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Hardware Implementation of an
Electrostatic MEMS-Actuator Linearization

F. Mair, M. Egretzberger and A. Kugi

Complex Dynamical Systems Group, Automation and Control Institute (ACIN), Vienna
University of Technology, Gußhausstr. 27–29, 1040 Vienna, Austria

ABSTRACT

In this paper, an electrostatic actuator linearization will be introduced, which is based on an existing hardware-
efficient iterative square root algorithm. The algorithm is solely based on add and shift operations while just
needing n/2 iterations for an n bit wide input signal. As a practical example, the nonlinear input transformation
will be utilized for the design of the primary mode controller of a capacitive MEMS gyroscope and an implemen-
tation of the algorithm in the Verilog hardware description language will be instantiated. Finally, measurement
results will validate the feasibility of the presented control concept and its hardware implementation.

1. INTRODUCTION

The electrostatic actuation principle is the most common way1 to generate actuation forces in micro-electro-
mechanical systems (MEMS). The fact that the required electrodes can be manufactured within well established
production processes led to its successful application in many mass products like accelerometers, gyroscopes,
optical mirrors and many more. A negative aspect, though, that is inherent to all voltage controlled electrostatic
actuators is that the generated force is proportional to the square of the applied voltage. However, complex
arithmetic calculations are not feasible in MEMS applications as the demands on high sampling rates and low
latency, combined with the pricing pressure of high volume production require an efficient hardware implementa-
tion of the control loops. Therefore, in most state-of-the-art applications linear control concepts are utilized and
the intrinsic limitations in either the range of operation or the lack of performance are accepted. For advanced
nonlinear control concepts2 of capacitive gyroscopes, which result in a noticeable increase of the closed-loop
performance, a nonlinear input transformation is indispensable.
In this contribution, an electrostatic actuator linearization will be introduced, which is based on an existing
efficient iterative square root algorithm for unsigned integer numbers.3 The advantage of the presented algo-
rithm is that it is solely based on add and shift operations. In comparison to other well established calculation
procedures, this iterative algorithm leads to a significant reduction of the required hardware resources, especially
as no multipliers are utilized, while just needing n/2 iterations for an n bit wide input signal. Furthermore, an
implementation of the algorithm in the Verilog hardware description language will be given and the correspond-
ing hardware consumption will be instantiated for a Xilinx Virtex 5 Field Programmable Gate Array (FPGA).
As a practical example, the nonlinear input transformation will be utilized for the design of the primary mode
controller of a capacitive MEMS gyroscope and measurement results will validate the feasibility of the presented
control concept and its hardware implementation.
The paper is organized as follows. Sec. 2 discusses the working principle of a capacitive gyroscope. In Sec.
3 the derivation of the equations of motion are outlined and the nonlinear input transformation is described.
The subsequent Sec. 4 gives a short survey on common approaches to calculate the square root operator and
presents the implementation of an existing efficient iterative algorithm. The corresponding measurement results
are illustrated in Sec. 5 and finally, the contribution is concluded with a short summary.

2. A CAPACITIVE GYROSCOPE

The MEMS element considered as a practical example for the nonlinear input transformation within this article
is a capacitive gyroscope,4 illustrated in Fig. 1, which can measure an externally applied angular rate Ωy about
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Figure 1. Capacitive gyroscope assembly.

the sensitive y0-axis by exploiting of the Coriolis effect. The capacitive gyroscope is an etched silicon device
that uses voltage controlled capacitive actuators5 and capacitive sensors for the excitation and read-out of the
in-plane drive and the out-of-plane sense oscillators. As depicted in Fig. 1, the gyroscope comprises a fixed
frame, which is rigidly attached to the package of the sensor, and two rigid movable frames, which are connected
with the fixed frame via elastic beam elements. Furthermore, four rigid paddles are flexibly connected to the
movable frames via elastic torsion beams. Both the comb and the parallel plate actuators and sensors consist of
two, in the undeformed configuration parallel, electrodes. One of the electrodes is rigidly mounted on the package
of the sensor and the other is rigidly attached to one of the movable frames or paddles resulting in parallel plate
capacitors with a capacitance depending on the deflection of the movable structure and therefore allowing for the
utilization as actuators and sensors. Applying a harmonic voltage to the drive electrodes results in a harmonic,
antisymmetric oscillation of the movable frames and the paddles in x0-direction (so-called primary mode), as
depicted in Fig. 2(a). Due to the high stiffness of silicon, the low actuation forces and the weak damping, the
primary oscillator can only achieve reasonable amplitudes if it is excited near its resonance frequency. On the
occurrence of an externally applied angular rate Ωy, the Coriolis force couples to the velocity of the primary mode
oscillation, resulting in a harmonic out-of-plane oscillation of the paddles and the movable frames in z0-direction
(so-called secondary mode), as illustrated in Fig. 2(b). The harmonic change in capacitance of the electrostatic
sensors, i.e. the comb electrodes for the primary mode and the parallel plate electrodes for the secondary mode,
is converted to a proportional voltage output signal by appropriately designed charge and differential amplifier
circuits.

