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Real-time optimal quantum control of mechanical motion at room temperature
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1Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, 1090 Vienna, Austria
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Quantum Science and Technology (IQST), University of Stuttgart, 70569 Stuttgart, Germany
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The ability to accurately control the dynamics of physical systems by measurement and feedback
is a pillar of modern engineering1. Today, the increasing demand for applied quantum technologies
requires to adapt this level of control to individual quantum systems2,3. Achieving this in an
optimal way is a challenging task that relies on both quantum-limited measurements and specifically
tailored algorithms for state estimation and feedback4. Successful implementations thus far include
experiments on the level of optical and atomic systems5–7. Here we demonstrate real-time optimal
control of the quantum trajectory8 of an optically trapped nanoparticle. We combine confocal
position sensing close to the Heisenberg limit with optimal state estimation via Kalman filtering to
track the particle motion in phase space in real time with a position uncertainty of 1.3 times the
zero point fluctuation. Optimal feedback allows us to stabilize the quantum harmonic oscillator to
a mean occupation of n = 0.56 ± 0.02 quanta, realizing quantum ground state cooling from room
temperature. Our work establishes quantum Kalman filtering as a method to achieve quantum
control of mechanical motion, with potential implications for sensing on all scales. In combination
with levitation, this paves the way to full-scale control over the wavepacket dynamics of solid-state
macroscopic quantum objects in linear and nonlinear systems.

The Kalman filter is an iterative real-time state estimation algorithm that combines measurement records with a
mathematical description of the system dynamics. At each time step, it provides a state estimate that is conditioned
on the knowledge acquired from earlier observations9. This conditional state can then serve as the basis for feedback
control methods that steer the system and stabilize it in a desired target state10. For Gaussian systems, the Kalman
filter is optimal in a mean-square-error sense. As many physical systems can be approximated by Gaussian dynamics
it is being used in a broad variety of applications ranging from bio-medical signal processing11 over navigation12 to
mechanical sensing13. In particular for the last case, high-precision experiments employing mechanical sensors are
now approaching a regime in which quantum effects of the object itself become relevant14,15. Any estimation or
control approach therefore has to incorporate a full quantum description4. In analogy with the classical case, the
dynamics of an open quantum system undergoing continuous measurement can be generally understood as a non-linear
quantum filtering problem, giving rise to the concept of conditional quantum states. It was shown by Belavkin16 that
for Gaussian systems the quantum filter reduces to the classical Kalman-filter form. Critically, however, quantum
mechanics places restrictions on the underlying physical model, in particular to reflect the intrusive nature of the
measurement. The challenge in realizing real-time (optimal) quantum control is then two-fold: First, the measurement
process has to be quantum limited, i.e., imprecision and backaction of the measurement must saturate the Heisenberg
uncertainty relation. This is achieved only for a high detection efficiency and if the decoherence of the system is
dominated by the quantum backaction of the measurement process. Second, quantum filtering has to be implemented
in real time and connected to a feedback architecture that allows to stabilize the desired quantum state. For mechanical
devices, these requirements have thus far only been realized independently in separate experiments. In a cryogenic
environment, ground-state feedback cooling14 and offline quantum filtering15 were demonstrated for a micromechanical
resonator. In a regime driven by thermal forces, Kalman filtering was implemented for classical feedback on a gram-
scale mirror17, offline state estimation of micromechanical motion18, and real-time state estimation and feedback
of nanomechanical systems19,20. In a backaction dominated regime, feedback was used to cool mechanical motion
close to the quantum ground state with suspended nanobeams21 and levitated nanoparticles22,23. As of yet, optimal
control at the quantum level has not been achieved. Our work combines all relevant elements in a single experiment,
specifically optimal state estimation based on near-Heisenberg limited measurement sensitivity at room temperature
with optimal control of the quantum trajectory. Consequently, we can stabilize the unconditional quantum state of
a levitated nanoparticle to a position uncertainty of 1.3 times the ground state extension. This contrasts cavity-
based cooling schemes for levitated nanoparticles24–26 that also achieve ground-state cooling27 but without requiring
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quantum-limited readout sensitivity. In comparison, real-time optimal control as presented here avoids the overhead
of cavity stabilization and can tolerate colored environmental noise by including it directly in the state-space model18.

QUANTUM-LIMITED MEASUREMENT

We use an optical tweezer (NA = 0.95, λ0 = 1064 nm, power ≈300mW, linearly polarized) to trap a silica nanosphere
of 71.5 nm radius (≈ 2.8 × 10−18kg) in ultra-high vacuum (Figure 1a). The particle oscillates at frequencies of
Ωz/2π = 104 kHz, Ωy/2π = 236 kHz and Ωx/2π = 305 kHz, where we use the trapping beam to define a coordinate
system with z along the beam axis and x and y parallel and perpendicular to its polarization, respectively. The
motion in the x- and y-direction is stabilized by an independent parametric feedback to occupations of about 103,
allowing us to suppress any effect due to thermal nonlinearties or measurement cross-coupling28, methods. Most
trapped particles carry excess charges, which allows us to apply a calibrated force through an external electric
field. In our case, we control the z-motion by a voltage applied to an electrode in front of the grounded tweezer
objective29. The position of the particle is encoded in the optical phase of the scattered tweezer light, which is
collected and measured by optical homodyning. Note that the position information contained in the scattered light
is not uniformly distributed30,31. For the z-direction, almost all information is carried by the backscattered photons,
which is why we restrict ourselves to backplane detection using a fiber-based confocal microscope32. Here the collected
light is spatially filtered by a single-mode fiber, which suppresses contributions from stray light by almost a factor
103 while maximizing the overlap between the spatial modes of the scattering dipole and the fiber (ηm = 0.71)33.
Our measurement operates close to the quantum limit. In the ideal case, imprecision and backaction noise of the

measurement saturate the Heisenberg uncertainty relation
√
SI
z(Ω)S

ba
F (Ω) = ℏ for all frequencies Ω (Sz,F (Ω): one-

sided noise power spectral densities of position (z) and force (F)33). Losses degrade this performance: experimental
losses in the detection channel (ηd) increase the imprecision noise to Simp

z = SI
z/ηd, while additional environmental

interactions, for example scattering of gas molecules, increase the total force noise to Stot
F = Sba

F /ηe. This results in√
Simp
z (Ω)Stot

F (Ω) = ℏ/√η, where η = ηdηe amounts to an effective collection efficiency of the overall phase-space

information available from the system. In our case, the efficient and low-noise confocal detection scheme results in

a displacement sensitivity of
√
Simp
z = 2.0 × 10−14 m/

√
Hz, allowing us to resolve displacements of the size of the

zero-point motion of the particle (zzpf =
√
ℏ/(2mΩz)) at a rate of Γmeas = z2zpf/2S

imp
z = 2π ·6.6 kHz34. By performing

re-heating measurements at different background pressures, we can directly determine the decoherence rates of the
particle due to backaction, Γba = 2π · 18.8 kHz, and due to residual gas molecules, Γth = 2π · 0.6 kHz at the minimal
operating pressure of 9.2 × 10−9mbar, providing us with a quantum cooperativity of Cq = Γba/Γth = 3033. The
resulting information collection efficiency34 η = Γmeas/ (Γba + Γth) = 0.34 is consistent with the value obtained from
the independently measured loss contributions in the experimental setup33. This yields an imprecision–backaction
product of ℏ/√η = 1.7ℏ, which is less than a factor of 2 from its fundamental limit, and more than one order of

magnitude better than previously shown for mechanical systems at room temperature22,23,35,36. Note that this also
enables measurements close to the standard quantum limit (SQL), where the effects of imprecision and backaction force
noise on the displacement spectrum are equal. Figure 1b shows the different noise contributions for a measurement
performed at moderate feedback gain, where a sensitivity of 1.76 times the SQL is reached at frequencies of ∼ 22 kHz
above resonance.

OPTIMAL QUANTUM CONTROL

The idea of optimal feedback is to find a control input that renders the closed-loop system stable and optimizes a
pre-defined cost function. In our case, the goal is to minimize the particle’s energy. This task can be broken down into
two steps: an estimation step to provide an optimal estimate of the system’s quantum state in real time, here in the
form of a Kalman filter; and a control step that computes the optimal feedback, here in the form of a linear–quadratic
regulator (LQR). Both steps require an adequate mathematical model of the experimental setup, and together form the
so-called linear–quadratic–Gaussian (LQG) control problem. To this end, we define a quantum stochastic model that
allows us to construct the dynamical equations for the conditional quantum state ρ̂. We model the levitated particle
as a one-dimensional quantum harmonic oscillator coupling to two environments, the electromagnetic field in the
vacuum state and the residual gas in a thermal state. Both environments are treated in a Markovian approximation,
which means they effectively act as Gaussian white noise sources. By measuring the electromagnetic field we realize a
(continuous) measurement of the particle position. As under this model the system state is Gaussian at all times, ρ̂ is
fully characterized by the first two moments of the state vector z = [z, p]T (z and p being the particle’s position and
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Figure 1. Experimental setup. a, Scheme of the experimental setup. The particle is trapped in an optical tweezer (laser
frequency: ω0), and oscillates in an utra-high vacuum (UHV), along the z direction, at a frequency of Ωz/2π = 104 kHz. The
backscattered light is collected by the tweezer objective lens (f1), separated from the tweezer light by the combination of a
faraday rotator (FR) and polarizing beam-splitter (PBS) and spatially filtered by focusing (f3) onto a single mode fiber (SMF)
in a confocal arrangement. It is then split into two paths: an in-loop homodyne detection and an out-of-loop heterodyne
detection. The homodyne detection is used for the efficient position measurement (ζ(t)), and is directed to the Red-Pitaya
(RP) board, where the LQG is implemented in real time. Both the state estimate (ẑ(t)) the and control signal (u(t)) can be
recorded. The control signal is applied to the electrode in the vacuum chamber. The heterodyne detection (local oscillator
at a frequency of ω0 ± Ωhet) employs only 5% of the light and performs an out-of-loop measurement of the particle’s energy
via Raman scattering thermometry by measurement of the ratio of the Stokes and anti-Stokes scattering rates (ΓS, ΓaS).
b, Contributions to the measured position power spectral density by the measurement imprecision (imp), the measurement
backaction (ba), and the mechanical quantum fluctuations (zpf) in the homodyne detection, at a control gain of gfb/2π = 2kHz
and occupation ⟨n⟩ = 8.3 ± 0.09. The dashed line indicates the frequency (∼ Ωz + 2π · 22 kHz) at which imprecision and
backaction contribute equally to the total added noise. Here the measured noise is only a fator 1.76 above the SQL (red line).

momentum operators in the z-direction), given by ẑ(t) = tr(zρ̂(t)) and Σ̂(t) = Re[tr(zzTρ̂(t))] − ẑ(t)ẑ(t)T. Here we
follow the notation where theˆ-symbol refers to the quantities of the conditional state. The corresponding equations of
motion for ẑ and Σ̂ are then equivalent to the classical Kalman–Bucy filter16,33,37, which takes the noisy measurement
signal ζ(t) as an input. The particle’s motion is controlled by a control input u(t), which defines the feedback force
that is applied to the particle via an external electric field: Ffb = qEfb(t) = ℏu(t)/zzpf (q: the charge of the particle,
Efb(t): the electric field.) In order to find the optimal control input u(t) = −kT(t)ẑ(t) (kT(t) being the feedback
vector) that minimizes the particle’s energy, we solve the (deterministic) LQR problem10,33,37. The solution depends
on the control effort, which can be parametrized by the feedback gain gfb. Adjusting this degree of freedom allows us
to shape the closed-loop dynamics and steer the particle into the desired thermal state. The corresponding closed-loop
covariance matrix of z is given by Σ(t) = Σ̂(t) + ⟨ẑ(t)ẑ(t)T⟩cl, where ⟨·⟩cl denotes the expectation value with respect
to the classical stochastic process induced by the measurement. In the long term limit (t ≫ 1/Γmeas), both Σ(t) and

Σ̂(t) converge to a steady state, which we denote by Σss and Σ̂ss respectively. Then Σ̂ss can be obtained by solving
the stationary Riccati equation. Finally, we combine the stationary LQR and Kalman filter into a single time-discrete
transfer function that solves the optimal quantum feedback problem in real time. It is implemented as a digital filter
with a sampling time of Ts = 32ns in a Red Pitaya board equipped with a Xilinx Zynq 7010 FPGA. A key element of
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Figure 2. Kalman filter and verification. a, Time trace of the measurement (gray) and estimation (blue) sequences at
gfb/2π = 16 kHz, n = 1.68 ± 0.09. At around t = 100µs, a (rare, ∼ 10pzpf) disturbance to the particle is highlighted by the
filter. b, Power spectral density of the innovation sequence. Horizontal lines indicate the white noise model (solid) and the
95% confidence region of the expected χ2 distribution (dashed)18. The low frequency phase noise (< 25 kHz) and the narrow
noise peaks due to residual x – and y – modes coupling (> 225 kHz) are not considered in our noise model. c, Experimental
probability density function (PDF) and cumulative density function (CDF) of a 10ms innovation sequence. A 4th order
fc = 10 kHz highpass filter is used to reduce the low frequency contributions that are not considered in our model. The black
lines are Gaussian fits to the data.

optimal estimation and control is the accurate mathematical description of the experimental setup including external
noise processes, which relies on a careful calibration of the position readout. We calibrate our readout using Raman
sideband thermometry from an out-of-loop heterodyne detection, which provides an absolute energy measurement
that is compared to the simultaneously recorded homodyne position measurement. To avoid any possible distortion
in the closed-loop position detection that may result in noise squashing38, we perform the calibration at low feedback
gains33. This allows us to quantify all relevant noise processes and to calibrate the feedback force applied via the
electrodes33. We ensure the accuracy of the conditional state computed by the Kalman filter by performing a thorough
model verification. This is a crucial aspect, in particular because the dynamical equations for Σ̂ do not depend on the
measurements but only on the model. Verification is done by computing the innovation sequence ϵ(t) = ζ(t) − ẑ(t),
which describes the difference between the position predicted by the Kalman filter ẑ(t) and the actual measurement
outcome ζ(t). For an optimally working filter, ϵ is a Gaussian zero-mean white noise process. We confirm this to be
the case for our experiment, (see Figure 2b-c).

