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Abstract In this paper, an electrostatic actuator lin-

earization will be introduced, which is based on an

existing hardware-efficient iterative square root algo-

rithm. The algorithm is solely based on add and shift
operations while just needing n/2 iterations for an n bit

wide input signal. As a practical example, the nonlin-

ear input transformation will be utilized for the design
of the primary mode controller of a capacitive MEMS

gyroscope and an implementation of the algorithm will

be instantiated in the Verilog hardware description lan-
guage. Furthermore, an implementation of an improved

version of the algorithm will be given reducing the num-

ber of needed iterations to n/2 − 1 for an n bit wide

input signal while just requiring an acceptable addi-
tional amount of hardware resources. Finally, measure-

ment results will validate the feasibility of the presented

control concept and its hardware implementation.

Keywords capacitive MEMS gyroscope · electrostatic
actuator · actuator linearization · iterative square root

algorithm · control of primary oscillator · Verilog HDL

1 INTRODUCTION

The electrostatic actuation principle is the most com-

mon way (Bell et al, 2005) to generate actuation forces

in micro-electro-mechanical systems (MEMS). The fact

that the required electrodes can be manufactured within
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well established production processes led to its success-

ful application in many mass products like accelerom-

eters, gyroscopes, optical mirrors and many more. A

negative aspect, though, that is inherent to all voltage
controlled electrostatic actuators is that the generated

force is proportional to the square of the applied volt-

age. However, complex arithmetic calculations are not
feasible in MEMS applications as the demands on high

sampling rates and low latency, combined with the pric-

ing pressure of high volume production require an ef-
ficient hardware implementation of the control loops.

Therefore, in most state-of-the-art applications linear

control concepts are utilized and the intrinsic limita-

tions in either the range of operation or the lack of per-
formance are accepted. For advanced nonlinear control

concepts (Egretzberger, 2010) of capacitive gyroscopes,

which result in a noticeable increase of the closed-loop
performance, a nonlinear input transformation is indis-

pensable.

In this contribution, an electrostatic actuator lineariza-
tion will be introduced, which is based on an existing

efficient iterative square root algorithm for unsigned in-

teger numbers (Li and Chu, 1996). The advantage of

the presented algorithm is that it is solely based on
add and shift operations. In comparison to other well

established calculation procedures, this iterative algo-

rithm leads to a significant reduction of the required
hardware resources, especially as no multipliers are uti-

lized, while just needing n/2 iterations for an n bit wide

input signal. Furthermore, an implementation of the al-
gorithm in the Verilog hardware description language

as well as the implementation of an improved version

of the algorithm will be given and the corresponding

hardware consumption of both versions of the algorithm
will be instantiated for a Xilinx Virtex 5 Field Pro-

grammable Gate Array (FPGA). As a practical exam-
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ple, the nonlinear input transformation will be utilized

for the design of the primary mode controller of a ca-
pacitive MEMS gyroscope and measurement results will

validate the feasibility of the presented control concept

and its hardware implementation.
The paper is organized as follows. Sec. 2 discusses the

working principle of a capacitive gyroscope. In Sec. 3

the derivation of the equations of motion are outlined
and the nonlinear input transformation is described.

The subsequent Sec. 4 gives a short survey on common

approaches to calculate the square root operator and

presents the implementation of an existing efficient it-
erative algorithm as well as the implementation of an

improved version of the algorithm. The corresponding

measurement results are illustrated in Sec. 5 and finally,
the contribution is concluded with a short summary.