x0

y0
z0

(a) Primary mode

x0

y0z0

Ωy

(b) Secondary mode

Figure 2. Capacitive gyroscope (a) primary mode and (b) secondary mode.
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3. MATHEMATICAL MODEL

As outlined in the previous section, the capacitive gyroscope comprises several rigid and elastic bodies as well
as various electrostatic actuators and sensors. Therefore, the derivation of a mathematical model, suitable for a
systematic controller design, is rather laborious. For this reason, specialized tools6 have been developed, which
automatically derive the analytical equations of motion from CAD input data by dividing the device under
consideration into so-called functional components. For each functional component the energy or coenergy is
calculated and Lagrange’s formalism is applied to calculate the corresponding system of differential equations in
symbolic form. The thus obtained equations of motion of the device usually cover a dynamic range far beyond
the interest of the controller design. Hence, it is reasonable to perform a modal transformation of the system,
resulting in a semi-symbolic mathematical model. In a next step, a modal order reduction can be carried out to
provide a mathematical model with reduced complexity including solely the relevant dynamics for the controller
design.2,6 Typically, the first primary and secondary differential modes as well as the first primary and secondary
common modes are considered. However, to demonstrate the idea of the nonlinear input transformation it is
feasible to keep the equations as simple as possible and therefore we restrict ourselves to the relevant equation
of motion of the primary oscillator. Assuming linear damping, linear stiffness and neglecting the effects of the
coupling of the secondary oscillator, the equation of motion of the primary oscillator is given by the simple
second order differential equation

m1q̈1 + d1q̇1 + k1q1 = τ1(u1) (1a)

y1 = c1q1 (1b)

with the modal degree-of-freedom q1, the modal mass m1, the modal damping coefficient d1, the modal stiffness
coefficient k1, the system output y1, the output coefficient c1 and the nonlinear input force

τ1(u1) = b1u
2
1 (2)

with the input coefficient b1. Both, the input coefficient b1 and the output coefficient c1 are defined by the
geometric design of the drive actuators and sensors. Performing a nonlinear input transformation for (1a) of the
form

u1 =
√

ũ1 with 0 ≤ ũ1 (3)

yields a simple linear second order differential equation with the new input ũ1. As described in the previous Sec.
2, the functional principle of the capacitive gyroscope requires that the excitation of the primary mode is close to
the resonance frequency of the primary oscillator. However, for the controller design the slow dynamics (envelope)
of the primary mode signal is relevant and not the fast harmonic carrier signal itself, why it is reasonable to
introduce a so-called envelope model.7 Let us assume a harmonic excitation of the primary oscillator by means
of an input signal of the form

ũ1 = | Ũ1 | + Ũ1 cos (ωt) (4)

with the amplitude Ũ1 and the excitation frequency ω. If the motion of the primary mode is approximated in
the form

q1(t) = Q1,S sin(ωt) + Q1,C cos(ωt) (5)

with the Fourier coefficients Q1,S and Q1,C , then the simplified envelope model of the primary mode is given by8

[
Q̇1,S

Q̇1,C

]
=

[
−α1 ω − ω1

ω1 − ω −α1

] [
Q1,S

Q1,C

]
−
[

β1

0

]
Ũ1 (6a)

[
Y1,S

Y1,C

]
=

[
γ1 0
0 γ1

] [
Q1,S

Q1,C

]
(6b)

with the Fourier coefficients of the output signal Y1,S and Y1,C . The damping coefficient α1, the resonance
frequency ω1 and the input and output coefficients β1 and γ1 read as