RESULTS

The closed-loop dynamics can be influenced by adjusting the feedback gain gfb. At each gain setting, we record
the measurement sequence ζ(t), the state’s conditional expectation value ẑ(t) and the control input u(t). Figure
3c shows the quantum trajectory of the particle, which is tracked by the Kalman filter in phase space with the
uncertainties in position and momentum given by the diagonal values of the steady-state conditional covariance matrix

σz =

√
Σ̂ss

zz = 1.30 zzpf , σp =
√
Σ̂ss

pp = 1.35 pzpf (pzpf =
√
ℏmΩz/2: momentum ground-state uncertainty). To obtain

the motional energy of the particle, we evaluate the closed-loop steady-state covariance matrix Σss. For increasing
control gain, the mean particle energy ⟨E⟩ = ℏΩz(⟨n⟩ + 1/2) = ℏΩztr(Σ

ss)/2 (n: motional quanta) decreases and
quantum ground state cooling (⟨n⟩ < 1) is achieved for gain levels larger than 2π · 40kHz (Figure 2d). The estimated
occupation values ⟨n⟩ agree well with the analytic solution of the LQG problem. We independently confirm these
results by Raman sideband thermometry in an out-of-loop heterodyne measurement by mixing the backscattered light
with a local oscillator field that is detuned from the trapping field by Ωhet = ±2π · 9.2MHz (Figure 1a). This allows
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Figure 3. Quantum optimal control. a, Heterodyne power spectral density at gfb/2π = 8kHz (large narrow peaks) and
gfb/2π = 110 kHz (small broad peaks), where we distinguish the spectral contributions from Stokes (red) and anti-Stokes (blue)
scattering. The asymmetry of the peaks is a signature of the quantization of the energy levels of the harmonic oscillator.
b, Statistical fluctuations of Stokes (red) and anti-Stokes (blue) scattering rates at gfb/2π = 10 kHz and gfb/2π = 200 kHz.
Each point is evaluated by integrating a single PSD as shown in a, and normalizing by the average value of their difference
over all of the measurements (⟨∆Γ⟩ = ⟨ΓS − ΓaS⟩). c, Phase space plot of the quantum trajectory of the particle at the
steady state, for gfb/2π = 8kHz (green), gfb/2π = 110 kHz (purple) and the corresponding solutions of the LQG closed-loop
system (red dashed). Both traces display about 750µs of evolution. Highlighted is the uncertainty given by the steady-state

conditional covariance matrix Σ̂ss as given by the Kalman filter. For comparison, we show the phase space volume occupied
by the zero-point fluctuations in dark blue. Here the data is filtered with a high-order bandpass (25 to 225 kHz), attenuating
the contributions of the noise sources at high and low frequencies that are not considered by the model. d, Occupation at
different feedback gains as estimated by the Kalman filter (green dots) and independently measured by heterodyne asymmetry
(yellow circles). The magenta crosses show the four points at which 60 repeated measurements were performed for reduction
of statistical fluctuations as in b. Error bars represent the standard deviation of the measured value. The solid line is the
analytic closed-loop solution of the LQG, showing the expected occupancy given by our experimental parameters and their
uncertainties. The gray area shows the cooling limit set by the efficiency of our measurement.

us to spectrally resolve the Stokes and anti-Stokes components originating from inelastic scattering off the particle.
The scattering rates of these two processes (ΓS, ΓaS) correspond to the powers detected in the sidebands of the
heterodyne measurement. They contain a fundamental asymmetry due to the fact that anti-Stokes scattering, which
removes energy from the system, cannot occur from a motional quantum ground state. This is captured by a non-zero
difference ΓS − ΓaS of the scattering rates that is independent of the thermal occupation ⟨n⟩33 (Figure 3b). On the
other hand, their ratio ΓaS/ΓS = ⟨n⟩/ (⟨n⟩+ 1) provides us a direct, calibration-free measure of ⟨n⟩39. To exclude other
sources of asymmetry that may falsify the measurement, we independently characterize and subtract all (potentially
non-white) noise sources (e.g., optical phase noise, detector dark noise) and normalize the data to shot noise, thereby
taking into account also the frequency-dependent detector response33. For consistency, we perform all measurements
at both positive and negative heterodyne frequencies. For each gain setting, both measurements agree within the
statistical error (Figure 3b-c33). All data points are also in good agreement with the LQG theory. At maximum
gain, we measure a maximal averaged asymmetry of 0.35, corresponding to an occupation of ⟨n⟩ = 0.56± 0.02. This
establishes quantum ground state cooling of a nanoparticle from room temperature by real-time optimal quantum
control. In the ideal case, the lowest energy can be achieved at infinite feedback gain and is limited by the steady-state
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conditional covariance to ⟨n⟩ = 0.34. In our experiment, the cooling performance is limited by the computational
resources of the Red Pitaya, restricting the trade-off between the complexity of the model, the accuracy of the fixed-
point arithmetic and the sampling frequency of the implementation. In practice, this generates a significant risk of
numerical overflow when the control output is increased above gfb = 2π · 200kHz.

DISCUSSION AND OUTLOOK

We have demonstrated real-time optimal quantum control of a levitated nanoparticle. Our experiment combines
two features: First, using a near Heisenberg-limited confocal measurement scheme, we realize – at room temperature –
the conditions for which the quantum-mechanical properties of the particle can no longer be neglected40. Second, real-
time implementation of both a Kalman filter and a linear quadratic regulator (LQR) provides the required algorithms
for optimal state estimation and control. As a result, we achieve feedback cooling to the motional quantum ground
state (⟨n⟩ = 0.56 ± 0.02) in a room temperature environment. An immediate application is mechanical sensing of
weak stationary41–43 or transient43–45 forces. While neither real-time optimal filtering or feedback cooling improves
the signal-to-noise ratio43, our real-time state estimation can discriminate momentum kicks to the particle as small

as ∆p =
√
σ2
p + p2zpf = 1.2

√
ℏmΩz = 1.6 × 10−23 kgm/s (29 keV/c), only a factor 1.2 away from the fundamental

quantum limit for continuous sensing45. This is comparable to the momentum imparted by the inelastic collision
with a hydrogen molecule travelling at about 800 m/s, and smaller than the momentum (in a single dimension) of
almost 10% of the gas molecules at room temperature. Interestingly, this sensitivity is only a factor of 60 above
the latest bounds in the search for gravitationally interacting particle-like candidates for dark matter44. In other
words, extending our method to particle sizes beyond 1µm would enable the search for these exotic particles in
new parameter regimes. From a more general perspective, the ability to drive seemingly classical room temperature
objects into genuine quantum states of motion simply by measurement and feedback offers unique possibilities to study
quantum phenomena in hitherto unexplored macroscopic parameter regimes46,47. Extending our current scheme to
a more complex system dynamics may enable the preparation of genuinely non-classical states including squeezed48

or, in combination with non-linear filtering and anharmonic potential landscapes49,50, even non-Gaussian states of
motion.
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M1. THE COMPLETE EXPERIMENTAL SETUP

We include the complete experimental details of the experiment. The core of the experiment is the optical tweezer:
a microscope objective of NA = 0.95 to tightly focusing ∼ 300mW of light at λ = 1064 nm (ω0 = c2π/λ: optical
frequency) in ultra-high vacuum. Before reaching the optical trap, part of the light is diverted to a couple of acousto-
optic modulators (AOMs) oriented to scatter in positive and negative first order. In order to avoid slow intensity
drifts due to interference between the parametric feedback and the optical tweezer, the parametric feedback cooling
is implemented with light at optical frequencies of ωpfb = ω0 + 2π · 205MHz while the light shifted by the second
AOM at a frequency of ωhet = ω0 ± 2π · 9.2MHz is used as local oscillator for the heterodyne measurement. The
polarization in the tweezer is controlled by a half and a quarter waveplate (HWP,QWP). This allows us to excite the
rotational degree of freedom and its precession about the z-axis in ultra-high vacuum to frequencies above 100 MHz
by briefly applying an optical torque to the levitated particle, avoiding disturbance at the frequencies of interest. The
back scattered light is selected by a Faraday rotator (FR) and a polarizing beam-splitter (PBS) and routed to the
confocal fiber filtering. Here a lens (f3) focuses light into a single-mode fiber (green). A variable ratio coupler (VRC)
is used to split the light between homodyne and heterodyne detection. The use of these tunable VRCs, also in the
actual interferometric measurement, allows us to balance the splitting ratio with a precision below 0.5%. The slow
phase drift of the homodyne signal is stabilized by use of a low-pass filter (LP) and PID controller driving a fiber
stretcher constituted of a bare fiber wrapped around a cylindrical piezo. The signal is then directed to the Red-Pitaya
(RP) board which calculates the state estimates and a calibrated control signal. The control signal is applied to the
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holder of a collection lens which serves as electrode and is placed in front of the tweezer objective which is grounded29.
The homodyne and heterodyne measurement sequences as well as the state estimates and control signals are recorded
simultaneously. After the tweezer, light is collected by a lens and used for 3D forward split-detection (BS: beam
splitter). This low quality measurement serves to implement the parametric feedback of all 3 modes: a phase lock
loop (PLL) allows to track the phase of each mode and stabilize its motion by modulating the optical spring at twice
the mechanical frequency via an electro-optic modulator (EOM) and overlayed with the tweezer light by a PBS.
During the experiment, the parametric feedback for the z-mode is switched off. A green laser is shined from the side
onto the particle for imaging of the dipole scattering through a dichroic mirror (DM) onto a CCD sensor.

Figure M1. The experimental setup.

M2. IMPRECISION AND BACKACTION NOISE IN AN OPTICAL TWEEZER

We describe the effects of quantum noise in a measurement process following the description by Clerk et al.34 for
a flat mirror moving in one dimension. We then extend this to the geometry of an optically levitated particle, along
the lines of the analysis showed by Seberson and Robischeaux31. A full quantum description of the open quantum
system in terms of the quantum Langevin equations and input-output formalism will be derived in Section M5.

