = [h̄e,1, .., h̄e,n, T̄w,1, .., T̄w,n, pH , h̄e,H , T̄w,H ]T, (9)

the control inputs
u = [ṁp, χex]T, (10)

the exogenous inputs

v = [ṁex, T
in
ex , h

in
p , Tamb, pL]T, (11)

and the measured outputs

y = [he,n, pH , h̄e,H ]T. (12)

This model has 2n+ 3 = 43 system states.

3.2. Influence of a model-plant mismatch

The model of Section 3.1 is capable of representing the sys-
tem dynamics quite well, see [11]. Nevertheless, a model-plant
mismatch is inevitable in the practical application due to the
following reasons: (i) The model is based on a number of sim-
plifications and approximated functions, e.g., for the heat trans-
fer coefficients and the constitutive equations of the working
fluid. (ii) Certain properties of the system (in particular the heat
transfer coefficients) are subject to significant variations during
operation, e.g., caused by fouling in the evaporator. (iii) The
exogenous input v is not exactly known due to measurement
errors in the practical application. In particular, the mass flow
ṁex and the temperature T inex of the exhaust gas at the evap-
orator inlet can be afflicted with a significant error, since ṁex

is a calculated value of the ECU and sooting can influence the
temperature measurement. Thus, a practically feasible control
strategy must be robust or adapt to this model-plant mismatch.
To study the influence of these effects, first the impact of the ex-
ogenous input variables ṁex, T inex , Tamb, and hinp on the model
outputs h̄e,H and pH is analyzed. These two output quantities
are relevant, since h̄e,H represents the controlled variable and
pH is used for calculating the reference value of h̄e,H , see Sec-
tion 4.1. For this analysis the relative sensitivity

κyi,vj =
∆yi/yi
∆vj/vj

(13)

of the steady-state output changes ∆yi due to input variations
∆vj is calculated at optimal steady-state operating points cov-
ering the entire engine operating range. Fig. 2 depicts the
resulting relative sensitivities at the optimal operating points
sorted for the pressure pH of the investigated operating points
in ascending order. It can be seen that variations of the exhaust
gas inputs ṁex and T inex have the largest influence on the output
variables. The influence of the ambient temperature Tamb in-
creases for small pressures pH and corresponding small work-
ing fluid heat flow rates Q̇e,n = ṁphe,n at the evaporator out-
let. However, this influence is, as the influence of hinp , small
compared to the influence of ṁex and T inex . Moreover, it can be
expected that Tamb and hinp are known rather accurately in the
real system. It has to be noted that the influence of the exoge-
nous input pL does not have to be considered in this study, since
at optimal steady-state operating points pL is below the critical
pressure and thus does not have an influence on pH and h̄e,H .
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Figure 2: Relative sensitivity of the outputs h̄e,H and pH due to variations of
the exogenous inputs ṁex, T in

ex , Tamb, and hinp .

As briefly mentioned before, the heat transfer coefficients
are the model parameters that can exhibit the largest devia-
tions from their nominal values. Moreover, the heat transfer
coefficients αex from the exhaust gas to the wall and ᾱe,i from
the wall to the working fluid directly influence the heat trans-
fer from the exhaust gas to the working fluid in the evapora-
tor. The heat transfer coefficient αex on the exhaust gas side
is significantly lower than the heat transfer coefficient on the
working fluid side. Thus, it dominates the steady-state heat
transfer determined by the local heat transmission coefficient
ki = αexᾱe,i/(αex+ ᾱe,i), cf. [3], and variations of αex have a
significantly larger influence on the system behavior. The same
holds true when analyzing the heat transfer at the high-pressure
part piping. Here, the heat transfer coefficient αa,H from the
piping wall to the ambiance is small compared to αe,H .

This discussion shows that errors of the heat flow from the
exhaust gas to the working fluid - either due to errors in ṁex,
T inex or in αex - and from the working fluid to the ambiance
(αa,H ) can have a significant influence on the model accuracy.
This can lead to a low performance of the model-based control
strategy in the practical application.

To approximately consider this effect in the model for the
controller design, the model equations (1b) and (5b) of the wall
temperatures of the evaporator and the high-pressure part pip-

ing, respectively, are augmented in the form

Acwcwρw
dT̄w,i

dt
=∂Acᾱe,i

(
T̄e,i − T̄w,i

)

+ ∂Acαex
(
T̄ex,i − T̄w,i

)
+

µi
∆z

∆Q̇ex

(14a)

Vw,Hcwρw
dT̄w,H

dt
=αe,HA

s
e,H

(
T̄e,H − T̄w,H

)

− αa,HAsa,H
(
T̄w,H − Tamb

)
+ ∆Q̇H .

(14b)

Here, the heat flow rates ∆Q̇ex and ∆Q̇H are introduced to ac-
count for the errors in the transferred heat due to the previously
mentioned possible model-plant mismatches. In the subsequent
controller design, the heat flow rates ∆Q̇ex and ∆Q̇H will be
treated as unknown parameters, which have to be estimated by a
suitable observer, see Section 4.4. The heat flow rates are intro-
duced to capture the model errors due to an inaccurate knowl-
edge of the heat flow between the exhaust gas and the evap-
orator wall and between the high-pressure part piping and the
ambiance, which are the main sources of the model-plant mis-
match. However, these two heat flow rates also approximately
cover other model-plant mismatches, e.g., resulting from the
simplified constitutive equations of the working fluid, cf. [11].

The shaping function µi is introduced in (14a) to approxi-
mately capture the spatial dependence of the influence of the
model errors for the evaporator. Due to the nonlinearity of the
evaporator model, the specific shape of µi strongly depends on
the actual model errors (actual exhaust gas quantities, actual
heat transfer coefficient αex). Hence, there is no clear indica-
tion for a suitable choice of µi. However, investigations for
several model errors (combinations of parameter deviations of
αex and measurement errors of the exhaust gas quantities) show
that the model errors usually have the highest influence near the
exhaust gas inlet at i = n. Thus, the performance of the state
estimator (see Section 4.4) was tested in simulations with differ-
ent model errors, and a linear and a quadratic shaping function
µi. The simulation results showed a slightly better estimation
of the evaporator states and a better closed-loop performance
with a quadratic shaping function

µi = 1 +

(
i− 1

n− 1

)2

, (15)

which is thus used in this work.

3.3. Gain scheduling model
The reduced order mathematical model represents a set of

numerically stiff nonlinear differential equations whose time
integration requires a high computational effort. Thus, it is not
well suited for a nonlinear MPC strategy, which is considered
in this work, cf. [13, 22]. In this section, a gain schedul-
ing model based on quasilinear local model approximations is
proposed. These local system approximations are calculated
at nominal operating points and combined using a scheduling
variable, which characterizes the system behavior at the current
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operating point, cf. [23, 24]. As it will be shown later, the use
of such a model reduces the computation of the optimal control
inputs to solving a quadratic program (QP).

Given the discussion of the previous section, the model (8)-
(12) with (14) can be written as

ẋ = f(x,u,v,θ) (16a)
y = Cx (16b)

with the heat flow rates

θ =
[
∆Q̇ex,∆Q̇H

]T
. (17)

In the nominal case, the vector θ is equal to zero and
f(x,u,v,θ) = fn(x,u,v) from (8a).