2 A CAPACITIVE GYROSCOPE

The MEMS element considered as a practical exam-

ple for the nonlinear input transformation within this
article is a capacitive gyroscope (Günthner, 2006), il-

lustrated in Fig. 1, which can measure an externally

applied angular rate Ωy about the sensitive y0-axis by
exploiting the Coriolis effect. The capacitive gyroscope

fixed frame

comb
electrodes

movable frames

paddel

elastic beams

parallel plate electrodes

x0

y0z0
Ωy

Fig. 1 Capacitive gyroscope assembly.

is an etched silicon device that uses voltage controlled
capacitive actuators (Seeger and Boser, 2003) and ca-

pacitive sensors for the excitation and read-out of the

in-plane drive and the out-of-plane sense oscillators.
As depicted in Fig. 1, the gyroscope comprises a fixed

frame, which is rigidly attached to the package of the

sensor, and two rigid movable frames, which are con-

nected with the fixed frame via elastic beam elements.
Furthermore, four rigid paddles are flexibly connected

to the movable frames via elastic torsion beams. Both

the comb and the parallel plate actuators and sensors

consist of two, in the undeformed configuration paral-

lel, electrodes. One of the electrodes is rigidly mounted
on the package of the sensor and the other is rigidly at-

tached to one of the movable frames or paddles result-

ing in parallel plate capacitors with a capacitance de-
pending on the deflection of the movable structure and

therefore allowing for the utilization as actuators and

sensors. Applying a harmonic voltage to the drive elec-
trodes results in a harmonic, antisymmetric oscillation

of the movable frames and the paddles in x0-direction

(so-called primary mode), as depicted in Fig. 2(a). Due

to the high stiffness of silicon, the low actuation forces
and the weak damping, the primary oscillator can only

achieve reasonable amplitudes if it is excited near its

resonance frequency. On the occurrence of an externally
applied angular rate Ωy, the Coriolis force couples to

the velocity of the primary mode oscillation, resulting in

a harmonic out-of-plane oscillation of the paddles and
the movable frames in z0-direction (so-called secondary

mode), as illustrated in Fig. 2(b). The harmonic change

in capacitance of the electrostatic sensors, i.e. the comb

electrodes for the primary mode and the parallel plate
electrodes for the secondary mode, is converted to a

proportional voltage output signal by appropriately de-

signed charge and differential amplifier circuits.

3 MATHEMATICAL MODEL

As outlined in the previous section, the capacitive gyro-
scope comprises several rigid and elastic bodies as well

as various electrostatic actuators and sensors. There-

fore, the derivation of a mathematical model, suitable
for a systematic controller design, is rather laborious.

For this reason, specialized tools (Mair et al, 2009) have

been developed, which automatically derive the ana-
lytical equations of motion from CAD input data by

dividing the device under consideration into so-called

functional components. For each functional component

the energy or coenergy is calculated and Lagrange’s for-
malism is applied to calculate the corresponding system

of differential equations in symbolic form. The thus ob-

tained equations of motion of the device usually cover a
dynamic range far beyond the interest of the controller

design. Hence, it is reasonable to perform a modal trans-

formation of the system, resulting in a semi-symbolic
mathematical model. In a next step, a modal order re-

duction can be carried out to provide a mathematical

model with reduced complexity including solely the rel-

evant dynamics for the controller design (Egretzberger,
2010; Mair et al, 2009). Typically, the first primary and

secondary differential modes as well as the first primary

and secondary common modes are considered. However,
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Fig. 2 Capacitive gyroscope (a) primary mode and (b) secondary mode.

to demonstrate the idea of the nonlinear input transfor-
mation it is feasible to keep the equations as simple as

possible and therefore we restrict ourselves to the rele-

vant equation of motion of the primary oscillator. As-
suming linear damping, linear stiffness and neglecting

the effects of the coupling of the secondary oscillator,

the equation of motion of the primary oscillator is given

by the simple second order differential equation

m1q̈1 + d1q̇1 + k1q1 = τ1(u1) (1a)

y1 = c1q1 (1b)

with the modal degree-of-freedom q1, the modal mass

m1, the modal damping coefficient d1, the modal stiff-
ness coefficient k1, the system output y1, the output

coefficient c1 and the nonlinear input force

τ1(u1) = b1u
2
1 (2)

with the input coefficient b1. Both, the input coefficient

b1 and the output coefficient c1 are defined by the ge-

ometric design of the drive actuators and sensors. Per-
forming a nonlinear input transformation for (1a) of the

form

u1 =
√
ũ1 with 0 ≤ ũ1 (3)

yields a simple linear second order differential equation

with the new input ũ1. As described in the previous Sec.