When performing a phase measurement of light in a coherent state (displaced vacuum) the phase and photon

number uncertainty is governed by Poissonian statistics: these uncertainties are respectively ∆φ = 1/(2
√
N) and

∆N =
√
N , where N is the measured number of photons during the time t. The product of these uncertainties

satisfies the relation ∆N∆φ = 1/251. In the context of continuous measurements of stationary processes it is useful
to reformulate these quantities in terms of a noise power spectral densitiy. This is defined, for a variable X, as the
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Fourier transform of its autocorrelation:

SXX(Ω) =

+∞∫

−∞

e−iΩt ⟨X(0)X(t)⟩ dt (M1)

Measuring a continuous flux of photons of average ¯̇N , we can now define Sφφ = (∆φ)2/t = 1/(4 ¯̇N) and SṄṄ =

(∆N)2/t = ¯̇N . Again, we have the uncertainty relation:
√
SφφSṄṄ = 1/2 (M2)

A. Measuring the displacement of a flat mirror

As a first example of optical measurement, we study the one dimensional case of a photon bouncing off a mirror,
measuring its displacement x. The phase shift gained by each photon is two times the phase shift acquired in x
distance: φ = 2kx. The momentum transferred to the mirror by elastic scattering is twice the photon momentum
p = 2ℏk. These lead to spectral density definitions for imprecision of position measurement and random backaction
force-noise: SI

xx = Sφφ/(4k
2) and Sba

FF = 4ℏ2k2SṄṄ
34. The uncertainty relation becomes:

√
SI
xxS

ba
FF = ℏ/2 (M3)

B. The case of a levitated particle

The case of a levitated particle is qualitatively equivalent. The main difference to consider is that the direction
of incoming and scattered photons is not necessarily parallel to the direction of the particle’s motion that we are
interested in measuring. The total optomechanical interaction is distributed to the different degrees of freedom (x,
y, z), reducing the average coupling to each mode. We follow the same steps and notation as described by Seberson
and Robicheaux31 to derive the imprecision noise and measurement backaction for our system. A photon of initial

wave-vector k
→

i = kk̂i = (kix, kiy, kiz) = k(k̂ix, k̂iy, k̂iz) scatters elastically off a particle at position r→, initial velocity
v→i and mass m. The phase shift acquired by the photon and the final velocity of the particle are given by:

φ = k
→

i r
→− k

→
f r
→ and v→f = v→i +

ℏ
m

(
k
→

i − k
→

f

)
, (M4)

where k
→

f is the final wave-vector. The squared phase shift resulting from a displacement along the direction j =
(x, y, x) is:

φ2
j = (kijrj − kfjrj)

2
= k2r2j

(
k̂ij − k̂fj

)2
, (M5)

and similarly the square momentum exchanged with the particle’s mode j is:

p2j = (mvfj −mvij)
2
= ℏ2k2

(
k̂ij − k̂fj

)2
, (M6)

where we have used the fact that ⟨vj⟩ = 0 for harmonic motion. As the phase and momentum depend on the
incidence and scattering directions, in order to compute second moments of momentum and phase fluctuations we
have to consider the scattering probability distribution defined for a dipole emitter. The probability of a photon

emitted by a dipole being scattered in direction k̂f is
30,31:

P (k̂f) =
3

8π
(cos2 θ cos2 ϕ+ sin2 ϕ), (M7)

where the spherical coordinate system is defined such that the scattered photon has the direction k̂f = (sin θ cosϕ, sin θ sinϕ,

cos θ). Note that
∫
4π

P (k̂f)dΩ = 1. For each direction of motion, the sqaure optical phase shift and momentum ex-

change, averaged over the scattering probability distribution is then given by:

⟨φ2
j ⟩ =

∫

4π

P (k̂f)φ
2
jdΩ and ⟨p2j ⟩ =

∫

4π

P (k̂f)p
2
jdΩ. (M8)
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Figure M2. Scattering angle. We define the scattering angle θ as the angle between the z axis and the scattering direction.

We consider the case for j = z, which is the direction of interest of this paper. The other directions follow trivially
and are discussed in30,31. If considering an incident plane wave, the incidence and scattering wave vectors are defined

as k̂iz = 1 and k̂fz = cos θ, respectively. As we are dealing with a tightly focused beam we have to modify the value

of the initial wave vector to be k̂iz = A ≤ 1, where A is a geometrical factor arising from the Gouy phase shift in the
focal field which depends on the trapping NA and can be computed following30. In our case A = 0.71. Inserting (M5)
and (M6) into (M8), and projecting on z,

⟨φ2
z⟩ = k2z2

∫

4π

P (k̂f)(A− cos θ)2dΩ and ⟨p2z⟩ = ℏ2k2
∫

4π

P (k̂f)(A− cos θ)2dΩ (M9)

The mean square phase shift and square momentum exchange along z become:

⟨φ2
z⟩ =

(
A2 +

2

5

)
k2z2 and ⟨p2z⟩ =

(
A2 +

2

5

)
ℏ2k2 (M10)

As for the one dimensional case we can now express the interaction in terms of spectral densities for position imprecision
and force noise, extending the averaging to the time domain:

SI
zz =

Sφφ(
A2 + 2

5

)
k2

and Sba
FF =

(
A2 +

2

5

)
ℏ2k2SṄṄ (M11)

and in terms of optical scattered power, Pscatt = ℏω ¯̇N = ℏck ¯̇N :

SI
zz =

ℏc(
A2 + 2

5

)
4kPscatt

and Sba
FF =

(
A2 +

2

5

)
ℏkPscatt

c
, (M12)

which also fulfills the Heisenberg uncertainty relation (M3).
As we measure real signals, it is useful to consider the one-sided power spectral density, defined for a real signal X,

at positive frequencies as:

SX(Ω ≥ 0) = (SXX(Ω) + SXX(−Ω)) (M13)

where the variance of the signal X is:

〈
X2
〉
=

1

2π

+∞∫

−∞

SXX(Ω)dΩ =
1

2π

+∞∫

0

SX(Ω)dΩ (M14)

which for a real white process simply reduces to SX = 2SXX . In terms of single-sided power spectral densities, the
uncertainty relation becomes:

√
SI
zS

ba
F = ℏ (M15)
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In real experiments the backaction-imprecision product is degraded by losses. On the one hand, there are losses
of information in the detection channel ηd. They increase the imprecision noise while leaving the backaction force
noise unaltered; The detected imprecision noise becomes Simp

z = SI
z/ηd. On the other hand, there are losses of

information by interactions with the environment ηe. Environmental force noise contributions include scattering of
gas molecules, feedback noise, black-body radiation; All having the effect of exchanging momentum with the system,
without contributing to the measurement. The total force noise becomes Stot

F =
∑

i S
i
F = Sba

F /ηe and the imprecision-
backaction product can be written as:

√
Simp
z Stot

F =
ℏ√
η
≥ ℏ (M16)

where η = ηdηe considers information losses in the detection and into the environment. In the following sections (M3,
M4), we will analyze losses in the detection channel and discuss additional force noise contributions to the backaction
term.

C. The standard quantum limit for the harmonic oscillator

The response of a system to external forces is given by its mechanical susceptibility, defined, for a harmonic oscillator,
as: χm(Ω) = [m(Ω2

z −Ω2 − iγΩ)]−1 (m the mass of the particle, Ωz: the mechanical resonance frequency, γ: the total
damping of the system). The relation between imprecision and backaction (equation (M15)) defines a minimal added
noise to the measured displacement spectrum that is known as the standard quantum limit. This limit is achieved,
at a given frequency, when the strength of measurement is such that the contributions of imprecision and response to
backaction are equal52:

SSQL
z (Ω) = min{SI

z + Sba
F |χm(Ω)|2} = 2ℏ|χm(Ω)| (M17)

In a real measurement one has to consider not only losses in the detection and environmental force noise contributions,
but also the oscillator’s quantum fluctuations of position zzpf =

√
ℏ/(2mΩz), resulting in a ground state displacement

spectrum34:

Szpf
z (Ω) = z2zpf

γ

(Ω− Ωz)
2
+ (γ/2)

2 . (M18)

The particle motional spectrum is:

Sz(Ω) = Stot
F |χm(Ω)|2 + Szpf

z (Ω) (M19)

and the total measured displacement noise then becomes:

Sζ(Ω) = Simp
z + Stot

F |χm(Ω)|2 + Szpf
z (Ω) (M20)

where ζ = z + ν is the sum of the actual motion of the particle together the position equivalent measurement noise.
It is evident that, in the case of weak damping, backaction and quantum fluctuations have a large contribution to the
total noise on resonance, and the added noise is much larger than the SQL (Figure M3a, M3c). Off resonance however
it is possible to find frequencies where the noise is closest to the SQL (Figure M3b). Up to a certain degree it is also
possible to suppress the backaction contribution on resonance, and redistribute the quantum zero point fluctuation
noise contribution to a larger frequency band. This is done by feedback cooling which increases damping and modifies
the mechanical susceptibility (Figure M3c, M3d and Section M4). In our system, with an information efficiency of
η = 0.34, we distinguish 2 regimes: the weakly cooled regime where we achieve (off resonance) a displacement noise of
1.76 times the SQL, and a strongly cooled regime, where by strongly suppressing backaction we are able to achieve (on
resonance) a displacement noise that is 2.7 times the SQL. Note that for the resonant case, even at zero temperature
the contribution of the zero point fluctuations limits the displacement noise to 2 times the SQL. These results show
an improvement of more than one order of magnitude for a mechanical system at room temperature22,23,35,36,53.

D. Measurement and decoherence rates

The resolution of a noisy measurement increases with measurement time. A quantum limited measurement however
necessarily disturbs the system, limiting the time for which one can measure a quantum state before it is completely
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Figure M3. The standard quantum limit. a, Contribution to the measured power spectral density of imprecision (imp),
backaction (ba), and zero point fluctuation (zpf), compared to the SQL as a function of frequency, in a regime of weak cooling
(Γfb = Γba/5). b, Contribution to the total noise, evaluated at Ωz ±∆ (verical dotted line in a), as a function of the scattered
power (measurement strength). In the case of weak cooling, the contributions of backaction and zero point fluctuation are
concentrated on resonance, allowing perfect balancing of imprecision and backaction when ∆ ≈ 2π× 22 kHz, and resulting in a
total added noise that is only a factor 1.76 from the SQL. c, Contributions to the measured power spectral density in a regime
of strong cooling (Γfb = 2Γba). In this case, the contributions of backaction and the zero point fluctuations are broadened
in frequency, allowing on resonance (vertical dotted line), a suppression of the added noise to a factor of 2.7 from SQL (in d
as a function of the scattered power). Note that in the case of optical tweezers, b and d do not represent a complete set of
experimentally available conditions, and are only valid at a fixed scattered power (vertical dotted lines). A variation of this
would necessarily come along with a change in the mechanical frequency, and a redefinition of the system parameters. This
representation is however useful to understand the operating conditions of the system with respect to the SQL.

Figure M4. The measured noise. Measured displacement power spectral density (black) showing the contributions by
imprecision (imp, gray), backaction (ba, green), and the zero point fluctuations (zpf, blue), compared to the SQL (red). a A
feedback gain of gfb/2π = 2kHz results in an occupation of n = 8.3 ± 0.09. The almost perfect balancing of imprecision and
backaction at 22 kHz above resonance (vertical dashed line) results in a measurement that is only a factor 1.76 from the ideal
SQL. b In the case of strong cooling (gfb/2π = 110 kHz), and occupation of n = 0.71± 0.09, we achieve a total added noise on
resonance that is a factor 2.7 higher than the SQL.
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destroyed by the measurement itself54. We introduce rates of measurement and decoherence to quantify these pro-
cesses. We define the measurement rate as the rate at which our measurement is able to resolve a displacement
equivalent to the zero point motion of the particle (zzpf):

Γmeas =
z2zpf

4Simp
zz

=
z2zpf

2Simp
z

= ηd
z2zpf
2SI

z

(M21)

Similarly, the decoherence rate, defined as the rate of energy quanta delivered to the oscillator by the measurement
process, is

Γba =
Sba
FF

4p2zpf
=

Sba
F

8p2zpf
(M22)

where pzpf =
√
ℏmΩz/2 momentum ground-state uncertainty. With the help of equation (M15), we can compute the

ratio of measurement rate and backaction-induced decoherence rate:

Γmeas

Γba
= ηd ≤ 1. (M23)

Decoherence in the system, however, does not only originate from the measurement process, but also from other
environmental interactions. We define the rate of decoherence induced by the environment (commonly thermal) as
Γth. The strength of a measurement with respect to other environmental interactions is known as the measurement
quantum cooperativity: Cq = Γba/Γth. Finally, using equation (M23) it is possible to define the measurement
information efficiency, which summarizes the quality of a measurement process:

η =
Γmeas

Γba + Γth
= ηd

Γba

Γba + Γth
= ηd

(
1 +

1

Cq

)−1

= ηdηe (M24)

E. Noise equivalent occupation

When monitoring the position of a harmonic oscillator, often the quantities of imprecision and force noise are
considered in units of energy quanta. We can assign an apparent thermal occupation to the imprecision noise14,21,55:

nimp =
Simp
z

2Szpf
z (Ωz)

= Simp
z

γ

8z2zpf
(M25)

On the other hand we can assign an occupancy to the bath associated with the force noise driving the oscillator.
Assuming energy equipartition this is:

ntot =
1

2π

∞∫

0

Stot
F |χm(Ω)|2

2z2zpf
dΩ =

Stot
F

8p2zpfγ
(M26)

where the last identity in equation (M26) is only valid in the case of a white force noise. The effect of backaction
associated to any quantum measurement process seemingly would prohibit any kind of quantum control. However, the
effects of this noise are directly captured by the measurement, and can be counteracted by feedback control schemes.
We can then write the minimal achievable occupancy in presence of an ideal feedback as55:

nmin = 2
√
nimpntot −

1

2
(M27)

Note that equation (M27) is an asymptotic value, requiring an experimentally impractical infinite bandwidth feedback
(see also Section M6). Given the parameters in our system we estimate nmin = 0.34.

M3. LOSSES OF INFORMATION AND PHOTONS

As we have seen in the previous section M2 information is not uniformly distributed across the dipole scattered light.
Whenever there are spatially dependent losses, there are mismatches between the loss of photons and the actual loss
of information. In other words, there are losses and the are losses. We will refer to efficiency that is complementary
to information loss with η and efficiency that is complementary to photon loss with η∗.