To identify a suitable scheduling variable for the local linear
model approximations, the behavior of the nonlinear model is
evaluated around stationary optimal operating points. To do so,
the exhaust gas mass flow ṁex and temperature T inex at the inlet
of the evaporator are measured at a test bench for nSOP steady-
state operating points, which cover the relevant operating range
of the WHR system, see the blue circles (◦) in Fig. 3. Further-
more, the ambient temperature Tamb, the turbine outlet pres-
sure pL, and the specific pump inlet enthalpy hinp are selected
as the average of their typical value. For each of these values
vs,l = [ṁex,l, T

in
ex,l, h

in
p , Tamb, pL], l = 1, . . . , nSOP , optimal

steady-state operating points are calculated for the nominal sys-
tem model θ = 0 by solving

0 = f(xs,l,us,l,vs,l,0) (18a)

0 = h̄e,H,s,l − h̄refe,H(pH,s,l), (18b)

for xs,l and us,l. The optimal reference value h̄refe,H(pH,s,l)

for the specific enthalpy h̄e,H,s,l was derived from the optimal
steady-state system operating points and will be explained in
more detail in Section 4.1. For the solution, χex,s,l = 1 is uti-
lized, which implies that the entire exhaust gas mass flow passes
through the evaporator.

1 1.5 2 2.5 3 3.5 4

1

1.2

1.4

ṁ∗
ex

T
in

∗
e
x

Figure 3: Normalized steady-state exhaust gas mass flows ṁ∗
ex and inlet tem-

peratures T in∗
ex of the evaporator.

Remark 1. Note that all quantities indicated by the superscript
∗ are normalized quantities, obtained by relating the quantities
to the reference values h̄0

e,H , T̄ 0
e,H , ṁ0

p, p0
H , and n0

t (reference
rotational speed of the turbine) of a maximum power operat-
ing point. All powers (also the exhaust gas inlet heat flow rates
Q̇inex = cp,exṁex

(
T inex − Tamb

)
) are related to the correspond-

ing maximum shaft power P 0
t of the turbine.

In the next step, the local behavior of the nonlinear system
around these optimal steady-state operating points is analyzed
by performing small steps ∆ṁp,l of the pump mass flow ṁp

in the form ∆ṁp,l = 0.05ṁp,s,l, with the pump mass flow
ṁp,s,l of the optimal steady-state operating point l. Fig. 4
shows the step response of the nonlinear system for 4 selected
operating points with increasing exhaust gas inlet heat flow rate
Q̇inex = cp,exṁex

(
T inex − Tamb

)
. Here, OP 1 corresponds to

the smallest and OP 4 to the largest value. It can be clearly seen
that the system dynamics becomes significantly faster for larger
values of Q̇inex.

−3

−2

−1

0
·10−2

∆
h̄
∗ e
,H

OP 1 OP 2

OP 3 OP 4

0 200 400 600 800 1000
0

0.5

1

1.5
·10−2

t in s

∆
p
∗ H

Figure 4: Normalized step response from the input ∆ṁp to the outputs ∆h̄e,H
and ∆pH for selected optimal steady-state operating points.

In order to analyze this behavior for all chosen optimal
operating points, Fig. 5 depicts the rise time τ from 0 %
to 63 % of the final value and the stationary gain G =
lim
t→∞

∆h̄e,H(t)/∆ṁp of the step response from the input ∆ṁp

to the output ∆h̄e,H as a function of Q̇inex. There is a strong cor-
relation between Q̇inex and these parameters of the step response,
which indicates that Q̇inex would be a meaningful scheduling
variable.1 This result is also reported in [13], where Q̇inex is uti-
lized as the switching variable in an MPC strategy for a double
evaporator WHR system. In contrast, the authors of [16] utilize
the exhaust gas mass flow ṁex as scheduling variable for LQR
controllers. Both variables, however, have the drawback that
they rely on quantities of the exhaust gas. In the real applica-
tion, the exhaust gas mass flow is not measured, but only cal-
culated based on models of the combustion engine in the ECU,
which can yield rather large errors in ṁex and Q̇inex.

To circumvent this problem, the correlation between the op-
timal values of pH and Q̇inex is analyzed in more detail. Fig.
6 shows that there is an almost linear relation between these
quantities, which suggests that pH can be used as gain schedul-
ing variable instead of Q̇inex. Utilizing pH is beneficial in the real
application, since this pressure is directly measured in the sys-

1The deviations from the general trend of the rise time τ and the gain G
for small values of Q̇in

ex are related to operating points with low exhaust gas
inlet temperatures and a large superheating at the evaporator outlet, which is
required to account for the considerable heat loss in the piping.
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Figure 5: Time constant τ and stationary gain G of the step response from the
input ∆ṁp to the output ∆h̄e,H as a function of the normalized exhaust gas
inlet heat flow rate Q̇in∗

ex .

tem and thus known rather accurately. Therefore, pH is chosen
as scheduling variable in this contribution.
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Figure 6: Relation of the normalized exhaust gas inlet heat flow rate Q̇in∗
ex and

the normalized optimal steady-state pressure p∗H .

Of course, it does not make sense to calculate a local lin-
earized model for each of the stationary optimal operating
points depicted in Fig. 3-6. Thus, a reduced set of optimal
operating points has to be selected, which represents the overall
operating range of the WHR system, cf. [25, 26]. For this, Fig.
3 is considered again. It was shown that the exhaust gas inlet
heat flow rate Q̇inex is a good indicator for the resulting system
behavior. This quantity is basically proportional to the prod-
uct of the exhaust gas mass flow ṁex and its temperature T inex .
Thus, it makes sense to choose a set of nOP values of these
two quantities that lie on a straight line, which ranges from the
minimal to the maximum value of Q̇inex typically occurring in
the system. To account for the larger change in the system be-
havior for small values of Q̇inex, more points are used for low
exhaust gas heat flow rates, see the red crosses (×) in Fig. 3.

With the selected set of nOP nominal steady-state operating
points xs,l,us,l,vs,l, l = 1, . . . , nOP , the local system behav-

ior can be approximated by the partially linearized models

∆ẋl + ẋs,l ∼=f(xs,l,us,l,v,θ) +
∂f

∂x

∣∣∣∣
xs,l,us,l,v,θ

∆xl

+
∂f

∂u

∣∣∣∣
xs,l,us,l,v,θ

∆ul (19a)

yl =C(xs,l + ∆xl), (19b)

with ∆xl = x − xs,l and ∆ul = u − us,l, where the
linearization is only performed with respect to x and u.
The nonlinear behavior of the system due to v is still re-
flected in these models in f(xs,l,us,l,v,θ), which yields a
significantly improved approximation accuracy compared to
a full linearization. Examining (∂f/∂x)(xs,l,us,l,v,θ) and
(∂f/∂u)(xs,l,us,l,v,θ) in detail shows that they can be rather
well approximated by Al = (∂f/∂x)(xs,l,us,l,vs,l,0) and
Bl = (∂f/∂u)(xs,l,us,l,vs,l,0), respectively. Thus, the lo-
cal partially linearized models can be written in the form

∆ẋl =Al∆xl + Bl∆ul + f(xs,l,us,l,v,θ) (20a)
yl =C(xs,l + ∆xl). (20b)

The corresponding discrete time models are obtained based
on the assumptions u(t) = uk, v(t) = vk, and θ(t) = θk for
kτs ≤ t < (k + 1)τs, with the sampling time τs. They read as

∆xk+1,l = Φl∆xk,l + Γl∆uk,l + Nk,l (21a)
yk,l = C(xs,l + ∆xk,l) (21b)

with Φl = exp(Alτs), Γl =
∫ τs

0
exp(Alτ)dτBl, and Nk,l =∫ τs

0
exp(Alτ)dτ f(xs,l,us,l,vk,θk).