2, the functional principle of the capacitive gyroscope
requires that the excitation of the primary mode is close

to the resonance frequency of the primary oscillator.

However, for the controller design the slow dynamics

(envelope) of the primary mode signal is relevant and
not the fast harmonic carrier signal itself. Therefore, it

is reasonable to introduce a so-called envelope model

(Egretzberger and Kugi, 2010). Let us assume a har-
monic excitation of the primary oscillator by means of

an input signal of the form

ũ1 = | Ũ1 | + Ũ1 cos (ωt) (4)

with the amplitude Ũ1 and the excitation frequency ω.
If the motion of the primary mode is approximated in

the form

q1(t) = Q1,S sin(ωt) + Q1,C cos(ωt) (5)

with the Fourier coefficients Q1,S and Q1,C , then the

simplified envelope model of the primary mode is given

by (Egretzberger et al, 2010)

[
Q̇1,S

Q̇1,C

]
=

[
−α1 ω − ω1

ω1 − ω −α1

] [
Q1,S

Q1,C

]
−
[
β1

0

]
Ũ1 (6a)

[
Y1,S

Y1,C

]
=

[
γ1 0
0 γ1

] [
Q1,S

Q1,C

]
(6b)

with the Fourier coefficients of the output signal Y1,S

and Y1,C . The damping coefficient α1 and the resonance

frequency ω1 read as

α1 =
1

2

d1
m1

, ω1 =
1

2

1

m1

√
4k1m1 − d21 (7)

and the input and output coefficients β1 and γ1 are

given by

β1 =
1

2

b1
m1ω1

, γ1 = c1. (8)

Applying an output transformation (Egretzberger et al,

2010)

Y1,A =
√

Y2
1,S +Y2

1,C , Y1,φ = arctan

(
Y1,S

Y1,C

)
(9)

with the amplitude Y1,A and the phase Y1,φ to the

envelope model (6) and calculating the steady state

Y1,A =
β1γ1Ũ1√

α2
1 + (ω − ω1)2

, Y1,φ = arctan

(
α1

ω1 − ω

)

(10)

allows for a straightforward specification of the neces-

sary control tasks. As can be inferred from the steady
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state (10), the amplitude Y1,A of the primary mode gets

maximal for a fixed input amplitude Ũ1, if the oscilla-
tor is excited at its resonance frequency, i.e. ω = ω1,

while maintaining a phase Y1,φ = −π/2. Therefore, for

a proper operation of the capacitive gyroscope the am-
plitude, frequency and phase of the primary oscillator

have to be controlled simultaneously.

At this point it is worth mentioning that it is possible
to achieve a linear envelope behavior of the primary

oscillator (Egretzberger et al, 2010) without applying

the proposed nonlinear input transformation (3), re-

sulting in the shortcoming that the primary oscillator
is additionally excited by a signal part with double the

excitation frequency. Furthermore, as the constant or

the harmonic component of the excitation signal has
to be set to a constant value, the remaining control

input is constrained by this value. Moreover, for ad-

vanced nonlinear control concepts (Egretzberger, 2010)
of the secondary oscillator, which result in a noticeable

increase of the closed-loop performance, a nonlinear in-

put transformation in the form of a square root operator

is indispensable.

4 ARITHMETIC ALGORITHM

Depending on the demands on throughput, latency and
hardware-efficiency as well as on the available resources

and the interaction with other arithmetic operations,

different approaches for the realization of the square

root operator have been proposed in the literature. A
complete survey on existing algorithms is far beyond

the scope of this contribution, nonetheless, care has

been taken to include the most relevant ones, at least
for the application under consideration. In the follow-

ing, it is assumed that the radicand is a positive real

number and that it is given in a conventional number
representation, e.g. floating or fixed point, and conven-

tional number system, e.g. normalized binary floating

point or radix 2. Conventional floating point numbers

are considered in the following short survey, because
the time-consuming part of the root calculation of a

floating point number has to be performed on the man-

tissa, for which the same algorithms can be applied as
for fixed point numbers. However, the necessary adjust-

ment of the exponent and the inevitable postnormaliza-

tion steps between the mantissa and the exponent add
considerable additional complexity to the circuitry.