Post-print version of the article: L. Magrini, P. Rosenzweig, C. Bach, A. Deutschmann-Olek, S. G. Hofer, S. Hong, N. Kiesel, A. Kugi,
and M. Aspelmeyer, “Real-time optimal quantum control of mechanical motion at room temperature,” Nature, vol. 595, pp. 373–377, 2021.
doi: 10.1038/s41586-021-03602-3
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

https://doi.org/10.1038/s41586-021-03602-3


17

A. Microscope collection

The collection efficiency by the microscope objective of dipole scattered photons is:

η∗d,c =

∫
Ωcoll

P (k̂f)dΩ

∫
4π

P (k̂f)dΩ
, (M28)

which results in a photon collection efficiency of η∗d,c = 0.375. On the other hand, the information collection efficiency
by the microscope objective is the ratio of the imprecision noise calculated for a limited collection angle Ωcoll over the
ideal imprecision noise defined in equation (M9)

ηd,c =

∫
Ωcoll

P (k̂f)(A− cos θ)2dΩ

∫
4π

P (k̂f)(A− cos θ)2dΩ
. (M29)

With an NA of 0.95 this leads to an information collection efficiency of ηd,c = 0.84.

B. Confocal mode-matching

After being collected by the microscope objective, light needs to be matched to the local oscillator. We implement
a fiber based confocal dipole detection32. This has two advantages: first it allows easy and efficient mode matching
of the dipole scattered light to the local oscillator, second, confocal filtering by the fiber allows to suppress stray
reflections in the trapping-detection path. Following the description by Vamivakas et al.32 we compute the mode
overlap between the electric dipole far field Edip imaged at the fiber boundary and the fiber mode profile Efm in
cylindrical coordinates as a function of magnification M = f3/f1. Here f1 and f3 are the focal lengths of the objective
lens and the imaging lens respectively. The mode overlap efficiency is defined as:

η∗d,m(M) =
|
∫
E⃗∗

dip(r⃗3)E⃗
x
fm(r⃗3)dA3|2∫

|E⃗x
dip(r⃗3)|2dA3

∫
|⃗⃗Ex

fm(r⃗3)|2dA3

, (M30)

where the dipole is oriented along x̂ with its origin in the focal point of a 0.95 NA microscope objective and the
fiber mode superscript x indicates the x polarized solution. We integrate the overlap of dipole image and fiber mode
over the fiber tip surface dA3 at the focal position. A maximal collection efficiency of 0.76 can be achieved with
a magnification of f3/f1 ≈ 7.7. In our case a magnification of M = 8.5 leads to a mode matching efficiency of
η∗d,m = 0.75. We manage to couple up to η∗d,m = 0.71.
For comparison, we also calculate the overlap integral for the dipole image in paraxial approximation, where the

collection angle θ → 0. The x component of the dipole image becomes:

Ex
dip(ρ3,M) = θ1

M

k3ρ3
J1(k3ρ3θ1/M), (M31)

where ρ3 is the distance from the fiber axis, J1 is the first order Bessel function of the first kind, θ1 = arcsinNA/n1,
with n1 = 1 the refractive index before the microscope objective and k3 = n12π/λ. All other contibutions vanish.
We insert equation (M31) into equation (M30) and integrate numerically at different magnifications. The result can
be found in Figure M5 b. Approximating the dipole image as a Bessel function (without any azimuthal dependence)
increases the maximal coupling efficiency and shifts it to higher magnification. While qualitative behaviour remains
similar, it is evident that in our configuration the approximate solution is no longer valid. As the dipole scatterer is
treated as a point source, once the light is collected by the microscope objective and imaged onto the fiber, information
is distributed uniformly over the mode. For this reason the information collection efficiency will, from this point on,
coincide with the photon collection efficiency. Even though a higher NA leads to an increased information collection
by the microscope, it also causes a reduced overlap of the collected light with a Gaussian single mode. Therefore it
is the efficiency of the combined system that has to be considered and maximized (Figure M5 c). Still, computing
the product of the maximal information collection efficiency ηc for each NA we notice that the overall information
collection efficiency is still maximized at the highest NA.
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Figure M5. Fiber-dipole mode overlap. a, Numerical calculation of the dipole mode (orange) at a fixed angle imaged at
the fiber interface by our confocal microscope system, fiber mode (blue), and their overlap (green) as a function of the distance
to the center of the fiber. The gray shaded area represents the fiber core. b, Overlap efficiency as a function of magnification of
the optical system. The gray vertical line shows our operating point, not far from the optimal value. c, Information collection
efficiency by the microscope objective (orange dots), maximum fiber mode matching (blue dots) and the product of the two
(green dots) as a function of the objective NA. The gray line is our operating point.

C. Objective transmission

We measure the transmission efficiency of the microscope objective to be η∗d,obj = ηd,obj = 0.84, assuming uniform
loss, which is in good agreement with the producers specified value at this wavelength.

D. Heterodyne splitting

After mode-matching to the fiber we split 5% by use of a variable ratio coupler of the signal to contribute to the
out-of-loop heterodyne measurement (M1). We have η∗d,het = ηd,het = 0.95.

E. Homodyne balancing

As the interferometric measurement is performed in fiber, the visibility is degraded by the imperfect splitting ratios
of the variable ratio couplers. These tunable beam-splitters can be adjusted to a mismatch of about 0.1%, with
thermal fluctuations of less than 0.5%. This results in an efficiency η∗d,hom = ηd,hom = 0.99.

F. Detector efficiency

Together with the microscope transmissivity this is the second largest loss. We use a commercial balanced detector,
where the current difference between the 2 diodes is amplified by a transimpedance gain. We calibrate the detector
responsivity defined as R(ν) = η∗d,qe/hν with e the electron charge, by measuring the dc voltage at each diode monitor
port and extrapolate the efficiency of η∗d,q = ηd,q = 0.85 for both diodes.

G. Detector dark noise

The last detection noise source is the detector dark noise. We measure the dark noise at the relevant frequencies
to be 11 dB below the shot noise level, resulting in ηd,dn = 0.924.

Digital noise

After detection there are further noise sources to be considered which reduce the collected information: The Red-
Pitaya board has 14-bit analog to digital and digital to analog converters. This results in a limitation of the dynamic
range of operation. In our settings this results in an effective information loss of 2% (ηd,rp = 0.98).
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H. Environmental information loss

We here consider the information loss to interactions with gas molecules. This contributes the dominant envi-
ronmental loss in ηe. As already discussed in Section M2, a gas molecule colliding with the particle performs a
measurement which information we cannot read. The associated efficiency is:

ηe =
Sba
F

Stot
F

= 0.97 (M32)

Values for the force noise contributions are calculated in Section M4. As discussed in Section M4 we can define the
cooperativity Cq = Sba

F /Sth
F = Γba/Γth:

ηe =

(
1 +

1

Cq

)−1

(M33)

I. The total loss budget

We finally derive a total photon detection efficiency of η∗ = 0.178 while the total information detection efficiency is
as high as η = 0.347. This estimation of the total information collection efficiency is in excellent agreement (less than
1% unaccounted for) with the value of η = 0.342 directly calculated from the ratio of measurement to decoherence
rates.

Loss source η∗ η

Microscope collection (d) 0.375 0.84

Microcope transimissivity (d) 0.84 0.84

Confocal mode-matching (d) 0.71 0.71

Heterodyne split (d) 0.95 0.95

Homodyne balancing (d) 0.99 0.99

Detector efficiency (d) 0.85 0.85

Detector dark-noise (d) - 0.92

Kalman digital noise (d) - 0.98

Environmental information loss (e) - 0.96

Total 0.178 0.347

Table M1. Measurement efficiency. The total efficiency budget for photon and information loss. All loss sources are
considered in both the detection and electronic line (d), and information loss to the environment (e).

M4. CONTRIBUTIONS TO THE TOTAL FORCE NOISE

We here estimate the expected force noise contributions given the parameters of our system. Actual values are
measured in Section M7. While the backaction and thermal force noise contributions are defined and fixed by the
physical system, the contribution from the feedback strongly depend on the chosen control algorithm.

A. Backaction force noise

The backaction force noise, resulting from photons scattering off the particle was derived in Section M2. In order
to estimate its contribution, we must consider the experimental details of the optical tweezer. The power scattered

by the particle is Pscatt = I0σ, where I0 is the tweezer intensity and σ = 8π
3 ( αk2

4πϵ0
)2 the scattering cross section (α:

polarizability of the particle ϵ0: vacuum permittivity). The tweezer intensity I0 = 2P/πw depends on the trapping
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power P and on the effective beam waist w calculated for a tightly focused beam at the particle position, taking into
account the displacement due to the scattering force contribution56. We calculate a scattered power by the dipole of
Pscatt = 22.4 µW. The expected single-sided backaction force noise therefore is:

Sba
F = 2

(
A2 +

2

5

)
ℏkPscatt

c
= 8.4 · 10−41 N2/Hz, (M34)

In the absence of feedback center of mass motion of the particle would thermalize to a temperature defined by com-
peting effects of photon recoil heating and radiation damping57: Topt = ℏω0/(4kB) (ω0: the optical laser frequency).
This is equivalent to nba = 6.8 · 108 quanta of occupation of the harmonic oscillator. We cannot directly observe this
in the experiment as it would lead to the particle loss due to the finite optical trap depth.

B. Thermal force noise

The thermal force noise is the noise contribution arising from interaction with the surrounding gas. At a temperature
T of 292 K and pressure of 10−8 mbar, we calculate:

Sth
F = 4kBTγthm = 3.9 · 10−42 N2/Hz (M35)

where kB is the Boltzmann constant and γth is the damping due to residual gas molecules (for definition see also
Section M7). This force noise contributes to an occupancy of nth = 6.0 · 107.

C. Feedback force noise

Measurement-based feedback control relies on a typically noisy measurement to control the dynamics of the sys-
tem. The measurement noise is therefore fed back to the controller whose output drives the system, adding a new
contribution to the force noise term, and setting a lower bound to the accuracy of the control. The force noise arising
from feedback imprecision noise is:

Sfb
F (Ω) = |hfb(Ω)|2Simp

z , (M36)

where hfb(Ω) is the controller transfer function in the feedback path. Closing the feedback loop the susceptibility of
the system becomes:

χeff(Ω) =
χm(Ω)

1 + χm(Ω)hfb(Ω)
, (M37)

which allows us to write the closed-loop spectral density of the position (z) and measurement outcome (ζ):

Sz(Ω) = |χeff(Ω)|2
(
Stot
F + |hfb(Ω)|2Simp

z

)
(M38a)

Sζ(Ω) = |χeff(Ω)|2
(
Stot
F + |χm(Ω)|−2Simp

z

)
(M38b)

From (M36),(M37) and (M38a), we see how the controller transfer function hfb(Ω) influences the closed-loop power
spectral densities (PSDs). The controller should minimize the PSD by respecting the constraints of the control input
and render the closed-loop stable. For linear Gaussian systems such as the one considered in this paper, the linear-
quadratic Gaussian (LQG) controller fulfills these demands in an optimal way, as will be discussed in detail in the
next sections. We here discuss the simple example of a differentiation filter, as it is the most common form of feedback
cooling applied in most optomechanical experiments. The feedback transfer function for the differentiation filter is:

hd
fb(Ω) = imΩγgfb (M39)

where γ is the natural damping of the system associated to the bath (of temperature T ) it is coupled to, and gfb
the feedback gain. Evaluating the total energy as a function of the gain gfb makes it evident that at some point the
imprecision noise will start to be fed back into the system, heating the motion of the particle:

〈
z2
〉
=

1

2π

∫ ∞

0

Sz(Ω)dΩ =
1

1 + gfb

kBT

mΩ2
z

+
g2fb

1 + gfb

γ

2

Simp
z

2
. (M40)
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This effect appears in the measured spectral density Sζ(Ω) in the form of noise squashing, as the particle motion is
driven to minimize the total noise in the measurement outcome14,38,55. It is important to notice that, in practical
applications, the controller transfer function defined in (M39) is not realistic as exact differentiation would require
infinite bandwidth and knowledge of the future, producing unbounded control signals. When limiting the bandwidth
of the differentiation filter, the qualitative behaviour of (M40) is preserved, albeit with a reduced performance (see
Figure M6b).

Figure M6. Derivative feedback performance. a, Noise squashing in the closed-loop measurement PSD resulting from
leakage of measurement noise inthe colsed-loop system. b Occupation measured in heterodyne detection as a function of the
feedback gain of a derivative feedback. The different colours cossepond to the PSDs in a. A qualitative approximation of this
behaviour can be obtained by tuning the Kalman gains (defined in Section M6) of our controller to a value that is a factor
105 larger than the optimal one, and reducing the controller transfer function to be white over a large frequency band. In this
setting the filter ignores the model and bases its feedback solely on the measurement. It is important to notice that the ideal
differentiation filter would reach occupations as low as those determined by the measurement uncertainty as defined in (M27).
However this is not a practical solution, as it would require an infinite bandwidth controller.