To approximate the output of the nonlinear system in the en-
tire operating range, the outputs of these nOP local partially
linearized models are combined as

yk =

nOP∑

l=1

ζl(pH,k)yk,l, (22)

with the validity functions ζl(pH,k), cf. [24]. The validity func-
tions ζl(pH,k) are defined as

ζl(pH,k) =





0 for pH,k < pH,s,l−1
pH,k−pH,s,l−1

pH,s,l−pH,s,l−1
for pH,s,l−1 ≤ pH,k < pH,s,l

pH,s,l+1−pH,k

pH,s,l+1−pH,s,l
for pH,s,l ≤ pH,k < pH,s,l+1

0 for pH,k ≥ pH,s,l+1

(23)

with the pressures pH,s,l, l = 1, . . . , nOP , of the nominal op-
erating points. The chosen validity functions (23) lead to a lin-
ear interpolation between the outputs of two partially linearized
models (21).

To analyze the approximation quality of the output combina-
tion (22), the system behavior is discussed around an optimal
steady-state operating point with the pressure pH,o (exhaust gas
inputs ṁex,o and T inex,o), which lies between the nominal op-
erating points pH,i and pH,i+1. To do so, the proposed out-
put combination (22) is compared to the output of the nonlin-
ear model (16) and the outputs of the local partially linearized
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models (21) at the nominal operating points i and i + 1. This
comparison considers a step in the working fluid mass flow
ṁp(t) = ṁp,o(1 + 0.05σ(t)), with the mass flow ṁp,o at the
chosen operating point and the Heaviside function σ(t).

Fig. 7 depicts the results of the system outputs h̄e,H and
pH . As can be seen, the gain scheduling model (gs) approxi-
mates the dynamics of both output variables very well with only
small steady-state errors with respect to the nonlinear model
(nl). These stationary model errors are smaller than the model
inaccuracies of the nonlinear model, which have to be consid-
ered in the controller design anyway. In comparison, the fixed
local partially linearized models (pl i, pl i + 1) show a signif-
icantly worse accuracy. Another benefit of the chosen output
combination (22) compared to simply switching between local
models (see, e.g., [13]) is that it results in a smooth transition
between the local models.

0.95

0.96

0.97

0.98

h̄
∗ e
,H

nl gs
pl i pl i+ 1

0 200 400 600 800 1000

0.245

0.25

0.255

t in s

p
∗ H

Figure 7: Comparison of the normalized step response from ṁp to h̄e,H and
pH of the nonlinear model (nl), the gain scheduling model (gs), and the local
partially linearized models (pl i, pl i+ 1) - with pH,i ≤ pH ≤ pH,i+1.

To demonstrate the advantage of using a partial linearization
with respect to x and u for the output combination (22), this
model is compared with a gain scheduling model using a full
linearization with respect to the exogenous inputs v as well.
Fig. 8 and 9 show the simulation results for operating points
with low and medium engine load. While both models approx-
imate the system dynamics of the nonlinear system rather well,
the proposed partial linearization (20a) leads to significantly
smaller steady-state deviations. This is because it considers the
nonlinear system behavior due to the exhaust gas inputs ṁex,o

and T inex,o in the term f(xs,l,us,l,vo,θ), l = 1, . . . , nOP , with
vo = [ṁex,o, T

in
ex,o, h

in
p , Tamb, pL], cf. (20a).

4. Control strategy

This section describes the proposed model predictive control
strategy.

4.1. Control objective
The main control objective is to maximize the recovered en-

ergy. This can be equivalently formulated in the form that the
optimal reference h̄refe,H for the specific enthalpy h̄e,H should be

0.96
0.98

1
1.02
1.04

h̄
∗ e
,H

nl gs
gs lin

0 200 400 600 800 1000
0.24

0.25

0.26

t in s

p
∗ H

Figure 8: Comparison of the normalized step response from ṁp to h̄e,H and
pH of the nonlinear model (nl), the gain scheduling model (gs) and a gain
scheduling model using linear models (gs lin) - medium engine load.
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h̄
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0.18

0.185

0.19
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Figure 9: Comparison of the normalized step response from ṁp to h̄e,H and
pH of the nonlinear model (nl), the gain scheduling model (gs) and a gain
scheduling model using linear models (gs lin) - low engine load.

tracked. The optimal reference is derived from the results of the
steady-state optimization in [11] and reads as

h̄refe,H(pH) = h′′e (pH) + ∆hpsh(pH) (24)

with the specific enthalpy h′′e (pH) of saturated vapor. This ref-
erence brings along that the superheating of the working fluid
in the high-pressure part piping should be as low as possible
with a pressure dependent safety gap ∆hpsh(pH) to prevent the
occurrence of two-phase fluid at the turbine inlet. The safety
gap is introduced to account for the thermal losses in the piping
from the bypass switching valve to the turbine inlet.

The thermal losses to the turbine inlet have a higher impact
on the working fluid enthalpy for small working fluid heat flow
rates, which are associated with low exhaust gas heat flow rates
Q̇inex and, equivalently, low values of the pressure pH . To com-
pensate for this effect, the safety gap ∆hpsh(pH) in the reference
is higher for small values of pH (small values of the exhaust gas
heat flow rates). For exhaust gas inlet temperatures T inex below a
minimal temperature T inex,min, the required superheating ∆hpsh
cannot be reached. This causes a vapor fraction γint (h̄e,svt, pH)
at the turbine inlet, which is lower than a required minimum
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limit γint,min (for the calculation of the specific enthalpy h̄e,svt
in the piping from the switching valve to the turbine inlet see
[11]). Thus, the system has to be operated in the bypass mode to
prevent droplet erosion of the turbine blades. As the reference
h̄refe,H cannot be reached in this case, the resulting large control
deviation h̄e,H − h̄refe,H would have a negative influence on the
control performance. In order to obtain a meaningful reference
for T inex ≤ T inex,min, a reference ∆hTsh(T inex ) is defined such that
the working fluid at the inlet of the bypass switching valve is
as hot as possible. This reference ∆hTsh(T inex ) is calculated by
maximizing the specific enthalpy h̄e,H . The overall reference
for the superheating is given by

∆hsh(pH , T
in
ex ) =

{
∆hpsh(pH) for T inex ≥ T inex,min
∆hpTsh (pH , T

in
ex ) for T inex < T inex,min

(25)

with

∆hpTsh (pH , T
in
ex ) = max[min[∆hpsh(pH),∆hTsh(T inex )],∆hsh,min]

(26)
and ∆hsh,min as the minimum value of ∆hpsh(pH). The result-
ing characteristics of ∆hsh(pH , T

in
ex ) is depicted in Fig. 10.
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Figure 10: Normalized reference for the superheating ∆hsh of h̄e,H .