α1 =
1

2

d1
m1

, ω1 =
1

2

1

m1

√
4k1m1 − d21 , β1 =

1

2

b1
m1ω1

and γ1 = c1. (7)
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Applying an output transformation8

Y1,A =
√

Y2
1,S +Y2

1,C , Y1,φ = arctan

(
Y1,S

Y1,C

)
(8)

with the amplitude Y1,A and the phase Y1,φ to the envelope model (6) and calculating the steady state

Y1,A =
β1γ1Ũ1√

α2
1 + (ω − ω1)2

, Y1,φ = arctan

(
α1

ω1 − ω

)
(9)

allows for a straight forward specification of the necessary control tasks. As can be inferred from the steady state
(9), the amplitude Y1,A of the primary mode gets maximal for a fixed input amplitude Ũ1, if the oscillator is
excited at its resonance frequency, i.e. ω = ω1, while maintaining a phase Y1,φ = −π/2. Therefore, for a proper
operation of the capacitive gyroscope the amplitude, frequency and phase of the primary oscillator have to be
controlled simultaneously.
At this point it is worth mentioning that it is possible to achieve a linear envelope behavior of the primary
oscillator8 without applying the proposed nonlinear input transformation (3), resulting in the shortcoming that
the primary oscillator is additionally excited by a signal part with double the excitation frequency. Furthermore,
as the constant or the harmonic component of the excitation signal has to be set to a constant value, the remaining
control input is constrained by this value. Moreover, for advanced nonlinear control concepts2 of the secondary
oscillator, which result in a noticeable increase of the closed-loop performance, a nonlinear input transformation
in the form of a square root operator is indispensable.

4. ARITHMETIC ALGORITHM

Depending on the demands on throughput, latency and hardware-efficiency as well as on the available resources
and the interaction with other arithmetic operations, different approaches for the realization of the square root
operator have been proposed in the literature. A complete survey on existing algorithms is far beyond the
scope of this contribution, nonetheless, care has been taken to include the most relevant ones, at least for the
application under consideration. In the following, it is assumed that the radicand is a positive real number and
that it is given in a conventional number representation, e.g. floating or fixed point, and conventional number
system, e.g. normalized binary floating point or radix 2. Conventional floating point numbers are considered in
the following short survey, because the time-consuming part of the root calculation of a floating point number
has to be performed on the mantissa, for which the same algorithms can be applied as for fixed point numbers.
However, the necessary adjustment of the exponent and the inevitable postnormalization steps between the
mantissa and the exponent add considerable additional complexity to the circuitry.
All algorithms familiar to the authors, calculate the square root of a number in an iterative manner. Therefore,
if a single clock cycle calculation is mandatory, a function approximation9 might be the only solution, resulting
in a very high hardware effort as, depending on the order of the approximation, many parallel single-cycle
multipliers are needed. Furthermore, the accuracy of the result is, due to obvious reasons, limited. The iterative
algorithms can be separated into two categories,10 i.e. multiplicative algorithms and subtractive algorithms.
The multiplicative algorithms derive the square root by an iterative refinement of an initial guess and divide the
calculation into a series of multiplications, additions and shift operations. The most common representatives are
the Newton Raphson method11 and the Goldschmidt’s algorithm.11 Both possess a quadratic convergence and, an
adequate seed generator presumed, approximate the square root in a few iteration cycles very well. Though, due
to the multiplication operation at each iteration step, a low or single cycle multiplier is inevitable for an effective
implementation and hence, the hardware effort is high. The subtractive algorithms on the other hand are solely
based on add, shift and relational operations, which can be implemented in hardware very efficiently. Several
well known algorithms exist that need n/2 bits for an n bit wide radicand, however, they differ substantially in
their hardware consumption. Among these algorithms are the iterative restoring and non-restoring square root
extraction,12 the algorithm based on the bisection method13,14 as well as the very hardware effective non-restoring
square root algorithm,3 which can be implemented solely based on add and shift operations. An improvement
in regards to the needed number of iterations can be achieved by the SRT12 algorithm, which, depending on
the applied input data, calculates the result in equal or less than n/2 steps. As data-dependent delays are not
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feasible in practical implementations, the data-independent high radix SRT algorithms12 are of greater practical
importance. For the current application under consideration, the choice of an applicable algorithm is based on
several considerations. First, the excitation voltage (3), which is generated by the digital signal processing unit
of the capacitive gyroscope, has to be converted from the digital to the analog domain by a Digital to Analog
Converter (DAC) comprising a fixed bit width and a defined output voltage range. Therefore, we can restrict
ourselves to algorithms suitable for fixed point numbers only. Second, the sample rate of the DAC is usually
an integer multiple smaller than the internal clock signal, allowing for the execution of intermediate calculation
steps. This brings along that the number of required iterations is not the primary concern. The last point that
has to be considered is the additional latency which is introduced by the algorithm. To resolve this issue, it is
feasible to examine the input signal (4) in more detail. The output signal of the amplitude controller Ũ1 is a
slow signal, which gets modulated with the fast harmonic carrier signal cos (ωt). The phase signal φ = ωt is
generated by the internal frequency and phase controller and can be shifted by adding an offset φa. Therefore,
the latency of the algorithm can be easily compensated in the form