D. Coupling of the transverse degrees of freedom

The finite temperature of the transverse modes may in principle affect the cooling performance in the z-direction
in two ways:

� Coupling of the transverse degrees of freedom through the measurement. In this case, displacements along the
transverse directions are transduced into the backscattered signal. This effect would reduce the information
efficiency of the z-measurement, just as any other noise source, in turn reducing the cooling performance. For
a specific measurement geometry, the noise power contributed by each mode i = (x, y, z) can be written as
Pi ∝ Γmeas

i (⟨2ni⟩+ 1), where Γmeas
i are the measurement rates for each mode, and ⟨ni⟩ the average occupation

of each mode. Concretely, for our setup, we find Γmeas
x,y /Γmeas

z ∼ 10−5, which means that the residual coupling
of the transverse modes is about 5 orders of magnitude weaker than for the z-mode. Using parametric feedback
via an independent forward detection scheme (Figure S1), the transverse modes are cooled to occupations of
⟨nx,y⟩ ∼ 103. This yields a relative noise power contribution of the two transverse modes, when ⟨nz⟩ ∼ 1, of
about Px,y/Pz ∼ 10−2 , which is a negligible contribution. In addition, since the feedback signal for cooling
is confined to the spectral region around Ωz, the spectral separation between transverse motion and z-motion
further suppresses the unwanted cross-coupling effect.

� Coupling between the modes through the nonlinearity of the potential. The optical tweezer presents a duffing
nonlinearity of the order ξi = −2/w2

i with i = (x, y, z) and wi the beam characteristic length scale (i.e. the
waist for the transverse directions (x,y) and the Rayleigh length for the z-direction). As a consequence, the
force along each direction of motion becomes coupled to the position in the other directions28:

Fi = −kixi


1 +

∑

j=x,y,z

ξjx
2
j


 . (M41)

For small displacements, |x| ≪ |ξi|−1/2, this coupling becomes negligible and the modes decouple. Specifically,
in this experiment, we have |ξi|−1/2 ≥ 4× 10−7 m and the root mean square displacement along each direction
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is given by xrms
i = xzpf

i

√
2ni + 1. While the z-motion is cooled to ⟨nz⟩ ∼ 0.5, the motion along the other modes

is parametrically cooled to ⟨nx,y⟩ ∼ 103. This is enough to have xrms
x,y ∼ 10−10 m. It is evident that even

with limited cooling on the transverse modes the expected energy contribution to the z-mode due to nonlinear
coupling is negligible.

M5. QUANTUM EQUATIONS OF MOTION

In this section we derive the quantum Langevin equations for the nanosphere, describing its motion in the harmonic
trap formed by the tweezer field, together with the corresponding input–output relations. These equations form the
basis for the state-space model used for the Kalman filter.

A. Hamiltonian

The effective Hamiltonian for the center-of-mass motion of the nanosphere in the tweezer field and the coupling
to the electromagnetic field can be derived following58 (which treats a more general system), assuming a linear,
isotropic dielectric medium and the validity of the long-wavelength assumption. (That is, the typical extension of the
mechanical state is much smaller than the tweezer wavelength λ0).
We describe the center-of-mass motion of the nanosphere in direction j ∈ {x, y, z} by annihilation and creation

operators bj and b†j with commutation relations [bi, b
†
j ] = δij . The light field is expanded into a continuum of plane-wave

modes labeled by the wavevector k ∈ R3 and an index λ that determines the mode’s polarisation. The corresponding

annihilation and creation operators are denoted by aλ(k) and a†λ(k), respectively. Their commutation relations are

given by [aλ(k), a
†
λ′(k′)] = δλλ′δ(k−k′), where δ(·) is the Dirac δ-function and δλλ′ is the Kronecker δ. For the system

discussed here we find the Hamiltonian

H = ℏ
∑

j=x,y,z

Ωjb
†
jbj + ℏ

∑

λ

∫
d3k∆ka

†
λ(k)aλ(k) + ℏ

∑

j=x,y,z

∑

λ

∫
d3k

[
gjλ(k)a

†
λ(k)(bj + b†j) + H.c.

]
, (M42)

where Ωj is the mechanical frequency in direction j, ∆k = ωk − ω0, and ωk = ∥k∥c. The coupling constants gjλ(k)
are given by

gjλ(k) = i
Gλ

0 (k)

2
(kj − k0δjz)r0j , (M43)

Gλ
0 (k) = αE0

√
ωk

2ℏε0(2π)3
ex · eλ(k), (M44)

where r0j is the mechanical ground-state extension in direction j, α is the nanosphere’s polarisability, and E0 is the
electric field strength of the tweezer. Symbols ex and eλ(k) denote unit vectors in x-direction and the direction of
(linear) polarization for the (k, λ) field mode respectively, and ex · eλ denotes their scalar product in R3.

B. Quantum Langevin Equations

Starting from the Hamiltonian above we now derive the quantum-optical Langevin equations for the mechanical
system following the procedure introduced in59. Here we neglect relativistic effects57 and, for now, also mechanical
damping effects due to residual gas which will be added later. We first find the Heisenberg equations for bj and aλ(k),
yielding

ȧλ(k, t) = −i∆kaλ(k, t)− i
∑

j

gjλ(k)(bj + b†j), (M45a)

ḃj(t) = −iΩjbj(t)− i
∑

λ

∫
d3k [gjλ(k)a

†
λ(k, t) + H.c.]. (M45b)

We formally solve (M45a), which gives

aλ(k, t) = e−i∆ktaλ(k, 0)− i
∑

j=x,y,z

gjλ(k)

∫ t

0

ds e−i∆k(t−s)[bj(s) + b†j(s)], (M46)
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and plug it into (M45b). We find

ḃj(t) = −iΩjbj(t)− i
∑

λ

∫
d3k [gjλ(k)e

i∆kta†λ(k, 0) + H.c.]

+
∑

l=x,y,z

∫ t

0

ds [bj(s) + b†j(s)]
∫

d3k
∑

λ

[gjλ(k)g
∗
lλ(k)e

i∆k(t−s) −H.c.]. (M47)

We now make the (typical) assumptions60 that (i) the interaction with the field is restricted to a frequency interval
[ω0 − θ, ω0 + θ], where θ is a cutoff frequency that fulfills ω0 ≫ θ ≫ Ωj , and (ii) the coupling constants gjλ are
approximately constant across this interval. These assumptions will allow us to employ a Markov approximation
(taking the limit θ → ∞), making the resulting equation local in time, and considerably simplify equation (M47).
We first take a look at the second term in (M47), which describes the interaction of the mechanical system with

(unnormalized) light modes
∫
d3k g∗jλ(k)e

−i∆ktaλ(k, 0), where t should be interpreted as the time at which the incoming
light-field interacts with the nanosphere. For our purposes it is convenient to decompose this mode into two orthogonal
modes, one of which is monitored in the experiment. The corresponding mode function, denoted by h, is determined
by the measurement setup. We write

∫
d3k g∗lλ(k)e

−i∆ktaλ(k, 0) =
√
2πKλ

ll

{√
ηlλcλ(t) +

√
1− ηlλc

⊥
lλ(t)

}
,

where we defined the light modes

cλ(t) = (2πI)−
1
2

∫
d3k h∗(k)e−i∆ktaλ(k, 0), (M48a)

c⊥lλ(t) = [2πKλ
ll(1− ηlλ)]

− 1
2

∫
d3k [g∗lλ(k)− (J∗

lλ/I)h
∗(k)]e−i∆ktaλ(k, 0), (M48b)

and the constants

I =

∫
dΩk

ω2
0

c3

∣∣∣h
(ω0

c
ek

)∣∣∣
2

, (M49)

Jlλ =

∫
dΩk

ω2
0

c3
h∗
(ω0

c
ek

)
glλ

(ω0

c
ek

)
, (M50)

Kλ
jl =

∫
dΩk

ω2
0

c3
gjλ

(ω0

c
ek

)
g∗lλ
(ω0

c
ek

)
. (M51)

Here dΩk denotes the integration with respect to the angular degrees of freedom of k and ek is a unit vector in the
direction of k. The parameter ηlλ = |Jlλ|2/Kλ

llI ∈ [0, 1] determines the overlap between the measured mode function
h and the scattering profile glλ at the tweezer frequency ω0 and takes the role of a measurement efficiency. Note that
for h = glλ we have ηlλ = 1. The parameter Kλ

ll on the other hand effectively describes the coupling strength between
the nanosphere’s motion in direction l and the mode light mode defined by glλ. Plugging the expressions for glλ into
the definition of Kλ

jl one can show that Kλ
jl = Kλ

llδjl.

Assuming that h is (similarly to g) restricted to a frequency interval around ω0 and roughly flat and taking the
Markovian limit (θ → ∞) we can show that cλ, c

⊥
λ describe zero-mean white-noise fields that obey

[cλ(t), c
†
λ′(s)] = [c⊥lλ(t), (c

⊥
lλ′)†(s)] = δλλ′δ(t− s), (M52a)

[cλ(t), (c
⊥
lλ′)†(s)] = 0, (M52b)

and, assuming the electromagnetic field is initially in the vacuum state, the correlation functions

⟨cλ(t)c†λ′(s)⟩ = ⟨c⊥lλ(t)(c⊥lλ′)†(s)⟩ = δλλ′δ(t− s), (M53a)

⟨cλ(t)(c⊥lλ′)†(s)⟩ = 0, (M53b)

where ⟨·⟩ refers to the expectation value with respect to system plus environment. In deriving relations (M52) and
(M53) we find integrals of the following form, which can be approximated using the assumptions (i) and (ii) from
above:

∫
d3k gjλ(k)g

∗
lλ(k)e

i∆k(t−s)
(i),(ii)≈

∫ ω0+θ

ω0−θ

dω ei(ω−ω0)(t−s)

∫
dΩk

ω2
0

c3
gjλ

(ω0

c
ek

)
g∗lλ
(ω0

c
ek

)
(M54)

−→
θ→∞

2πKλ
jlδ(t− s)
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Plugging this back into equation (M47) we see that, under this approximation, the second line vanishes identically as
Kλ

lj ∈ R. Using this, the quantum Langevin equations for the motion of the nanosphere (in a Markov approximation)
take the form

ḃl(t) = −iΩlbl(t)− i
∑

λ

√
2πKλ

ll

{√
ηlλ[cλ(t) + c†λ(t)] +

√
1− ηlλ[c

⊥
λ (t) + (c⊥λ (t))

†]
}
. (M55)

Alternatively we can rewrite (M55) in terms of position rj = (bj + b†j)/
√
2 and momentum pj = (bj − b†j)/

√
2i

ṙl(t) = Ωlpl(t), (M56a)

ṗl(t) = −Ωlrl(t)−
∑

λ

√
4πKλ

ll

{√
ηlλxλ(t) +

√
1− ηlλx

⊥
lλ(t)

}
, (M56b)

where we introduced the amplitude quadratures xλ = cλ + c†λ.
Up to now we have neglected two important points in our treatment: the nanosphere’s interaction with residual

gas, which constitutes an additional thermal environment, and the feedback force. The former we model as Brownian
motion damping61, but treat it in a Markov approximation. We thus introduce an additional Gaussian noise operator
fl that obeys

⟨fl(t)⟩ = 0, (M57a)

⟨fl(t)fl(t′) + fl(t
′)fl(t)⟩ = (2n̄l + 1)δ(t− t′), (M57b)

where n̄l = ℏΩl/kBT . The corresponding damping rate we denote by γ. The additional energy contribution by
the feedback we write as Hfb = −qEfb(t)r0zrz = −ℏu(t)rz, where q is the charge of the particle and Efb(t) is the
time-dependent electric field that is used to apply the feedback signal (also see Section M7). Putting this all together
the modified Langevin equations take the form

ṙl(t) = Ωlpl(t), (M58a)

ṗl(t) = −Ωlrl(t)− γpl(t) + u(t) +
√
2γfl(t)−

∑

λ

√
4πKλ

ll

{√
ηlλxλ(t) +

√
1− ηlλx

⊥
lλ(t)

}
. (M58b)

A relativistic treatment of the optomechanical interaction would as well show a radiation-damping contribution to
the particle dynamics57. Together with the radiation-pressure shot noise (described by the last term in (M58b)) this
defines, similarly to the thermal environment, a fluctuation–dissipation balance and a thermalization temperature
associated with the optical bath. In our experiment both damping mechanisms (residual gas and radiation damping)
are negligible in the presence of feedback. The experimental decoherence rates for the thermal and optical interactions
are characterized in Section M7.