A second point in order to maximize the recovered energy
is to prevent opening of the exhaust gas bypass valve of the
evaporator in normal operation, i.e., χex should be equal to 1 as
long as this is possible, see also (4).

For a safe system operation of the WHR system, the control
strategy has to ensure compliance with the following limits of
the system:
(i) The working fluid decomposes at high temperatures. Thus,
the temperature Te,n at the evaporator outlet (highest working
fluid temperature in the system) is limited by

Te,n(pH , he,n) ≤ Te,max. (27)

(ii) The construction of the system components limits the pres-
sure pH to

pH ≤ pH,max. (28)

(iii) The constraints on the control inputs ṁp and χex are ex-
pressed as2

ṁp,min ≤ ṁp ≤ ṁp,max, (29a)
0 ≤ χex ≤ 1. (29b)

(iv) The vapor quality (equivalent to the vapor fraction γint )
should not fall below a certain minimum. Although the de-
signed reference value h̄refe,H already considers this demand, it
makes sense to impose the additional constraint

h̄e,H ≥ h′′e (pH) + ∆hl (30)

with ∆hl ≤ ∆hsh(pH , T
in
ex ).

4.2. Model predictive control strategy
In this work, a model predictive control strategy is proposed

to meet the control objectives formulated in the previous sec-
tion. For the MPC, an optimal control problem (OCP) is de-
signed to track the reference trajectory for h̄e,H according to
(24), (25), which is calculated with the measured quantities
pH,k and T inex,k at the actual instant of time t = kτ ctrls , where
τ ctrls denotes the controller sampling time. Fig. 11 gives a
qualitative illustration of the receding horizon OCP, which is
defined on a prediction horizon τph = nphτ

pred
s and a control

horizon τch = nchτ
pred
s , characterized by the number of pre-

diction steps nph, the number of predicted future control inputs
nch, and the sampling time of the prediction model τpreds . To
keep the number of optimization variables low, the control hori-
zon is chosen shorter than the prediction horizon and the control
variables are kept constant for t ≥ kτ ctrls + τch.

τph

τch
tkτ ctrls

u, h̄e,H

u−1|k

u0|k

u1|k

h̄refe,H,k

h̄e,H,k
h̄e,H,1|k

τpreds

Figure 11: Qualitative illustration of the optimal control problem.

The control objectives formulated in the previous section are
taken into account in the cost function Jk of the OCP in the
following form

Jk =
∥∥∥h̄e,H,k − h̄refe,H,k1nph×1

∥∥∥
2

Q
+ ‖δUk‖2Rk

+ βex
∥∥1nch×1 − χex,k

∥∥2
+ βε‖εk‖2. (31)

2The minimum pump mass flow ṁp,min is chosen such that it prevents
overheating and thus damage of the evaporator.
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Therein, the vectors h̄e,H,k, δUk, χex,k, and εk are introduced
as

h̄e,H,k = [h̄e,H,1|k, h̄e,H,2|k, · · · , h̄e,H,nph|k]T, (32a)

δUk = [δuT
0|k, δu

T
1|k, · · · , δuT

nch−1|k]T, (32b)

χex,k = [χex,0|k, χex,1|k, · · · , χex,nch−1|k]T, (32c)

εk = [ε1|k, ε2|k, · · · , εnph|k]T. (32d)

The reference is defined according to (24), (25) by h̄refe,H,k =

h′′e (pH,k) + ∆hsh(pH,k, T
in
ex,k) and kept constant over the pre-

diction horizon τph. Moreover, ‖x‖2Q denotes the weighted
norm ‖x‖2Q = xTQx with the positive definite weighting ma-
trix Q.

Remark 2. In the vectors (32a)-(32d), an index i|k identifies
the quantity at time t = kτ ctrls +iτpreds based on the (measured)
quantity at t = kτ ctrls . Therein τ ctrls is the sampling time of
the MPC. As it will be explained later it is meaningful to use
τpreds 6= τ ctrls for the prediction model.

The first part of Jk accounts for the tracking of the desired
reference h̄refe,H,k and the third part with the scalar weighting
factor βex > 0 is responsible to keep the exhaust gas bypass
valve closed (i.e., χex = 1) in normal operation. To avoid fast
changes in the control inputs ui|k, the incremental control in-
puts δui|k = ui|k − ui−1|k (with u−1|k = u0|k−1) are penal-
ized in the cost function.

The incremental control inputs are weighted with

Rk =
1∑nOP

l=1 ζl(pH,k)ṁp,s,l
R0, (33)

where R0 is a constant positive definite matrix and ṁp,s,l are
the pump mass flows at the nominal operating points utilized
in the gain scheduling model. The operating point dependent
weighting (33) is used to account for the large changes of the
control input with respect to the operating points.

The slack variables ε (scalar weighting factor βε) are intro-
duced to soften the constraints (30) in the form

h̄e,H,k ≥ h′′e,k + ∆hl1nph×1 − εk (34)

with

h′′e,k =
[
h′′e (pH,1|k), h′′e (pH,2|k), · · · , h′′e (pH,nph|k)

]T
, (35)

cf. [27]. This is necessary to avoid an infeasible OCP, which
would occur for very small exhaust gas heat flow rates. The
overall inequality constraints (27), (28), (29), and (34) can be
summarized in the form

g(Uk,Yk, εk) ≤ 0 (36)

with the predicted control inputs Uk =
[uT

0|k,u
T
1|k, · · · ,uT

nch−1|k]T and the predicted outputs
Yk = [yT

1|k,y
T
2|k, · · · ,yT

nph|k]T.
The final part required to formulate the OCP is the calcula-

tion of the predicted outputs yi|k =
[
he,n,i|k, pH,i|k, h̄e,H,i|k

]

according to (22). For this, the exogenous inputs vk =[
ṁex,k, T

in
ex,k, h

in
p,k, Tamb,k, pL,k

]T
and the estimated param-

eters θk =
[
∆Q̇ex,k,∆Q̇H,k

]
are set constant over the en-

tire prediction horizon. This has to be done because there is
no meaningful prediction of ṁin

ex, T inex and θ possible. More-
over, it is reasonable to assume a slow variation of Tamb and, as
was briefly discussed in Section 3.2, the influence of the small
changes in pL and hinp in a controlled operation of the system
are negligible.

Given the state xk at the current instant of time t = kτ ctrls

and taking advantage of the affine structure of the dynamics
(21) of the gain scheduling model, the predicted outputs yi|k,l
of the l-th local model at time t = kτ ctrls +iτpreds can be written
in the form

yi|k,l =C


xs,l + Φi

l∆xk,l +

i−1∑

j=0

Φi−j−1
l Γluj|k

−
i−1∑

j=0

Φj
l (Γlus,l −Nk,l)


 (37)

with ∆xk,l = xk−xs,l and Φl, Γl, and Nk,l defined in Section
3.3 and evaluated for τs = τpreds . Note that based on the as-
sumptions above Nk,l is also constant over the prediction hori-
zon.

