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The spectral element method as an efficient tool for transient
simulations of hydraulic systems

J.-F. Mennemanna,∗, L. Markob, J. Schmidta, W. Kemmetmüllera, A. Kugia,b

a Automation and Control Institute, Complex Dynamical Systems, TU Wien, Gusshausstrasse 27-29, 1040
Vienna, Austria

b Christian Doppler Laboratory for Model-Based Process Control in the Steel Industry, TU Wien,
Gusshausstrasse 27-29, 1040 Vienna, Austria

Abstract

This paper presents transient numerical simulations of hydraulic systems in engineering ap-
plications using the spectral element method (SEM). Along with a detailed description of
the underlying numerical method, it is shown that the SEM yields highly accurate numerical
approximations at modest computational costs, which is in particular useful for optimization-
based control applications. In order to enable fast explicit time stepping methods, the bound-
ary conditions are imposed weakly using a numerically stable upwind discretization. The
benefits of the SEM in the area of hydraulic system simulations are demonstrated in various
examples including several simulations of strong water hammer effects. Due to its exceptional
convergence characteristics, the SEM is particularly well suited to be used in real-time capable
control applications. As an example, it is shown that the time evolution of pressure waves in
a large scale pumped-storage power plant can be well approximated using a low-dimensional
system representation utilizing a minimum number of dynamical states.

Keywords: Pressure waves, hyperbolic differential equations, spectral element method,
upwind discretization, method of characteristics, water hammer simulations,
pumped-storage power plant, low-dimensional numerical approximations, real-time capable
model, control applications

1. Introduction

Fast variations of the volume flow in a pipeline system give rise to pressure waves propa-
gating through the pressure lines and causing problems like noise, vibrations, or in the worst
case, even pipe collapse. These transient hydraulic effects constitute a major risk in various
areas like cooling-water systems, pumped-storage power plants or even in the feed lines of
liquid rocket engines [1, 2, 3, 4].

Wave propagation in pressure lines is well described by a system of hyperbolic partial
differential equations [5, 1, 6, 7, 2, 8]. Various numerical methods for the simulation of
hyperbolic systems are known in literature, ranging from finite difference to finite volume
and spectral methods [9, 10, 11]. Moreover, discontinuous Galerkin methods [12] represent
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an attractive alternative as they try to combine the advantages of the finite volume method
with those of the finite element method.

However, the predominant method for the simulation of pressure waves in pipeline systems
is the method of characteristics (MOC) [1, 6, 13, 7, 2]. It is based on the concept of the
same name used to analyze and solve systems of hyperbolic partial differential equations.
The MOC works best when all parameters characterizing the pressure lines are piecewise
constant. Under this condition, the MOC represents an extremely robust method which is
able to propagate shock waves with arbitrary steep gradients. The main disadvantage results
from the fact that the time step size, the spatial grid size and the local wave propagation
speed are required to satisfy a (strict) Courant-Friedrichs-Lewy (CFL) condition. To meet
these requirements it is common practice to adjust the lengths or the local wave speeds of
individual pipeline segments which may cause significant modeling errors. Moreover, in case
of non-constant coefficient functions a large number of spatial grid points is needed in order
to compute satisfactory numerical approximations.

Besides the MOC, finite difference, finite volume, discontinuous Galerkin and spectral
methods have been used to simulate transient hydraulic systems [14, 15, 16, 17, 18, 19]. In
this context, it should be noted that numerous variations of spectral methods can be found
in literature [11, 20]. Ideally, spectral methods yield highly accurate solutions requiring
only a minimum number of degrees of freedom, which makes them attractive from a control
applications point of view. However, as spectral methods are formulated on a single interval
or on a multidimensional cuboid, they turn out to be too inflexible in many applications.