C. Input–Output relations

To compute the scattered field after the interaction with the nanosphere (that is what we measure) we go back to
equation (M46) which, in a first step, we multiply by h∗(k) and integrate over k, leading to

∫
d3k h∗(k)aλ(k, t) =

√
2πIcλ(t)− i

∑

l=x,y,z

∫
d3k h∗(k)glλ(k)

∫ t

0

ds e−i∆k(t−s)[bl(s) + b†l (s)]

≈
√
2πIcλ(t)− 2iπ

∑

l=x,y,z

Jlλ

∫ t

0

ds δ(t− s)[bl(s) + b†l (s)]

=
√
2πIcλ(t)− iπ

∑

l=x,y,z

Jlλ[bl(t) + b†l (t)] (M59)

Note again that cλ(t) refers to the light field before the interaction. To connect this to its state after the interaction,
we again formally integrate (M45a), this time specifying a(k, T ) at some (distant) final time T > t:

aλ(k, t) = ei∆k(T−t)aλ(k, T ) + i
∑

j=x,y,z

gjλ(k)

∫ T

t

ds e−i∆k(t−s)[bj(s) + b†j(s)]. (M60)
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Applying the same procedure as before we find
∫

d3k h∗(k)aλ(k, t) =
√
2πIcoutλ (t) + iπ

∑

l=x,y,z

Jlλ[bl(t) + b†l (t)], (M61)

where we interpret coutλ (t) =
∫
d3k h∗(k)ei∆k(T−t)aλ(k, T )/

√
2πI as the field (at the time T ) after the interaction. We

can combine equations (M61) and (M59) to obtain the usual input–output relation (with φlλ = arg Jlλ)

coutλ (t) = cλ(t)− i
∑

l=x,y,z

√
2πηlλKλ

lle
iφlλ [bl(t) + b†l (t)]. (M62)

Note that the choice of h and thus the value of ηlλ determines which direction of the nanosphere’s motion can be
monitored by measuring the scattered light. In the experiment we use homodyne detection to monitor (amplitude
and phase) quadratures (xout

jλ and youtjλ ) of the scattered field. The corresponding input–output relations are given by

xout
λ (t) = [coutλ (t) + (coutλ (t))†] = xλ(t) +

∑

l=x,y,z

sinφlλ

√
16πηlλKλ

llrl(t), (M63a)

youtλ (t) = −i[coutλ (t)− (coutλ (t))†] = yλ(t)−
∑

l=x,y,z

cosφlλ

√
16πηlλKλ

llrl(t). (M63b)

As in our experiment φzλ ≈ 0 the amplitude quadrature xout
λ only carries noise, while the phase quadrature youtλ con-

tains information about the nanosphere’s position. We thus only monitor the phase quadrature. Also, (M63b) shows
that, depending on the value of ηlλ and thus on the definition of the measured mode h, youtλ contains contributions
from the particle displacement along all directions. In the experiment h is such that the contributions from the x and
y directions are heavily suppressed (i.e., ηxλ, ηy,λ ≪ ηz,λ). Additional imperfections in the experimental setup will
determine the effective measurement efficiency, which will result in effective values for ηlλ (see Section M3).

D. Quantum Langevin equations in vector form

In analogy to the state-space models commonly used in classical control theory, we can rewrite the quantum Langevin
equations (M58) and the input–output relations (M63) in vector form. These definitions will enable us to compactly
write the Kalman filter equations in the next section.
We start by defining z(t) = [rz(t) pz(t)]

T. Here and in the following sections, we assume that we measure the phase
quadrature youtλ0

(t) for a single polarisation λ0. We can then write

ż(t) = Az(t) + bu(t) +w(t), (M64a)

youtλ0
(t) = cTz(t) + yλ0

(t), (M64b)

with

A =

[
0 Ωz

−Ωz −γ

]
, b =

[
0 1

]T
, cT =

√
16πηzλ0

Kλ0
zz

[
1 0

]
. (M65)

and w(t) = gw(t) = [0 1]
T
w(t),

w(t) =

{
√
2γfz(t)−

∑

λ

√
4πKλ

zz

[√
ηzλxλ(t) +

√
1− ηzλx

⊥
zλ(t)

]}
. (M66)

As the light field is assumed to be in the vacuum state both w and yλ0 are zero-mean Gaussian processes. Their
symmetrized (cross-)correlation matrices are

⟨yλ0(t)yλ0(t
′)⟩ = δ(t− t′), (M67a)

Re⟨w(t)yλ0(t
′)⟩ = Mδ(t− t′) = 0, (M67b)

Re⟨w(t)wT (t′)⟩ = Nδ(t− t′) = diag
(
0, γ(2n̄z + 1) + 4π

∑

λ

Kλ
zz

)
δ(t− t′), (M67c)

which follows from (M53) and (M57).
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E. Connection to the stochastic master equation and Kalman filtering

Equations (M58) and (M63) define a quantum stochastic model of the experimental setup. This model also allows us
to construct the dynamical equations for the so-called conditional quantum state ρ̂, which describes the nanosphere’s
motional state in z-direction conditioned on the classical output of the measurement of youtλ0

. The time evolution of

ρ̂ is (approximately) given by the Ito stochastic master equation (see, e.g.,4 for an introduction to the formalism).
Assuming φzλ0

= 0:

dρ̂(t) = −i[Ωzb
†
zbz − u(t)rz, ρ̂(t)]dt + γ(n̄+ 1)D[bz]ρ̂(t)dt + γn̄D[b†z]ρ̂(t)dt

+
∑

λ

D[szλ]ρ̂(t)dt +
√
ηzλ0

H[szλ0
]ρ̂(t)dW (t) , (M68a)

D[s]ρ̂ = sρ̂s† − 1

2
(s†sρ̂+ ρ̂s†s), (M68b)

H[s]ρ̂ = [s− tr(sρ̂)]ρ̂+ ρ̂[s− tr(sρ̂)]†, (M68c)

where szλ = −i
√
2πKλ

zz(bz+b†z). The second and third term in (M68a) describe damping and decoherence effects due
to the residual gas, while the fourth term describes diffusion due to the coupling to the electromagnetic field. The last
term effects conditioning on the homodyne measurement, where W is a classical Wiener process corresponding to the
innovation process denoted as ϵ in the main text. We can (formally) write for the Wiener increments dW (t) = ϵ(t)dt .

In deriving this equation, we assumed that the measured mode h couples only weakly to the particle motion in
x- and y-direction and thus neglected measurement terms scaling with

√
ηxλ0

and
√
ηyλ0

(which show up as sharp
resonances in the measured spectrum, see Figure 1b in main text). Also note that this formulation of mechanical
damping due to residual gas does not strictly correspond to Brownian motion damping as used above. The two
formulations are connected by a rotating-wave approximation (see61), which is a good approximation for oscillators
with a high quality factor.

For Gaussian systems, such as ours, it was shown16,62 that the evolution of the conditional quantum state ρ̂ can
be mapped to the well-known Kalman–Bucy filter from classical estimation theory. In this case, ρ̂ is completely
determined by the first and second moment of z = [rz, pz] (an operator in the Schrödinger picture), which we denote
as

ẑ(t) = tr[ρ̂(t)z], (M69a)

Σ̂(t) = Re
{
tr[ρ̂(t)zzT ]

}
− ẑ(t)ẑT (t). (M69b)

Using the definitions from Section M5D the dynamical equations determining the evolution of ẑ(t) and Σ̂(t) can be
written as the classical Kalman–Bucy filter16,37,62,63

˙̂z(t) = Aẑ(t) + bu(t) + k̂(t)[ζ(t)− cT ẑ(t)], (M70a)

˙̂Σ(t) = AΣ̂(t) + Σ̂(t)AT +N− [Σ̂(t)c+M][Σ̂(t)c+M]T , (M70b)

k̂(t) = Σ̂(t)c+M, (M70c)

where ζ(t) ∈ R denotes the measurement signal resulting from a measurement of youtλ0
(t). These equations are correct

for general Gaussian systems that can be described by quantum Langevin equations of the form (M64), in particular
also for systems where M ̸= 0. Note that although these equations are derived from a quantum description of the
experiment, they are classical (stochastic) differential equations that involve classical quantities (the moments of z
under ρ̂, the measurement signal ζ) only and can thus be readily implemented on a classical signal processor.

The results presented above show that the quantum filtering problem for Gaussian systems described by a quantum
Langevin equation (M64a) (together with the output equation (M64b)) is formally equivalent to the classical filtering
problem for the corresponding classical Langevin equation when using the correct noise properties (M67) that arise
from a quantum description. For the details of the derivation in the framework of quantum filtering see64. .

Additional to the approach taken in quantum filtering theory65, complementary approaches exist to describe the
dynamics of a (Gaussian) quantum system under continuous measurement. These include a fully Gaussian treatment
in a phase-space description66 and the well-known quantum trajectories formalism8 which describes the stochastic
evolution of the wave function.
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M6. OPTIMAL FEEDBACK COOLING

Online (optimal) estimation9 and automatic control10,67 techniques have become ubiquitous in modern technol-
ogy1,68,69. Due to the required level of control they are also becoming an increasingly important tool in quantum
research and quantum technologies.
Here we design an optimal feedback controller in order to cool the particle’s motion into the quantum ground

state. For linear (quantum) systems driven by Gaussian white noise, an optimal output feedback law can be obtained
by solving the linear quadratic Gaussian regulator (LQG) problem. Its solution consists of the combination of a
Kalman filter and a linear quadratic regulator, which can be designed independently of each other, as stated by
the separation principle70, breaking the design of the LQG down into an estimation step and a control step. The
regulator computes the optimal feedback for a given state by solving an optimization problem in order to minimize
the energy of the system. Since the system state is in general not completely measurable, a Kalman filter is designed
to provide optimal state estimates based on noisy measurements. The basis of the design process of the LQG is the
mathematical description of the experimental setup detailed in the sections above. The experimental characterization
of the involved quantities is described in detail in Section M7.

A. Discretized time evolution

While physical systems are usually considered in continuous time, estimation and control algorithms are necessarily
implemented in a time-discrete manner. The resulting effects of the discretization process can be considered for linear
dynamical systems by deriving a time-discrete formulation of the state-space model, evaluating it at times tk = kTs.
To this end, we integrate (M64) over a sampling time Ts = tk+1 − tk (which we assume is short on all system time
scales), defining zk=z(tk), uk=u(tk), and the fundamental solution Φ(t) = exp(At). We find

z(tk+1) = Φ(Ts)z(tk) +

∫ tk+1

tk

dτ Φ(tk+1 − τ)[bu(τ) +w(τ)]

= Adz(tk) + bdu(tk) + w̄k,

(M71)

where we assumed that u(t) is piecewise constant over the sampling time, i.e., u(t) = uk for t ∈ [tk, tk+1] (zero-
order hold used as a model for the digital-to-analog converter) and we introduced the matrices Ad = exp (ATs) and

bd =
∫ Ts

0
exp (Aτ)bdτ . The discretized noise process w̄k is given by w̄k =

∫ tk+1

tk
dτ Φ(tk+1 − τ)w(τ).

To describe the measurement, we define the time-averaged operator ȳoutλ0,k
:= 1

Ts

∫ tk+1

tk
ds youtλ0

(s) together with a

corresponding expression for ȳλ0,k. Assuming that z(t) likewise is approximately constant over the sampling time Ts

we find the discretized quantum state-space model

zk+1 = Adzk + bduk + w̄k, (M72a)

ȳoutλ0,k = cTzk + ȳλ0,k. (M72b)

In analogy to (M67) the (cross-) correlations for the noise processes w̄k and ȳλ0,k are given by

⟨ȳλ0,kȳλ0,k′⟩ = R̄δkk′ = (1/Ts)δkk′ , (M73a)

Re⟨w̄kȳλ0,k′⟩ = M̄δkk′ = 0, (M73b)

Re⟨w̄kw̄
T
k′⟩ = N̄δkk′ ≈ NTsδkk′ , (M73c)

where the relation N̄ ≈ NTs is true only if the sampling time is much shorter than all system time scales.

B. Discrete-time Kalman Filter

The Kalman filter for the state-space system (M72) is given by71

ẑk+1 = Adẑk + bduk + k̂
(
ζk − cTẑk

)
, (M74)

where ζk is the discretized measurement signal corresponding to ȳoutλ0,k
and the observer gain k̂ of the Kalman filter

results from

k̂ =
(
AdΣ̂

ss
d c+ M̄

)(
cTΣ̂ss

d c+ R̄
)−1

. (M75)
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The (time-discrete) steady state error covariance matrix Σ̂ss
d is computed by solving the discrete algebraic Riccati

equation

Σ̂ss
d = AdΣ̂

ss
d A

T
d + N̄−

(
AdΣ̂

ss
d c+ M̄

)(
cTΣ̂ss

d c+ R̄
)−1 (

AdΣ̂
ss
d c+ M̄

)T
. (M76)

Note that the Kalman filter (M74) with the observer gain (M75) and the discrete algebraic Riccati equation (M76)
is the time-discrete description of the Kalman–Bucy filter (M70) and therefore describes the motional quantum state
of the nanosphere conditioned on the measurement, as shown in Section M5. In the limit of Ts → 0 we recover the
Kalman–Bucy equations (M70) and Σ̂ss

d → Σ̂ss. As written, the Kalman filter is also valid for general systems with
M̄ ̸= 0.