The real-time implementation of the MPC requires an effi-
cient solution of the OCP with the cost function (31) and the
inequality constraints (36). Using (37) in the cost function (31),
the cost function can be written as a quadratic function

Jk = Jc,k + kT
kϑk + ϑT

kHkϑk (38)

with the optimization variables ϑk = [UT
k , ε

T
k ]T. Therein, Jc,k

is independent of ϑk, kk accounts for the terms linear in ϑk,
and Hk accounts for the quadratic terms. To yield a quadratic
program (QP) for the calculation of the optimal control inputs,
the constraints (36) have to be linear in ϑk. Therefore, first,
the Taylor series expansion of the constraints (36) is consid-
ered about (Yk0,Uk, εk) with Yk0 = [yT

0|k,y
T
0|k, · · · ,yT

0|k]T,
which yields

g(Uk,Yk, εk) ≈

g(Uk,Yk0, εk) +
∂g

∂Yk

∣∣∣∣
Uk,Yk0,εk

(Yk −Yk0) ≤ 0. (39)

Next, (37) is utilized in (39), resulting in

Gkϑk − bk ≤ 0 (40)

with the matrix Gk and the vector bk. The overall simplified
OCP is then given in the standard form of a QP [27]

min
ϑk

Jc,k + kT
kϑk + ϑT

kHkϑk (41a)

s.t. Gkϑk ≤ bk, (41b)
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which can be solved very efficiently with a state-of-the-art QP
solver.

A suitable choice of the controller sampling time τ ctrls , the
prediction horizon τph, and the control horizon τch of the MPC
is essential to obtain a high control performance and a small
computational effort at the same time. A controller sampling
time τ ctrls = 0.4 s is chosen in this work, since simulation stud-
ies showed that smaller values do not increase the control per-
formance (a similar value is used in [13]). The prediction hori-
zon is typically chosen in a way that the main dynamic behavior
of the system can be covered. As the dynamics of the system
can be approximated by the plant time constant τ , it turned out
that τph ≥ 1.5τ is a good choice in this work to yield a high
control performance. Furthermore, the simulation results, cf.
Section 5, indicate that this choice yields a long enough pre-
diction horizon that ensures closed-loop stability, cf. [27]. An
analytical stability proof of the closed-loop system comprising
the complex nonlinear model, the MPC using a gain scheduling
prediction model, and the EKF seems to be impossible. Thus,
the stability is analyzed based on extensive simulation studies.
As demonstrated in Fig. 5, the time constant τ varies largely in
the operating range, see also [22]. Thus, τph has to be chosen
as a function of pH , i.e., τph(pH). Using a constant sampling
time τpreds in the prediction model would result in large changes
of the number nph of the prediction steps and thus the compu-
tational effort. Instead, a constant number nph is utilized and
τpreds is adjusted to meet the currently required prediction hori-
zon τph. To allow for a simple transition between different val-
ues of τpreds , it is chosen as a multiple of the minimal sampling
time that is chosen equal to the controller sampling time τ ctrls .
The control horizon τch is finally chosen to be approximately a
quarter of the prediction horizon τph.

4.3. Control of the turbine and the switching valve
The power maximizing steady-state optimization shows that

the optimal rotational speed nt of the turbine is a function of the
turbine pressure ratio pH/pL only, i.e., nt(pH/pL), see [11].
Furthermore, the rotational speed of the turbine does not in-
fluence the turbine mass flow ṁt and thus the control of the
high-pressure part, which was discussed in the previous sec-
tions. Therefore, the generator coupled to the turbine is used
to control the rotational speed of the turbine with the reference
nreft = nt(pH/pL). For this coupled system, it can be assumed
that the turbine speed accurately tracks the desired reference,
since the dynamics of the speed controlled system is consider-
ably faster than the dynamics of the thermodynamic part of the
WHR system. The design of this speed controller is not consid-
ered as a part of this contribution.

If the vapor fraction γint at the turbine inlet is lower than the
minimum permitted vapor fraction γint,min, the system must be
operated in the bypass mode (expansion over the bypass throt-
tle) to prevent droplet erosion of the turbine. To switch between
the bypass and the turbine mode, the bypass switching valve is
actuated. As the working fluid state is not measured at the tur-
bine inlet, the switching valve must be actuated based on the
measurement of the specific enthalpy h̄e,H at the inlet of the
switching valve. Thus, a minimum required value h̄e,H,min of

the specific enthalpy h̄e,H is calculated based on the steady-
state system model (see [11]) that corresponds to the minimum
vapor quality γint,min. If h̄e,H is below this minimum value, the
system is operated in the bypass mode. To avoid jittering of the
switching valve at the switching boundary h̄e,H,min, a switch-
ing hysteresis is added.

4.4. State estimation

The proposed model predictive control strategy requires
knowledge of the system states x. In the real system, only
the pressure pH and the temperatures Te,n and T̄e,H are mea-
sured. Thus, a state estimation is required. The design of the
state estimation is again based on the local partially linearized
models of Section 3.3. For the estimator design, the follow-
ing points are considered: (i) To increase the model accuracy
for operating points with very low exhaust gas inlet tempera-
tures T inex ≤ T inex,min, additional local linearized models are de-
rived in this operating region. This results in an increased set of
nkfOP > nOP local linearized models.3 (ii) The estimator model
is extended by the model for the unknown heat flow rates θ in
the form θk+1 = θk. (iii) The estimation of the pressure pH
is not necessary and better estimation results can be obtained if
it is considered as a known input to the model. The resulting
discrete time model (sampling time τ ctrls ) for the design of the
estimator reads as

xrk+1 =

nkf
OP∑

l=1

ζl(pH,k)
(
xrs,l + Φr

l

(
xrk − xrs,l

)
+ Γrl (uk − us,l)

+Ñr
k,l + Γrθ,lθk + ΓrpH ,l(pH,k − pH,s,l)

)
+ wx,k

(42a)

θk+1 =θk + wθ,k (42b)
yrk =Crxrk + vy,k, (42c)

with the reduced state

xr = [h̄e,1, .., h̄e,n, T̄w,1, .., T̄w,n, h̄e,H , T̄w,H ]T, (43)

the reduced output

yr = [he,n, h̄e,H ]T, (44)

and

Ñr
k,l =

∫ τctrl
s

0

exp(Ar
l τ)dτ fr(xrs,l,us,l,vk,0) (45)

Γrθ,l =

∫ τctrl
s

0

exp(Ar
l τ)dτ

∂fr

∂θ

∣∣∣∣
xr
s,l,us,l,vs,l,0

(46)

ΓrpH ,l =

∫ τctrl
s

0

exp(Ar
l τ)dτ

∂fr

∂pH

∣∣∣∣
xr
s,l,us,l,vs,l,0

. (47)

3In this operating region, the system control inputs ṁp ≈ ṁp,min and
χex = 1 are near their limits and thus an improved model quality would not
bring any advantage for the MPC.
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Here, fr(xr,u,v,θ) describes the model (16) reduced by
the state pH and Φr

l , Γrl , Cr, Ar
l are the corresponding re-

duced order matrices. The effect of the model uncertainties is
taken into account by the bias-free Gaussian noise wx,k, wθ,k,
and vy,k, which are characterized by their covariance matrices
Qx, Qθ, and Rv. The entries of the diagonal matrix Qx are
chosen as 4 · 108 for the specific enthalpies and 25 for the wall
temperatures. This large difference of the entries is reasonable,
since the specific enthalpies he ≈ 2 · 105 − 1.3 · 106J/kg and
the temperatures Tw ≈ 5 · 102 K differ largely in magnitude.
The matrix Qθ = diag(

[
8 · 10−2, 2 · 10−2

]
) was selected to

yield a fast estimation of the model-plant mismatch, but such
that high-frequency oscillations of θ are avoided. Furthermore,
Rv = diag(

[
109, 109

]
) was selected to yield a good estima-

tion quality while suppressing the influence of the sensor noise
as good as possible.