All algorithms familiar to the authors, calculate the

square root of a number in an iterative manner. There-

fore, if a single clock cycle calculation is mandatory, a
function approximation (Meyer-Baese, 2007) might be

the only solution, resulting in a very high hardware ef-

fort as, depending on the order of the approximation,

many parallel single-cycle multipliers are needed. Fur-

thermore, the accuracy of the result is, due to obvi-
ous reasons, limited. The iterative algorithms can be

separated into two categories (Soderquist and Leeser,

1997), i.e. multiplicative algorithms and subtractive al-
gorithms. The multiplicative algorithms derive the squa-

re root by an iterative refinement of an initial guess

and divide the calculation into a series of multiplica-
tions, additions and shift operations. The most common

representatives are the Newton Raphson method (Hen-

nessy and Patterson, 2007) and the Goldschmidt’s al-

gorithm (Hennessy and Patterson, 2007). Both possess
a quadratic convergence and, an adequate seed gener-

ator presumed, approximate the square root in a few

iteration cycles very well. Though, due to the multipli-
cation operation at each iteration step, a low or single

cycle multiplier is inevitable for an effective implemen-

tation and hence, the hardware effort is high. The sub-
tractive algorithms on the other hand are solely based

on add, shift and relational operations, which can be

implemented in hardware very efficiently. Several well

known algorithms exist that need n/2 bits for an n
bit wide radicand, however, they differ substantially in

their hardware consumption. Among these algorithms

are the iterative restoring and non-restoring square root
extraction (Koren, 2002), the algorithm based on the

bisection method (Tommiska, 2000; Dijkstra, 1976) as

well as the very hardware effective non-restoring square
root algorithm (Li and Chu, 1996), which can be im-

plemented solely based on add and shift operations. An

improvement in regards to the needed number of iter-

ations can be achieved by the SRT algorithm (Koren,
2002), which, depending on the applied input data, cal-

culates the result in equal or less than n/2 steps. As

data-dependent delays are not feasible in practical im-
plementations, the data-independent high radix SRT

algorithms (Koren, 2002) are of greater practical im-

portance. For the current application under consider-
ation, the choice of an applicable algorithm is based

on several considerations. First, the excitation voltage

(3), which is generated by the digital signal processing

unit of the capacitive gyroscope, has to be converted
from the digital to the analog domain by a Digital to

Analog Converter (DAC) comprising a fixed bit width

and a defined output voltage range. Therefore, we can
restrict ourselves to algorithms suitable for fixed point

numbers only. Second, the sample rate of the DAC is

usually an integer multiple smaller than the internal
clock signal, allowing for the execution of intermediate

calculation steps. This brings along that the number

of required iterations is not the primary concern. The

last point that has to be considered is the additional la-
tency which is introduced by the algorithm. To resolve
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this issue, it is feasible to examine the input signal (4)

in more detail. The output signal of the amplitude con-
troller Ũ1 is a slow signal, which gets modulated with

the fast harmonic carrier signal cos (ωt). The phase sig-

nal φ = ωt is generated by the internal frequency and
phase controller and can be shifted by adding an off-

set φa. Therefore, the latency of the algorithm can be

easily compensated in the form

ũ1,a = | Ũ1 | + Ũ1 cos (ωt+ φa) with φa =
2πmω

ωs

3

2
,

(11)

with the new excitation signal ũ1,a, the adjustment an-

gle φa, the excitation frequency ω, the internal clock

sampling frequency ωs and the required number of cal-

culation steps m. The factor 3/2 centers the resulting
excitation voltage u1,a in regard to the ideal excita-

tion voltage u1. As all concerns regarding the calcula-

tion efficiency can be easily resolved, the most hard-
ware effective algorithm (Li and Chu, 1996) was cho-