C. Linear Quadratic Gaussian Regulator

The concept of optimal feedback control consists of finding the optimal control inputs such that the system is stably
operated at minimum cost. The optimal control input uk is obtained by minimizing the expected cost

J (uk) = lim
N→∞

〈
1

N

N−1∑

k=0

(
zTkQzk + ru2

k

)
〉

(M77)

with respect to (M72), where ⟨·⟩ refers to the quantum expectation value with respect to the initial state of the system
and environment. Here, the first term with weighting matrix Q = diag

(
Ωz

2 , Ωz

2

)
represents the total energy of the

particle while the second term penalizes the required control effort scaled by r = Ωz/g
2
fb, with the feedback gain gfb

in units of rad s−1. The control law that minimizes the cost function (M77) is given by71

uk = −kTẑk . (M78)

The feedback vector kT is calculated by

kT =
(
r + bT

dΩ
ssbd

)−1
bTΩssAd (M79)

where Ωss is determined by the discrete algebraic Riccati equation

Ωss = Q+AT
dΩ

ssAd −AT
dΩ

ssbd

(
r + bT

dΩ
ssbd

)−1
bT
dΩ

ssAd . (M80)

The solution of the quantum LQG problem is thus formally identical to the one of the classical LQG problem for
a classical state-space model of the form (M72) and cost function of the form (M77) (when interpreting ⟨·⟩ as an

appropriate classical expectation value). In general, the observer gain k̂ and the feedback vector kT are time variant

and they are calculated by solving the discrete Riccati equation for Σ̂k forwards in time and for Ωk backwards in time
for a finite time horizon. If the time goes to infinity, the stationary solution Σ̂k+1 = Σ̂k = Σ̂ss

d and Ωk+1 = Ωk = Ωss

of the corresponding discrete algebraic Riccati equation has to be calculated (see (M80)) and (M76)). Thus, the LQG
becomes time invariant. The transfer function of the time invariant LQG, combining (M78) and the Kalman filter
(M74), is given by

G(z) =
uz(z)

ζz(z)
= −kT

(
zI−

(
Ad − bdk

T − k̂cT
))−1

k̂ (M81)

where uz(z) and ζz(z) are the Z-transform of the control input and measurement signal, uz(z) = Z {(uk)} and
ζz(z) = Z {(ζk)}, respectively, and I is the identity matrix. The time discrete transfer function (M81) is implemented
as a digital filter with a sampling time of Ts = 32ns on the Red Pitaya board which is equipped with a Xilinx Zynq
7010 FPGA. The effects of the low frequency 1/f phase noise and the intrinsic delay of the controller of about 300ns
are negligible in a fairly large frequency band around resonance, and at most of the feedback gains we are operating
at. For this reason we do not include these effects into the model, in favor of a larger dynamic range for the output.
We observe, however, a drift in the oscillation frequency for increasing feedback gains which is caused presumably
by nonlinear effects not captured by the mathematical model. This error leads to the appearance of color in the
innovation sequence and a decreasing cooling performance.The calibration of the measurement signal and feedback
force, as well as the characterization of the noise processes ȳλ0,k and w̄k are presented in the following section.
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Figure M7. LQG performance. a, Comparison of the analytic solution of the occupation for optimal (LQG) and non-
optimal (velocity) control and estimation methods. Despite the use of an optimal state estimator the closed-loop solution of
the velocity feedback (red) is diverging for high feedback gains, contrary to the LQG (blue). This shows the importance of
using the complete state vector in the feedback in order to minimize the energy of the system. b - c, Power spectral densities of
the measurement (gray), Kalman estimation (blue), innovation (red) and the analytic solution of the mathematical description
(black line) at gfb/2π = 16 kHz and gfb/2π = 180 kHz. The black lines in the innovation plot indicate the white noise model
(solid) and the 95% confidence region of the expected χ2 distribution (dashed)18.

D. Colored Noise Model

Although the effects of low frequency noise are negligible compared to the white noise level, we have seen that
this model mismatch is amplified by the controller, and would eventually be limiting the closed-loop performance at
feedback gains larger than 200kHz. For this reason, we also extend the state-space model (M64) by an appropriate
colored noise model. The Kalman filter is designed on the basis of an extended state-space model given by:

˙̃z(t) = Ãz̃(t) + b̃u(t) + G̃w̃(t) , x̃(0) = x̃0 (M82a)

youtλ0
(t) = c̃Tz̃(t) + yλ0

(t) (M82b)

with the extended state vector z̃(t) =
[
z(t)T ξ(t)T

]T
, and the process noise input vector w̃(t) =

[
w(t) µ(t)

]T
, where

µ(t) is white Gaussian noise, which drives the chosen noise model. The extended system matrix Ã, the extended

input vector of the control input b̃, the extended input matrix of the process noise G̃ and the extended output vector
c̃T are defined as

Ã =

[
A 0
0 An

]
, b̃ =

[
b
0

]
, G̃ =

[
g 0
0 gn

]
, c̃T =

[
cT cTn

]
,

with the dynamic matrix of the noise model An, the input vector of the noise model gn and the output vector of the
noise model cTn . As proposed in18, Brownian noise is a good approximation for the non-white amplitude and phase
noise of a laser, which is modeled by the state-space system (M82) with An = 0 and gn = cTn = 1. This model (green
line in Figure M8a) provides a good approximation of the low frequency noise that we observe. Nevertheless, it has
a limited hardware feasibility as the magnitude of the noise becomes large in the lower frequency range and the slow
dynamics lead to numerical issues in the fixed-point implementation, resulting in drift and overflows, and can even
destabilize the closed-loop system. For a practical hardware implementation we model the noise as a low-pass filter
driven by white noise µ(t). Thereby, An, gn and cTn are obtained from the state-space representation of the low-pass
filter Glp (s) = 1/ (1 + s/ωc), with the cutoff frequency ωc = 3.5 kHz. In Figure M8b), we show the power spectral
densities of the measurement (gray), the Kalman estimation (blue), the innovation (orange) in good agreement with
the analytic solution of the mathematical description (black line) of the LQG based on the proposed low-pass noise
model for gfb/2π = 40 kHz. Nevertheless, for high gain feedback gfb/2π = 150 kHz (Figure M8c)) the performance
decreases significantly due to the reduced dynamic range of the hardware implementation to fit the more complex
filter on the FPGA. The use of a more powerful hardware would overcome such implementation issues of the Kalman
filter using colored noise models and has the potential to further increase the performance.
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Figure M8. Colored noise model. a Comparison of the power spectral densities of the Brownian noise model (green) and
the low-pass noise model (blue) the power spectral densities of the innovation (gray). b - c, Power spectral densities of the
measurement (gray), Kalman estimation (blue), innovation (red) and the analytic solution of the mathematical description
(black line) at gfb/2π = 40 kHz and gfb/2π = 150 kHz. The extension with an appropriate noise model brings along more
accurate estimates of the state. The black lines in the innovation plot indicate the colored noise model (solid) and the 95%
confidence region of the expected χ2 distribution (dashed)18.

E. FPGA implementation

The designed LQG is implemented on a Red Pitaya board equipped with a Xilinx Zynq 7010 FPGA. The base design
of the Vivado Design Suite project of the Red Pitaya is based on the tutorial provided by Anton Potočnik72, modified
to suit our purposes. The time-invariant transfer function of the LQG (M81) is implemented in Matlab/Simulink
as digital filter with the Xilinx System Generator for DSP. Thereby, hardware-in-the-loop simulations can be performed
in Matlab/Simulink, capturing the exact behavior of the real implementation on the FPGA of the Red Pitaya. This
provides the possibility to quickly identify and fix issues with the fixed-point arithmetic and quantization. The Xilinx
System Generator for DSP allows automatic code generation of the designed filter, considering the ressource limitations
and timing constraints of the FPGA. The obtained VHDL code (IP Core) is inserted in the base design of the FPGA
in the Vivado Design Suite and the bitstream file of the FPGA is generated. Parameters can be changed online via
communication with the AXI-bus. The low frequency output noise of the Red Pitaya has been improved by removing
the 2 resistors and disconnecting the noisy output offset73.

M7. IDENTIFICATION OF THE MODEL PARAMETERS

The identification of the system parameters is crucial for a properly tuned model based Kalman filter and linear
quadratic regulator (LQR) design. Direct measurement of most of the system parameters depends on a proper
calibration of the measurements.

A. Calibration of the measurement transduction coefficient

In this section, we measure the calibration factor (CmV [m/V]) for our homodyne detection. One possibility is
thermometry in an environment in which the nanoparticle thermalizes to a room-temperature gas74. Given the high
resolution of our position measurement, the limited dynamic range of our detector and data acquisition board this
method cannot be implemented directly, but would require multiple steps of amplification. In addition, the accuracy
of this approach was verified only up to a factor of 222. To reconstruct the relation between the displacement of
the particle in meters and the homodyne time traces in volts we take advantage of the simultaneous out-of-loop
measurement of the particle’s energy via Raman thermometry (see Section M8) at different feedback gains. To
minimize the effects of noise squashing38 due to imprecision noise driving the motion of the particle via the feedback,
we restrict calibration to low values of the feedback gain. We perform the calibration in an iterative way, where
we alternate evaluation of the calibration factor and update of the controller setting. The variance of the particles
motion can be estimated from a measurement of energy in units of motional quanta ⟨n⟩ by

〈
z2
〉
= z2zpf(2 ⟨n⟩+1). We
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compare this value with the variance of the signal V (t) obtained from the homodyne noisy position measurement:

〈
V 2
〉
= C−2

mV

(〈
z2
〉
+
〈
ν2
〉)

=

∫ +∞

0

Sζ(Ω)
dΩ

2π
. (M83)

Where ν(t) is the measurement noise and C
mV

the calibration factor converting the measured voltage into the corre-
sponding displacement in meters. We fit a linear function, where the offset indicates the measurement noise and the

Figure M9. Position calibration. a Measurement of the displacement power spectral densities at different feedback gains and
labelled by the occupation measured independently by Raman thermometry. b Integrated voltage variance from the homodyne
measurement plotted as a function of position variance extimated from the heterodyne measurement. Red crosses and blue
dots represent the position variance estimated by the Stokes and anti-Stokes sidebands respectively. A linear fit provides the
calibration factor for the homodyne measurement.

slope determines the calibration factor:

CmV = (8.0± 0.3)× 10−9 m/V (M84)

We also verify the consistency of the measured calibration factor by considering all transduction coefficients composing
the measurement. The phase-shift induced by the particle’s displacement on to the fraction of collected light defines
the measurement strength of our detection (what in cavity-optomechanics you would call 2G/κ75):

χ =
∂φ

∂z
=

√
ηd,c
η∗d,c

√(
A2 +

2

5

)
k [rad/m] (M85)

In a homodyne detection the signal light beam is interfered with a strong local oscillator, and phase shifts are
transduced to a power variation by GHOM = 2

√
PSPLO [W/rad], where PS = Pscattη

∗/η∗d,q is the signal light just
before the detector, PLO is the local oscillator power, η∗d the photon detection efficiency and η∗d,q the detector quantum
efficiency as defined in Section M3. Optical power is converted into an electron current at the photodiodes via the
detector responsivity is Rdet = −eηd,q/ℏω0 [A/W], and finally the transimpedance gain gt = 250× 103 [V/A] converts
this current to a voltage. Impedance matching to the detector’s 50Ω output attenuates the signal by 3 dB. We can
now convert measured voltage to meters by:

CmV =
ℏω0

(−e)ηd,qgt
√
PSPLOχ

= 7.8× 10−9 m/V (M86)

which is in good agreement with the measured value.

B. Evaluation of the measurement noise

From the calibrated PSD, we can measure the measurement noise level at the relevant frequencies. While the
detector bandwidth is about 75 MHz, the Red Pitaya has a measurement bandwidth of 31.25 MHz. We include an
anti-aliasing analog low pass filter with cut off at 11 MHz, below the sampling Nyquist frequency. This allows to
minimize the aliasing of high frequency noise at the relevant frequencies. We measure the imprecision noise Simp

z
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dominated by photon shot noise of the local oscillator by covering the signal beam. This results in a variance of
measurement noise (assuming a white noise model) of

σ2
z = Simp

z

fs
2

= (5.4± 0.2)× 10−21 m2 (M87)

where fs = 1/Ts = 31.25 MHz is Red-Pitaya sampling frequency. The measurement noise can likewise be estimated by
evaluating the signal variance from independently characterized experimental parameters. This includes contributions
of photon shot noise and detector dark noise:

〈
V 2
〉
=



(
gt
2
e

√
PLOηq
ℏω0

)2

+
(gt
2
NEC

)2

 fs (M88)

where the factor 2 below gt arises from the coupling of the detector to 50Ω load and NEC is the noise equivalent
current. The noise equivalent position variance is therefore:

σ2
z = C2

mV

〈
V 2
〉
= 5.3× 10−21 m2 (M89)

in good agreement with the measured value.