ũ1,a = | Ũ1 | + Ũ1 cos (ωt+ φa) with φa =
2πmω

ωs

3

2
, (10)

with the new excitation signal ũ1,a, the adjustment angle φa, the excitation frequency ω, the internal clock
sampling frequency ωs and the required number of calculation steps m. The factor 3/2 centers the resulting
excitation voltage u1,a in regard to the ideal excitation voltage u1. As all concerns regarding the calculation
efficiency can be easily resolved, the most hardware effective algorithm3 was chosen. An implementation of the
iterative square root algorithm in the Verilog hardware description language (HDL) is given in Listing 1. The
resulting hardware consumption of the algorithm on a Xilinx Virtex 5 FPGA for a 12 bit wide root, i.e. 24 bit
wide radicand, is depicted in Tab. 1. It has to be mentioned at this point that the hardware consumption may

radicand (bit) 24

look-up-tables 67
D-flip-flops 30
carry-chains 2

Table 1. Hardware consumption of the iterative square root algorithm on a Xilinx Virtex 5 FPGA.

depend on the utilized synthesis and place and route tools as well as on the selected synthesis and optimization
preferences. To ease the comparison for the interested reader, the standard Xilinx toolchain15 with the standard
preferences have been used for the presented case. As a practical example, the excitation signals ũ1 and ũ1,a,
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0
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ũ1

ũ1,a
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ũ
1

(a) Input signals ũ1 and ũ1,a
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u1
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t̄

u
1

(b) Excitation voltages u1 and u1,a

Figure 3. (a) Input signals ũ1 and ũ1,a and resulting (b) excitation voltages u1 and u1,a.

with Ũ1 = 1/2 and the resulting excitation voltages u1 =
√
ũ1 and u1,a =

√
ũ1,a are illustrated in Fig. 3(a) and

Fig. 3(b), respectively. The time t̄ is normalized in the form t̄ = ωt/(4π).
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5. MEASUREMENT RESULTS

To verify the nonlinear input transformation (3) introduced in Sec. 3, an amplitude, phase and frequency
controller for the primary oscillator as well as the square root algorithm of Sec. 4 have been implemented on a
development board, consisting of a Xilinx Virtex 5 FPGA and additional analog circuitry for the actuation and
read out of a prototype gyroscope. The measurement results of the static behavior of the closed-loop amplitude
controller at different reference points are illustrated in Fig. 5. The deflection signal and the control input are
normalized in the form Q̄1,S = Q1,S/Q1,S,d and Ū1 = Ũ1/Ũ1,d with the normal point of operation Q1,S,d and the

associated control input Ũ1,d, respectively. As depicted in Fig. 5, the applied normalized control input signal Ū1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Ū1

Q̄
1
,S

Figure 4. Static behavior of the closed-loop amplitude controller at different normalized reference points Q̄1,S and the

applied normalized control input Ũ1.

and the normalized primary mode deflection Q̄1,S show a perfect linear relation. Furthermore, to confirm the
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(a) Normalized primary mode deflection Q̄1,S
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(b) Normalized control input Ū1