sen. An implementation of the iterative square root al-

gorithm in the Verilog hardware description language
(HDL) is given in Listing 1 and an implementation of

an improved version of the algorithm is instantiated in

Listing 2. The improved version decreases the required

numbers of iterations by calculating the first and last
iteration step at the same time. This approach requires

an additional register to store two different intermediate

results of the root variable at the same time resulting in
a slightly higher amount of hardware resources. How-

ever, buffering the output of the module by an addi-

tional register prevents the appearance of intermediate
results at the output and furthermore leads to a bet-

ter software design hierarchy. The resulting hardware

consumptions of both versions of the algorithm on a

Xilinx Virtex 5 FPGA for a 12 bit wide root, i.e. 24 bit
wide radicand, are depicted in Tab. 1. As can be seen,

Algorithm original improved
radicand (bit) 24 24

required iterations 12 11

look-up-tables 67 60
D-flip-flops 30 41
carry-chains 2 2

Table 1 Hardware consumption of the iterative square root
algorithm on a Xilinx Virtex 5 FPGA.

the improved version requires an even smaller amount

of look-up-tables as the original algorithm while just

needing an adequate additional number of D-flip-flops.
It has to be mentioned at this point that the hardware

consumption may depend on the utilized synthesis and

place and route tools as well as on the selected synthesis

and optimization preferences. To ease the comparison

for the interested reader, the standard Xilinx toolchain
(Xilinx, 2010) with the standard preferences have been

used for the presented case. As a practical example, the

excitation signals ũ1 and ũ1,a, with Ũ1 = 1/2 and the re-
sulting excitation voltages u1 =

√
ũ1 and u1,a =

√
ũ1,a

are illustrated in Fig. 3(a) and Fig. 3(b), respectively.

Henceforth, t̄ refers to the normalized time t.

5 MEASUREMENT RESULTS

To verify the nonlinear input transformation (3) intro-

duced in Sec. 3, an amplitude, phase and frequency con-

troller for the primary oscillator as well as the square
root algorithm of Sec. 4 have been implemented on a de-

velopment board, consisting of a Xilinx Virtex 5 FPGA

and additional analog circuitry for the actuation and

read out of a prototype gyroscope. The measurement
results of the static behavior of the closed-loop ampli-

tude controller at different reference points are illus-

trated in Fig. 4. The deflection signal and the control
input are normalized in the form Q̄1,S = Q1,S/Q1,S,d

and Ū1 = Ũ1/Ũ1,d with the nominal point of operation

Q1,S,d and the associated control input Ũ1,d, respec-

tively. As depicted in Fig. 4, the applied normalized

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Ū1

Q̄
1
,S

Fig. 4 Static behavior of the closed-loop amplitude con-
troller at different normalized reference points Q̄1,S and the

applied normalized control input Ū1.

control input signal Ū1 and the normalized primary

mode deflection Q̄1,S show a perfect linear relation.
Furthermore, to confirm the linear dynamic behavior

of the amplitude controller over the full control input

range, i.e. during acceleration as well as deceleration,

the tracking behavior of the closed-loop amplitude con-
troller with respect to a stepwise defined reference sig-

nal Q̄1,r and the applied normalized control input Ū1

are illustrated in Fig. 5(a) and Fig. 5(b), respectively.
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(a) Input signals ũ1 and ũ1,a
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u1
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t̄

u
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(b) Excitation voltages u1 and u1,a

Fig. 3 (a) Input signals ũ1 and ũ1,a and resulting (b) excitation voltages u1 and u1,a.
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0
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Q̄1,r
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t̄

Q̄
1
,S

(a) Normalized primary mode deflection Q̄1,S

0 0.25 0.5 0.75 1
-16

-8

0

8

16

t̄

Ū
1

(b) Normalized control input Ū1

Fig. 5 (a) Dynamic behavior of the closed-loop amplitude controller with respect to a stepwise defined reference signal Q̄1,r

and (b) the applied normalized control input Ū1.