The outputs he,n and h̄e,H cannot be directly measured, but
are calculated from the measured pressure pH and the measured
temperatures Te,n and T̄e,H using the constitutive equations of
the fluid. However, this brings along the problem that the tem-
perature of ethanol is independent of the specific enthalpy in the
two-phase region, cf. (A.1) in [11]. Thus, it is not possible to
calculate the specific enthalpy he from the measurements of pH
and Te in this phase. To circumvent stability problems in the
estimator when reaching this two-phase region of operation,4

the following measures are taken: (i) If the two-phase region is
reached, the calculated enthalpies are set to the saturation value
h′′e (pH), i.e., he,n(pH , Te,n) = h′′e (pH) for Te,n ≤ Tsat(pH)
and h̄e,H(pH , T̄e,H) = h′′e (pH) for T̄e,H ≤ Tsat(pH), where
Tsat(pH) denotes the saturation (two-phase) temperature of the
fluid. (ii) The estimation of θ is stopped in this case, since
otherwise a significant accumulation of errors would occur that
would cause a slow convergence of the estimation when return-
ing to the superheated vapor case. To enable a separate deacti-
vation of this estimation, an extended Kalman filter (EKF) im-
plementation is applied that is based on the Two-Stage Kalman
Estimator described in [28]. It comprises a bias-free filter for
the unbiased estimation of xrk and a bias filter for the estima-
tion of the unknown heat flow rates θk. The outputs of both
filters are combined to yield the estimate for the system states.
The update of the estimation of θ can be deactivated by skip-
ping the update of the bias filter. The details of this EKF are
described in Appendix A.

5. Results

The presented control concept (MPC and EKF with estima-
tion of the heat flow rates) is tested on the validated complete
nonlinear system model presented in detail in [11] for several
test scenarios. The non-idealities of the sensors are taken into
account by adding noise to all sensors and incorporating the dy-
namics of the temperature sensors. The dynamics of the work-

4As already mentioned before, to protect the turbine, it has to be bypassed
in this case. The system is operated near the minimum mass flow and with a
fully closed exhaust gas bypass valve (i.e., χex = 1).

ing fluid pump is approximated as a PT1 element with an addi-
tional dead time.

For the controller, a prediction horizon of nch = 40 and
a control horizon of nch = 10 is chosen. The parameters
Q = 5.5Inph

and R0 = 1012 diag
(
[1, 10−3, 1, 10−3, . . . ]

)
of

(31), (33) were tuned based on the simulation of the closed-
loop system in a defined engine reference cycle that covers a
large operating range. For this, a trade-off was chosen between
a good tracking performance of the desired reference h̄refe,H and
avoiding large variations of the control inputs.

Remark 3. The large difference in magnitude of Q and R0 re-
sults from the fact that they are used for a quadratic weighting
of quantities that differ largely in magnitude in the cost function
(31). In particular, the specific enthalpy h̄e,H is in the range of
1 · 106 J/kg, while the pump mass flow ṁp is in the range of
1 · 10−1 kg/s. If quantities normalized to 1 were used for h̄e,H
and ṁp, this would mean that the normalized tracking error
of h̄e,H would be weighted approximately 50 times higher than
the variations of the normalized control input ṁp.

Furthermore, the parameter βε = 15 was chosen large enough
such that the soft constraint (34) is satisfied (at least only with
small violations) as long as this is possible. For adjusting the
parameter βex, the following points were taken into account:
(i) To maximize the heat transfer from the exhaust gas and thus
the recovered energy, the exhaust gas valve should be closed
in normal system operation (i.e., χex = 1). (ii) The steady-
state optimization [11] showed that, if the turbine inlet pressure
pH reaches the maximum permitted pressure pH,max, the tur-
bine shaft power Pt can be further increased by superheating
the working fluid higher than the reference value h̄refe,H (for the
calculation of Pt see [11]). (iii) A high value of βex means that
the exhaust gas valve is kept closed longer while the superheat-
ing of the working fluid increases, but then it has to be opened
instantaneously if pH = pH,max and Te,n = Te,max is reached.
As the exhaust gas valve could be opened too late, this could
cause a violation of the maximum temperature Te,max. Thus,
βex = 1.4 · 1012 was selected high enough to avoid opening
of the exhaust gas bypass valve in standard operation and to
yield a superheating higher than the reference value h̄refe,H for
pH = pH,max, but low enough such that a too fast opening in
the case pH = pH,max and Te,n = Te,max is avoided. The QP
for the optimal control inputs (41) is solved with the MATLAB
QP solver quadprog.

Fig. 12 displays the control performance of the presented
MPC strategy with the EKF for a cold start of the WHR system
in a defined engine reference cycle with the corresponding ex-
haust gas inlet temperature T inex and exhaust gas mass flow ṁex.
The low pressure pL and the ambient temperature Tamb are cho-
sen constant during the whole simulation. After the warm-up
phase, the controller tracks the reference h̄refe,H for h̄e,H very
well. During the time periods marked with a gray background,
the specific enthalpy h̄e,H is too low to result in a sufficient
vapor quality at the turbine inlet, which is mainly caused by a
too low exhaust gas heat flow rate. Thus, the bypass switching
valve is actuated and the working fluid expands over the bypass
throttle. As a consequence, the specific enthalpy h̄e,svt in the
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piping from the switching valve to the turbine inlet decreases
rapidly below the saturation value h′′e (pH) (for the calculation
of h̄e,H see [11]). To meet the constraint for the maximum
system pressure pH,max, the MPC has to slightly open the ex-
haust gas bypass valve at t ≈ 2000 s. The two plots at the
bottom show the optimal rotational speed nt and the resulting
shaft power Pt of the turbine. The time periods with zero tur-
bine power belong to an expansion over the bypass throttle due
to an insufficient vapor quality at the turbine inlet. In conclu-
sion, the controller can guarantee the required vapor quality at
the turbine inlet during the time periods with a sufficiently high
exhaust gas heat flow rate. Thus, it enables a continuous re-
covering of the waste heat from the exhaust gas during these
periods.