C. Calibration of the applied force

With the position calibration at hand, we can further map the applied voltage to the control electrode on the
force acting on the charged nanoball. We drive the particle by applying a sinusoidal signal of known amplitude and
frequency. In the case of strong off-resonant drive force Fd(t), with spectral density Sd

F , if at a particular drive
frequency Ωd, having Sd

F (Ωd) ≫ Stot
F (Ωd), the driven motion is related to the drive by:

Sz(Ωd) = Sv
F (Ωd)|m(Ωd)|2 + Simp

z (M90)

which in the simple case of Fd(t) = Fd0 sin (Ωdt), and Ωd/γ ≫ 1 results in:

〈
z2d
〉
=

1

2π

∫ Ωd+ϵ

Ωd−ϵ

(
Sz(Ω)− Simp

z

)
dΩ =

〈
F 2
d

〉

(m(Ω2
z − Ω2

d))
2
=

F 2
d0/2

(m(Ω2
z − Ω2

d))
2
. (M91)

The variance of the displacement is again obtained by integrating over the symmetrized spectral density around the
driving frequency subtracting the background imprecision noise. As the driving force is proportional to the applied
voltage Fd(t) = CNVV (t), we can use the relation (M91) to calibrate this to the applied force in newton and identify
the transduction coefficient CNV. We perform the measurement at different values of drive frequency and amplitude,
and plot the standard deviation of the calibrated force

√
⟨F 2

v ⟩ = m
√
⟨z2⟩ (Ω2

z − Ω2
d) versus the standard deviation

of the applied signal. The slope gives a factor of CNV = (1.98 ± 0.06) × 10−15 N/V. The measurements at the two
different frequencies result in perfectly overlapping values.

Figure M10. Force calibration. To map the applied voltage [V] to a force [N], we drive the particle with a series of sinusoidal
signals of different amplitude and frequency and measure the particles response in the calibrated position PSD.
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D. Measurement of the thermal and backaction decoherence rates

We define the decoherence rates originating from thermal force noise and measurement backaction as the average
rate of phonons delivered to the particle. To determine the decoherence rate induced by measurement backaction and
interactions with the thermal environment, we perform a set of re-heating measurements of the particle’s energy. We
do so by switching off the feedback, observing the relaxation trace. Ensemble averaging over many cycles allows to
extract the average heating rates76,77 (Figure M11a). To distinguish contributions from photon recoil (backaction)
and gas collisions (thermal force), this is done at various pressures (Figure M11b). When switching the feedback off,
the energy E, or level of excitation of the oscillator n = E/ℏΩz increases on average as:

n(t) = n0 + nth(1− e−γtht) + nba(1− e−γbat)
t≪ 1

γth,ba≈ n0 + nthγtht+ nbaγbat = n0 + (Γth + Γba)t, (M92)

where n0 is the initial occupation and nth and nba are the occupations associated to the thermal and optical baths
respectively, γth is the gas damping and γba the radiation damping that results from relativistic effects57. The
decoherence rates are now written as:

Γth = γthnth and Γba = γbanba, (M93)

The thermal heating rate is derived by considering a thermal bath of energy Eth = kBT and temperature of 292K
and a damping rate given by78:

γth =
6πηvr

m

(
Kn

0.619 +Kn

)(
1 +

0.310Kn

Kn2 + 1.152Kn+ 0.785

)
, (M94)

where ηv is the dilute gas shear viscosity, Kn = λgas(P )/L the Knudsen number, λgas(P ) the pressure dependent
molecule mean free path, L = V/A = 4r/3 the particle’s characteristic length, V its volume and A its cross section.
In the low pressure limit, Kn ≫ 1, eq. (M94) can be approximated by:

γth =
64

3

r2P

mv̄gas
, (M95)

where v̄gas =
√
8RT/(πmgas) is the mean gas velocity, r and m the particle radius and mass respectively, P the

pressure (expressed in Pascal, SI), R = kBNA = 8, 3144 J/(mol K) the universal gas constant, and mgas the molar
mass of the gas. Up to 1mbar, this approximation exhibits a deviation of less than 10−2 from the real value for
the particles we are considering. Following the treatment by Seberson and Robicheaux31, we can also derive the the
contribution of photon recoil to the heating reate:

Γba,z =

(
A2 +

2

5

)
ω0Pscatt

2Ωzmc2
(M96)

At a pressure of 1.6× 10−8 mbar we directly measure a minimal total heating rate of:

Γtot = Γth + Γba = 2π · (19.7± 1.5) kHz (M97)

With a linear fit to the pressure dependent data (Figure M11) we can extrapolate the contributions of thermal
noise and measurement backaction at all pressures, finding them in excellent agreement with the values estimated
using equations M95 and M96 in our experimental settings (Figure M11b). At the minimal operating pressure
9.2× 10−9 mbar, we find the process noise to be (for the Kalman filter)

σ2
F =

〈
F 2
tot

〉
= Stot

F

fs
2

= 4ℏΩzmΓtot
fs
2

= (1.5± 0.1)× 10−33 N2 (M98)

M8. RAMAN SCATTERING THERMOMETRY

The optomechanical interaction exhibits both energy and momentum exchange between the oscillating particle and
the elecromagnetic filed. While elastic scattering (Rayleigh) leave the energy of the scattered photons unaltered, the
side-bands of nth order in the absorption and fluorescence spectra due to inelastic scattering (Raman) are interpreted
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Figure M11. Heating rate. The backaction and thermal contribution to the force noise are directly measured by performing
re-heating measurements. We restrict the measurement to short (150ms) re-heating periods. Longer ring up measurements
may lead to the loss of the particle when mainly coupled to the high temperature photon bath. a At each pressure we release
the feedback and observe the heating dynamics of the particle 1000 times. The ensemble average of the variance of these traces
represents the average energy increase rate. b Pressure dependence of the heating rate. At pressures below 1× 10−8 mbar the
contribution to the total force noise is dominated by the photon recoil, or measurement backaction. Horizontal error bars are
given by the 50% accuracy specified by the pressure gauge producer.

as transitions between the quantized energy levels of the harmonic oscillator79. The elastic and inelastic scattering
rates can be calculated using Fermi’s golden rule:

Γn→n+∆n =
2π

ℏ
Mn,n+∆nρ(n+∆n) (M99)

where ρ(n+∆n) the population density of occupation n+∆n state of the particle motion and Mn,n+∆n the transition
matrix element given by the cross term in the dipole-field interaction80,81:

Mn,n+∆n = |⟨n+∆n| ĤI |n⟩|2 ∝ |⟨n+∆n| (χzzpf(b+ b†))∆n |n⟩|2 = (χzzpf)
2∆n . (M100)

Here ĤI ∝ âe−iχẑ + H.c. with ẑ = zzpf(b̂ + b̂†), and χ the mean momentum transferred to the particle by a photon
scattered into the detection mode79. As the transition matrix element is symmetric, the asymmetry of the scattering
rates into the Stokes and anti-Stokes sideband arises from population differences between the vibrational states.
Moreover, considering a thermal steady state, the ratio between first order (∆n = 1) transition rates is given by the
detailed balance ΓSρ(n) = ΓaSρ(n+ 1)34:

ΓaS

ΓS
=

Γn+1→n

Γn→n+1
=

ρ(n)

ρ(n+ 1)
= e

ℏΩz
kBT = R . (M101)

From this ratio one can extract the average occupation for a thermal state defined as:

⟨n⟩ = 1

e
ℏΩz
kBT − 1

=
R

R− 1
(M102)

In absence of a cavity, the motion of the mechanical oscillator interacts with a white continuum vacuum state, and
the mechanical power spectral density is linearly transduced to the output optical state. The measured heterodyne
optical power spectral density describes the ability of the optical field to absorb (yield) energy from (to) the mechanical
oscillator82. The first order power spectral density for the quantum harmonic oscillator is34,83:

Szz(Ω) = z2zpfγ

[
n+ 1

(ω +Ωz)2 + (γ/2)2
+

n

(ω − Ωz)2 + (γ/2)2

]
. (M103)

The scattering rates of the two competing processes (ΓS, ΓaS) correspond to the powers detected in the sidebands
of the heterodyne measurement (Figure M13), allowing from such a measurement, direct evaluation of the motional
energy of the thermal harmonic oscillator.

A. Heterodyne noise analysis

By identification of all noise sources in our heterodyne measurement, we are able to isolate the signal component
originating from the optomechanical interaction. From that we can evaluate the asymmetry of the Stokes and anti-
Stokes peaks. The heterodyne local oscillator is generated by a sequence of two acousto-optical modulators (AOMs)
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driven by two locked signal generators at 205MHz and 195.8 (or 214.2) MHz, aligned to order -1 and +1 respectively,
in order to produce a local oscillator shifted by −9.2 (or +9.2) MHz. The noise contributions in the heterodyne spectra
are determined by: the spectrum analyzer dark noise (DNsa), the detector dark noise (DNdet), the optical shot noise
(SN) (Figure M12 a), the heterodyne signal generator phase noise (PNsg) and finally the particle’s motional signal
(SIG). In addition one has to also consider the detector transfer function fdet(Ω), arising from the 75 MHz cut off
frequency. The total noise is

Sraw = DNsa +DNdet + fdet(Ω)(SN + PNsg + SIG) (M104)

Switching on the noise contributions one by one, we are able to directly measure their progressive sum, and evaluate
the contribution of each component (Figure M12c). As the optical shot noise is white by definition, we can evaluate
the detector transfer function (linear in a band of 1 MHz around the heterodyne frequency) by measuring the de-
tector’s response to this white noise. Next we want to characterize the PNsg, which only appears in the heterodyne
measurement together with the motioal sidebands. We thus evaluate this noise source (PNsg) directly, by mixing the
signals driving the AOMs and rescaling the carrier peak to that measured in the optical heterodyne measurement (see
Figure M12 b). This contribution is then transformed by fdet(Ω) and added to the total noise (green component in
Figure M12 c, d ). The sum of separately evaluated noise contributions fits very well to the raw measured data. We

Figure M12. Noise components in the heterodyne spectra. a Linear dependence of the shot-noise power as a function of
optical power in the heterodyne local oscillator. The red point shows our operating condition, almost a factor 10 above dark
noise. b Phase noise of the heterodyne signal generators, directly measured after a mixer, and renormalized to the optical carrier
amplitude. The lighter background shows comparison with the raw optical signal. Even though at the relevant frequencies
this is almost a factor 100 smaller than the measured signal, its contribution is fundamental (green area in c and d) given low
scattering rates in the ground state. c and d Detail of all of the noises contributing to the heterodyne spectrum.

can now isolate the signal of interest. We note that the signal generator phase noise is not the only source of phase
noise into our heterodyne. After subtraction of all independently characterized noise contributions, and normalization
to shot noise, we notice a residual noise contribution falling off as 1/f . This noise is compatible to what we expected
from the laser phase noise in our unbalanced (∼ 1m) interferometer. We fit to the clean spectra the sum of a double
lorentian (M103), and a symmetric 1/f noise component, with a fixed offset of 1. For each fit we evaluate the quality
of the model by checking the Gaussianity of the residuals (Fig M13 a, b). In addition we verify quantum consistency
by noting that, while the ratio (asymmetry) of blue to red side-band changes as cooling improves, their difference,
remains constant (Figure M13c). In order to acquire higher statistical significance, we perform repeated measurements
for a subset of points, and extract the asymmetry and occupation from the mean value of red and blue side-band
powers (Figure 1b in the main text)21. In order to exclude any other source of uncorrelated noise that may be altering
the observed asymmetry we perform our measurements at both Ωhet = ±9.2MHz. Except from the swapping of the
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Figure M13. Side-band asymmetry fit. a and b, Heterodyne spectra after noise subtraction, application of the inverse
detector transfer function f−1

det(ω) (whitening). The fit (black line) is a 4 parameter fit of a double lorentian plus a 1/f
symmetric noise (shown also separately as purple line and gray area). The Gaussian distribution of the residuals shows good
agreement of the measured spectra to the noise model. c, Power of the red and blue sideband normalized by their average
difference, as a function of the LQG feedback gain for both positive and negative heterodyne frequencies (2 points per colour
per gain). The constant difference in the power of the 2 side-bands represents a sanity check of the noise analysis.

Stokes and anti-Stokes sidebands in the spectra, we observe no difference in the ratio or in the absolute difference of
the scattering rates, confirming correct identification of all of the significant noise sources.
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