The measurement results of both experiments, i.e. the
static as well as the dynamic closed-loop behavior of the

amplitude controller, validate the effectiveness of the

nonlinear input transformation, its underlying square
root algorithm as well as the proposed hardware imple-

mentations.

6 SUMMARY AND OUTLOOK

In this paper, an electrostatic actuator linearization is

introduced, which is based on an existing efficient iter-

ative square root algorithm for unsigned integer num-
bers. Furthermore, an implementation of the algorithm

in the Verilog hardware description language is given

and the corresponding hardware consumption is instan-

tiated for a Xilinx Virtex 5 Field Programmable Gate
Array (FPGA). Finally, as a practical example, the non-

linear input transformation is utilized for the design of

the primary mode controller of a capacitive MEMS gy-

roscope and measurement results validate the feasibil-
ity of the presented control concept and its hardware

implementation.

APPENDIX

ACKNOWLEDGMENTS

This work was funded by the German BMBF as part

of the EURIPIDES project RESTLES (project number

16SV3579).

References

Bell D, Lu T, Fleck N, Spearing S (2005) MEMS actu-

ators and sensors: observations on their performance

and selection for purpose. Journal of Micromechanics
and Microengineering 15:153–164

Dijkstra EW (1976) A Discipline of Programming.

Prentice-Hall, Englewood Cliffs, USA

Post-print version of the article: F. Mair, M. Egretzberger, A. Kugi, “Hardware implementation of an electrostatic mems-actuator
linearization”, Microsystem Technologies, 18, 7, 955–963, 2012. doi: 10.1007/s00542-011-1420-x
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1007/s00542-011-1420-x


Hardware Implementation of an Electrostatic MEMS-Actuator Linearization 7

1 module i t e r s q u a r e r o o t #(
// −−− Parameters −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 parameter ROOTW = 12 //Width of ” root ”
) (

5 // −−− Inputs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
input c lk ,

7 input reset N ,
input enable ,

9 input [ 2∗ROOTW−1:0] radicand ,
// −−− Outputs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 output reg [ROOTW−1:0] root ,
output va l i d

13 ) ;
// −−− Local Parameters −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 localparam NRSTATES = ROOTW; //Number of in t e rna l s t a t e s
localparam REMW = ROOTW+1; //Width of ”remainder ”

17 localparam RADW = ROOTW∗2 ; //Width of ”radicand”
// −−− Variab les −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19 reg signed [REMW−1:0] remainder ;
reg signed [ CLog2(NRSTATES) : 0 ] s t a t e ; //CLog2() ca l cu l a t e s the c e i l o f log2 ()

21 // −−− Nets and Continuous Assignments −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
wire [ROOTW−1:0] r o o t s 1 = ( root <<< 1) ;

23 wire [ROOTW+1:0] r o o t s 2 = ( root <<< 2) ;
wire [ 1 : 0 ] rad i cand b = radicand >> ( s t a t e <<< 1) ;

25 wire signed [REMW+1:0] remainder m =
$s igned ({ remainder [REMW−1 :0 ] , rad i cand b [ 1 : 0 ] } ) − ( r o o t s 2 | 1) ;

27 wire signed [REMW+1:0] remainder p =
$s igned ({ remainder [REMW−1 :0 ] , rad i cand b [ 1 : 0 ] } ) + ( r o o t s 2 | 3) ;

29 always @(posedge c lk , negedge r e s e t N ) begin
i f ( ! r e s e t N ) begin

31 root <= 0 ;
remainder <= 0 ;

33 s t a t e <= −1;
end else begin

35 i f ( enable ) begin
i f ( s t a t e < 0) begin

37 s t a t e <= NRSTATES−2;
remainder <= $s igned ({{ (REMW−2){1 ’ d0}} , radicand [ (RADW−1) − :2 ]}) − 1 ;

39 root <= {{(ROOTW−1){1 ’ d0 }} , ( radicand [RADW−1] | radicand [RADW−2]) } ;
end else begin

41 i f ( ! remainder [REMW−1]) begin
remainder <= remainder m [REMW−1 : 0 ] ;