To test the compensation of parameter deviations and erro-
neous measurements, the previous experiment is performed for
changed system parameters and errors of the measured exhaust
gas quantities ṁex,meas and T inex,meas defined by Scenario 3
of Tab. 1. This scenario represents the expected worst case
deviations. The measurement deviation of the measured ex-
haust gas inlet temperature T inex,meas is defined as ∆T inex,meas =

T inex,meas − T inex . Fig. 13 displays the simulation results. Al-
though the MPC and the EKF are defined by the nominal sys-
tem parameters, the reference h̄refe,H can be tracked quite well.
As a result, the required vapor quality at the turbine inlet can
be kept almost the whole time period with a sufficiently high
exhaust gas heat flow rate. The overshoots of h̄e,H visible at
certain times are due to the time the estimation of the heat flow
rates needs to adapt to fast changes in the exhaust gas heat flow
rate. In conclusion, this experiment shows that the proposed
control concept is very robust to the investigated model-plant
mismatch.

αex

αnom
ex

αa,H

αnom
a,H

ṁex,meas

ṁex
∆T inex,meas

Nominal 1 1 1 0 K
Scenario 1 0.8 0.8 1 0 K
Scenario 2 0.8 0.8 0.85 -5 K
Scenario 3 1.2 1.1 1.2 5 K
Scenario 4 0.8 1.05 1.2 -5 K

Table 1: Test scenarios for deviations from the nominal parameters (superscript
nom) and erroneous measurements.

To analyze the closed-loop behavior for different model-plant
mismatches, the same experiment is executed for the scenarios
of Tab. 1 for a system hot-start during the time period t ∈
[1400, 3200]s. To demonstrate that it is meaningful to consider
the unknown heat flow rates θ for the MPC strategy, the same
simulations are also performed using the nominal values θ = 0
for the MPC and an EKF without the estimation of the heat
flow rates θ. Tab. 2 presents the results for these simulation
scenarios in form of the root mean square error

RMSE =

√√√√ 1

nmeas

nmeas∑

k=1

(
h̄refe,H,k − h̄e,H,k

)2

, (48)

with the number of measurement samples nmeas, and of the

time Tt,op, where the turbine operation is possible. In the nomi-
nal scenario with nominal system parameters and without mea-
surement offsets, both MPC concepts show a similar control
performance. Since the heat flow rate estimation does not im-
prove the control performance in this case, this also indicates
that the accuracy of the MPC prediction model is not signifi-
cantly influenced by neglecting several effects in the control-
oriented model, cf. Section 3.1, and the gain scheduling ap-
proximation. For the other scenarios, the MPC with the nominal
system model has a significantly worse control performance,
which results in almost zero turbine operation time for the Sce-
narios 3 and 4. In the Scenario 2, the MPC strategy with the
nominal system model reaches 100 % turbine operation, but
with a too high superheating for h̄e,H . Consequently, the sys-
tem is not operated optimally and more energy could be re-
covered, if the optimal reference were tracked. The proposed
MPC/EKF with the heat flow rate estimation can compensate
for the parameter and measurement deviations for all scenarios
and shows a control performance almost identical to the nomi-
nal case.

Nominal model HFRE
RMSE
in kJ/kg

Tt,op
in %

RMSE
in kJ/kg

Tt,op
in %

Nominal 4.9 99.7 5.0 100
Scenario 1 12.2 91.3 3.7 100
Scenario 2 26.2 100 4.9 100
Scenario 3 32.6 12.9 6.9 100
Scenario 4 41.3 5.9 8.7 99.4

Table 2: Control performance for parameter variations and erroneous measure-
ments using the MPC strategy for the nominal system model and the proposed
MPC/EKF with heat flow rate estimation (HFRE).

Fig. 14 depicts the simulation results for the system opera-
tion from low to very high engine load. In this scenario, the
exhaust gas mass flow ṁex shows a very fast change, while the
thermal inertia of the engine and the exhaust system causes a
slower change of the exhaust gas inlet temperature T inex . At the
beginning of the simulation, the MPC tracks the reference for
h̄e,H quite well. At t ≈ 150 s, pH reaches its limit pH,max. To
prevent damage of the system, the MPC opens the exhaust gas
bypass valve χex. Looking at h̄e,H , h̄e,svt, and Te,n, it is obvi-
ous that these values rise and h̄e,H deviates from its reference
value h̄refe,H . This is meaningful, since this brings along that
more heat is recovered from the exhaust gas, which also leads
to a slight increase of the turbine shaft power Pt. After the sud-
den reduction of the exhaust gas heat flow rate at t = 300 s,
a very fast and excellent change back to the optimal reference
tracking can be observed. In combination with the previous re-
sults, which also covered very small engine loads, it is shown
that the proposed control concept (MPC+EKF) exhibits a high
control performance in the entire operating range of the WHR
system.

The computation of the overall control concept (MPC+EKF)
requires an average computing time of 60 ms on a state-of-the-
art computing hardware (Intel Core i7, 4 GHz), where the so-

13

Post-print version of the article: H. Koppauer, W. Kemmetmüller, and A. Kugi, �Model predictive control of an automotive waste heat

recovery system�, Control Engineering Practice, vol. 81, pp. 28�42, 2018. doi: 10.1016/j.conengprac.2018.09.005

The content of this post-print version is identical to the published paper but without the publisher's �nal layout or copy editing.

https://doi.org/10.1016/j.conengprac.2018.09.005


Model predictive control of an automotive waste heat recovery system

0.8

1

1.2

T
in
∗

e
x

2

4

ṁ
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Figure 12: Closed-loop control performance for a given cold-start reference cycle - the time periods with a gray background indicate an expansion over the bypass
throttle.

lution of the QP (41) takes approximately 50 ms. This is well
below the controller sampling time τ ctrls = 400 ms. It has to be
noted that the parameters of the QP (41) have to be calculated
at every instant of time t = kτ ctrls , which takes a significant
computing time of ≈ 10 ms. Thus, it is reasonable to use the
reduced order model (8) instead of the full order model with 65
states for this calculation. It should be mentioned that the focus
of this work is on the design of the proposed control concept but
not on the optimization of the computational effort. However, if
a further reduction of the computational effort is required (e.g.
for implementing the control strategy on a less powerful ECU),
using a QP solver tailored to the exact structure of the problem
instead of the standard MATLAB solver should significantly in-

crease the calculation speed of the MPC, see, e.g., tools like
cvxgen [29].

6. Conclusions

This paper presented an MPC strategy for the evaporator of
an automotive ORC WHR system with a radial turbine. To
maximize the recovered energy from the waste heat, the pro-
posed MPC was designed to track an optimal reference for the
system states that was derived from a steady-state optimization.
The MPC uses a prediction model based on a gain schedul-
ing of local partially linearized system models. This finally
yields a quadratic program for calculating the optimal control
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Figure 13: Closed-loop control performance for a given cold-start reference cycle with parameter deviations and erroneous measurements - the time periods with a
gray background indicate an expansion over the bypass throttle.

inputs, which can be efficiently solved by a state-of-the-art QP
solver. Furthermore, the control strategy comprises an extended
Kalman filter with an estimation of the model-plant mismatches
to guarantee a robust system control.