Figure 5. (a) Dynamic behavior of the closed-loop amplitude controller with respect to a stepwise defined reference signal
Q̄1,r and (b) the applied normalized control input Ũ1.

linear dynamic behavior of the amplitude controller over the full control input range, i.e. during acceleration
as well as deceleration, the tracking behavior of the closed-loop amplitude controller with respect to a stepwise
defined reference signal Q̄1,r and the applied normalized control input Ū1 are illustrated in Fig. 5(a) and Fig.
5(b), respectively. The measurement results of both experiments, i.e. the static as well as the dynamic closed-
loop behavior of the amplitude controller, validate the effectiveness of the nonlinear input transformation, its
underlying square root algorithm as well as the proposed hardware implementation.
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6. SUMMARY AND OUTLOOK

In this paper, an electrostatic actuator linearization is introduced, which is based on an existing efficient iterative
square root algorithm for unsigned integer numbers. Furthermore, an implementation of the algorithm in the
Verilog hardware description language is given and the corresponding hardware consumption is instantiated for
a Xilinx Virtex 5 Field Programmable Gate Array (FPGA). Finally, as a practical example, the nonlinear input
transformation is utilized for the design of the primary mode controller of a capacitive MEMS gyroscope and
measurement results validate the feasibility of the presented control concept and its hardware implementation.

APPENDIX

1 module i t e r s q u a r e r o o t #(
// −−− Parameters −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 parameter ROOTW = 12 //Width of ” root ”
) (

5 // −−− Inputs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
input c lk ,

7 input reset N ,
input enable ,

9 input [ 2∗ROOTW−1:0] radicand ,
// −−− Outputs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 output reg [ROOTW−1:0] root ,
output va l i d

13 ) ;
// −−− Local Parameters −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 localparam NRSTATES = ROOTW; //Number of in t e rna l s t a t e s
localparam REMW = ROOTW+1; //Width of ”remainder ”

17 localparam RADW = ROOTW∗2 ; //Width of ”radicand”
// −−− Variab les −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19 reg signed [REMW−1:0] remainder ;
reg signed [ CLog2(NRSTATES) : 0 ] s t a t e ; //CLog2() ca l cu l a t e s the c e i l o f log2 ()

21 // −−− Nets and Continuous Assignments −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
wire [ROOTW−1:0] r o o t s 1 = ( root <<< 1) ;

23 wire [ROOTW+1:0] r o o t s 2 = ( root <<< 2) ;

25 wire [ 1 : 0 ] rad i cand b = radicand >> ( s t a t e <<< 1) ;
wire signed [REMW+1:0] remainder m =

27 $s igned ({ remainder [REMW−1 :0 ] , rad i cand b [ 1 : 0 ] } ) − ( r o o t s 2 | 1) ;
wire signed [REMW+1:0] remainder p =

29 $s igned ({ remainder [REMW−1 :0 ] , rad i cand b [ 1 : 0 ] } ) + ( r o o t s 2 | 3) ;

31 always @(posedge c lk , negedge r e s e t N ) begin
i f ( ! r e s e t N ) begin

33 root <= 0 ;
remainder <= 0 ;

35 s t a t e <= −1;
end else begin

37 i f ( enable ) begin
i f ( s t a t e < 0) begin

39 s t a t e <= NRSTATES−2;
remainder = $s igned ({{ (REMW−2){1 ’ d0}} , radicand [ (RADW−1) − :2 ]}) − 1 ;

41 root <= {{(ROOTW−1){1 ’ d0 }} , ( radicand [RADW−1] | radicand [RADW−2]) } ;
end else begin

43 i f ( ! remainder [REMW−1]) begin
remainder <= remainder m [REMW−1 : 0 ] ;

45 root <= { r o o t s 1 [ROOTW−1 :1 ] ,˜ remainder m [REMW+1]} ;
end else begin

47 remainder <= remainder p [REMW−1 : 0 ] ;
root <= { r o o t s 1 [ROOTW−1 :1 ] ,˜ remainder p [REMW+1]} ;

49 end
s t a t e <= s t a t e − 1 ;

51 end
end

53 end
end

55
assign va l i d = ( s t a t e < 0) ? 1 : 0 ;

57 endmodule

Listing 1. Verilog-HDL implementation of the iterative square root algorithm.
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