43 root <= { r o o t s 1 [ROOTW−1 :1 ] ,˜ remainder m [REMW+1]} ;
end else begin

45 remainder <= remainder p [REMW−1 : 0 ] ;
root <= { r o o t s 1 [ROOTW−1 :1 ] ,˜ remainder p [REMW+1]} ;

47 end
s t a t e <= s t a t e − 1 ;

49 end
end

51 end
end

53 assign va l i d = ( s t a t e < 0) ? 1 : 0 ;
endmodule

Listing 1 Verilog-HDL implementation of the iterative square root algorithm.
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module i t e r s qua r e r oo t improved #(
2 // −−− Parameters −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

parameter ROOTW = 12 //Width of ” root ”
4 ) (

// −−− Inputs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 input c lk ,

input reset N ,
8 input enable ,

input [ 2∗ROOTW−1:0] radicand ,
10 // −−− Outputs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

output reg [ROOTW−1:0] root ,
12 output va l i d

) ;
14 // −−− Local Parameters −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

localparam NRSTATES = ROOTW; //Number of in t e rna l s t a t e s
16 localparam REMW = ROOTW+1; //Width of ”remainder ”

localparam RADW = ROOTW∗2 ; //Width of ”radicand”
18 // −−− Variab les −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

reg [ROOTW−1:0] r o o t ;
20 reg signed [REMW−1:0] remainder ;

reg [ CLog2(NRSTATES) −1:0] s t a t e ; //CLog2() ca l c u l a t e s the c e i l o f log2 ()
22 // −−− Nets and Continuous Assignments −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

wire [ROOTW−1:0] r o o t s 1 = ( r oo t <<< 1) ;
24 wire [ROOTW+1:0] r o o t s 2 = ( r oo t <<< 2) ;

wire [ 1 : 0 ] rad i cand b = radicand >> (2∗ s t a t e ) ;
26 wire signed [REMW+1:0] remainder m =

$s igned ({ remainder [REMW−1 :0 ] , rad i cand b [ 1 : 0 ] } ) − ( r o o t s 2 | 1) ;
28 wire signed [REMW+1:0] remainder p =

$s igned ({ remainder [REMW−1 :0 ] , rad i cand b [ 1 : 0 ] } ) + ( r o o t s 2 | 3) ;
30 always @(posedge c lk , negedge r e s e t N ) begin

i f ( ! r e s e t N ) begin
32 root <= 0 ;

r oo t <= 0 ;
34 remainder <= 0 ;

s t a t e <= 0 ;
36 end else begin

i f ( enable ) begin
38 i f ( s t a t e == 0) begin

i f ( ! remainder [REMW−1]) begin
40 root <= { r o o t s 1 [ROOTW−1 :1 ] ,˜ remainder m [REMW+1]} ;

end else begin
42 root <= { r o o t s 1 [ROOTW−1 :1 ] ,˜ remainder p [REMW+1]} ;

end
44 remainder <= $s igned ({{ (REMW−2){˜( radicand [RADW−1] | radicand [RADW−2]) }} ,

˜( radicand [RADW−1]ˆ radicand [RADW−2]) ,˜ radicand [RADW−2]}) ;
46 r oo t <= {{(ROOTW−1){1 ’ d0 }} , ( radicand [RADW−1] | radicand [RADW−2]) } ;

s t a t e <= NRSTATES−2;
48 end else begin

i f ( ! remainder [REMW−1]) begin
50 remainder <= remainder m [REMW−1 : 0 ] ;

r o o t <= { r o o t s 1 [ROOTW−1 :1 ] ,˜ remainder m [REMW+1]} ;
52 end else begin

remainder <= remainder p [REMW−1 : 0 ] ;
54 r oo t <= { r o o t s 1 [ROOTW−1 :1 ] ,˜ remainder p [REMW+1]} ;

end
56 s t a t e <= s t a t e − 1 ;

end
58 end

end
60 end

assign va l i d = ( s t a t e == 0) ? 1 : 0 ;
62 endmodule

Listing 2 Verilog-HDL implementation of the improved iterative square root algorithm.
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