The developed control concept shows a good tracking per-
formance of the optimal reference in the entire operating range
of the WHR system and thus enables the optimal recovering of
the exhaust gas heat. This was proven on a validated, highly
accurate simulation model for a defined engine reference cycle.
In the practical application, erroneous measurements of the ex-
haust gas quantities and non-negligible changes of the system
parameters are expected. As it was shown in the simulation,
an MPC concept that does not consider this model-plant mis-

match yields large deviations from the desired optimal refer-
ence, which can even lead to a recovered energy equal to zero.
The simulation of the proposed MPC combined with an estima-
tor of the model-plant mismatch shows that this control concept
succeeds in tracking the desired optimal reference. To discuss
further possible benefits of the proposed control concept, it is
compared to selected state-of-the-art control concepts for WHR
systems:5

(i) In [3], the controller combines a nonlinear feedforward

5As the system configurations and the investigated experiments are not iden-
tical, the results cannot be compared directly. Thus, the comparison is based
on rating the features of each control concept and the corresponding simulation
and measurement results.
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ṁ
∗

ṁp
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Figure 14: Closed loop control performance for the system operation from low to very high engine load.

with a feedback control using a gain scheduling of 5 LQR con-
trollers. As the LQR controllers are based on reduced order
models with 3 states, the calculation of the feedforward and the
feedback control requires little computational effort and thus
this concept is suitable for a real-time implementation. How-
ever, this control concept cannot handle constraints of the sys-
tem states and thus it may not guarantee a safe system oper-
ation. Furthermore, the simulation and measurement results
show rather large fluctuations of the temperature at the inlet
of the expansion machine and the authors indicate that, there-
fore, the use of a turbine is not advisable. This concept uses
an estimation of selected heat transfer coefficients that are used

in the feedforward control. However, the influence of parame-
ter deviations on the closed-loop control performance was not
examined in this article.

(ii) To handle input constraints and state constraints at the ex-
pander inlet, the authors of [13] present a linear MPC for a dual
evaporator WHR system that switches the reduced order pre-
diction and state estimator models based on the actual exhaust
gas heat flow rate. This linear MPC also requires the solution of
a QP. Thus, it can be expected that the time to calculate the op-
timal control inputs is similar to the time to solve the QP (41).
The drawbacks of this MPC concept are that it cannot compen-
sate for a large model-plant mismatch and the switching can
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produce bumps of the estimated states, since the reduced order
models do not preserve the same system states. As a conse-
quence, the variations of the control inputs had to be penalized
to avoid aggressive plant actuation, see [13]. Furthermore, the
presented simulation results show rather large deviations of the
controlled variable (the evaporator outlet vapor fraction) from
the desired reference. Thus, it can be expected that the control
concept of the present work has a superior control performance,
which can be attributed to systematically considering the non-
linear influence of the exogenous inputs in the local models (21)
and the smooth transition between the local models in the pre-
diction model (22).

(iii) The authors of [13] also examined nonlinear MPC for
WHR systems in simulations, see also [17]. The presented
simulation results show that the nonlinear MPC has a control
performance which is superior to the linear MPC, but it is not
real-time capable using a sampling time of 400 ms, see [13]. In
comparison, the proposed control concept of the present work
approximately considers several system nonlinearities, like the
nonlinear influence of the exogenous inputs and the operating
point dependent system dynamics. Although the computational
effort is higher compared to a standard linear MPC, it is sig-
nificantly lower than for a nonlinear MPC (computing time
t > 400 ms, cf. [13]). With a computing time of 60 ms, the
control concept proposed in this paper can be implemented on
a state-of-the-art ECU.

(iv) In contrast to several state-of-the-art concepts, the pro-
posed control concept tracks an optimal reference that was de-
rived from the results of a steady-state optimization and consid-
ers the heat losses to the turbine inlet. This maximizes the re-
covered energy, while guaranteeing the minimum required va-
por quality at the turbine inlet.

In conclusion, the presented control concept satisfies the con-
trol objective of the high-pressure part of the considered WHR
system. The optimal dynamic system operation further requires
a suitable control of the turbine outlet pressure pL to maximize
the turbine shaft power. Thus, current work is concerned with
an MPC strategy for the low-pressure part of the WHR system
and subsequently with the optimal control of the whole system
to maximize the recovered energy.
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Appendix A. Two-Stage Kalman Estimator

In this appendix, the equations of the Two-Stage Kalman Es-
timator for the system are summarized. Details on the theoretic
foundation are presented in [28].

The bias-free filter for the system (42)-(45) consists of the
prediction step for the (unbiased) reduced system states x̄rk and

the covariance Px̄r,k

x̄r−k =

nkf
OP∑

l=1

ζl(pH,k−1)
(
xrs,l + Φr

l

(
x̄r+k−1 − xrs,l

)

+ Γrl (uk−1 − us,l) + Ñr
k−1,l

+ ΓrpH ,l(pH,k−1 − pH,s,l)
)

+ κk−1 (A.1a)

P−x̄r,k =

nkf
OP∑

l=1

ζl(pH,k−1)
(
Φr
lP

+
x̄r,k−1Φ

rT
l

)
+ Q̄k−1 (A.1b)

and the update step using the measurements yrk

L̂x̄r,k = P−x̄r,kC
rT
(
CrP−x̄r,kC

rT + Rv

)−1

(A.2a)

x̄r+k = x̄r−k + L̂x̄r,k

(
yrk −Crx̄r−k

)
(A.2b)

P+
x̄r,k =

(
I− L̂x̄r,kC

r
)
P−x̄r,k. (A.2c)

The quantities utilized in (A.1) read as

κk−1 =
(
W̄k −Wk

)
θ̂

+

k−1 (A.3a)

W̄k =

nkf
OP∑

l=1

ζl(pH,k−1)
(
Φr
lVk−1 + Γrθ,l

)
(A.3b)

Wk = W̄k

(
I−Qθ

(
P−θ,k

)−1
)

(A.3c)

Vk = Wk − L̂x̄r,kSk (A.3d)
Sk = CrWk (A.3e)

Q̄k−1 = Qx + Wk

(
W̄kQθ

)T
. (A.3f)

Analogously, the bias filter for the unknown heat flow rates
θ̂k with the covariance Pθ̂,k is given by

θ̂
−
k = θ̂

+

k−1 (A.4a)

P−
θ̂,k

= P+

θ̂,k−1
+ Qθ (A.4b)

and

L̂θ̂,k = P−
θ̂,k

ST
k

(
CrP−x̄r,kC

rT + Rv + SkP
−
θ̂,k

ST
k

)−1

(A.5a)

θ̂
+

k = θ̂
−
k + L̂θ̂,k

(
yrk −Crx̄r−k − Skθ̂

−
k

)
(A.5b)

P+

θ̂,k
=
(
I− L̂θ̂,kSk

)
P−
θ̂,k
. (A.5c)

Combining the estimates of the two filters gives the estimate x̂rk
for the reduced state vector xr and the corresponding covari-
ance Px̂r,k

x̂r+k = x̄r+k + Vkθ̂
+

k (A.6a)

P+
x̂r,k = P+

x̄r,k + VkP
+

θ̂,k
VT
k . (A.6b)

To deactivate the estimation of the unknown heat flow rates θ,
the update step (A.5) is skipped and (A.4) is changed to

θ̂
+

k = θ̂
+

k−1 (A.7)

P+

θ̂,k
= P+

θ̂,k−1
. (A.8)
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