The spectral element method (SEM) takes this yet a step further and applies a spectral
method to every element of a properly partitioned computational domain. In this manner, it
is possible to combine the adaptivity of an ordinary finite element method with the accuracy
of a spectral method [21]. In fact, the SEM could be interpreted as a special variation of a
high-order finite element method. However, a unique feature of the SEM is the quadrature
rule, which relies on the same nodes as the definition of the element shape functions. As
a consequence, the mass matrix is a diagonal matrix, which enables the application of fast
explicit time stepping methods. Furthermore, thanks to the quadrature rule and the nodal
interpolation property the assembling process of nonlinear expressions can often be simplified
significantly.

The SEM is widely used in elastic wave propagation and fluid dynamical problems [22,
23, 24]. In this paper, we apply the SEM to a system of hyperbolic partial differential
equations frequently used to describe hydraulic systems in engineering applications. As for
all hyperbolic equations, special care needs to be taken with regard to the implementation of
the boundary conditions. Here, we choose to impose the boundary conditions weakly using a
numerically stable upwind discretization. As outlined above, the resulting mass matrix is a
diagonal matrix. Moreover, we show that the nonlinear pipe friction term can be easily taken
into account. Hence, the application of explicit time stepping strategies is very simple and
yields extremely short computation times as needed in real-time control applications.

A minor drawback of the SEM might be seen in the fact that, in contrast to the MOC
or discontinuous Galerkin methods, the SEM cannot propagate shock waves with arbitrary
steep gradients. Nonetheless, we will demonstrate that the SEM yields highly accurate solu-
tions to rather strong water hammer problems using a modest number of spatial variables.
Additionally, it is shown that the underlying spatial semi-discretization can be integrated in
time utilizing high-order explicit time-integration methods in combination with comparatively
mild time step size restrictions.
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Our aim is to demonstrate the benefits of the SEM in the area of transient hydraulic
simulations, cf. also [25]. Moreover, we want to show that, due to its exceptional convergence
properties, the SEM is particularly well suited to be used in optimal and model predictive
control applications utilizing direct transcription (full discretization) methods [26, 27].

The paper is organized as follows: In Section 2, we introduce the underlying hyperbolic
system which describes wave propagation effects on a single pressure line. Section 3 covers the
weak formulation, the spatial semi-discretization and the implementation of Dirichlet bound-
ary conditions. In Section 4, we provide a careful numerical convergence analysis using sev-
eral examples of increasing complexity. In this context, we also consider the above-mentioned
strong water hammer problems. Finally, Section 5 is devoted to the simulation of wave effects
in a pumped-storage power plant. In particular, it is demonstrated that the SEM can be
used to obtain low-dimensional semi-discretizations which are perfectly suited to be used in
real-time capable control applications.

2. Mathematical Modelling

Wave propagation in pressure lines is well described in the literature [1, 6, 7, 2, 5]. Using
mass and momentum balance equations it is possible to derive a system of hyperbolic partial
differential equations. A basic assumption is that the liquid flow is one-dimensional, i.e., the
characteristic quantities are cross-section averaged [13]. In most applications, the average
velocity of the fluid is small in comparison to the characteristic wave speeds c, which is why
certain convective terms can be neglected. Moreover, in many cases it is advantageous to
consider the piezometric head h instead of the pressure p. Both quantities are related to each
other in the form

h =
p

ρg
+ x2, (1)

where x2 = x2(z) denotes the height of the pressure line as function of the arclength z.
Furthermore, all simulations in this paper are based on the numerical values g = 9.81 m/s
and ρ = 1000 kg/m3 for the gravitational acceleration and the density of water, respectively.

The time-evolution of the piezometric head h and volume flow q on a single pressure line
is well described by the hyperbolic system [2, 1]

∂

∂t

[
h
q

]
+

[
0 c2/(gA)
gA 0

]
∂

∂z

[
h
q

]
= −

[
0

Rq|q|

]
, (2)

where pipe friction is taken into account by the source term on the right hand side using a
position-dependent function

R =
fλ

2DA
.

Here, fλ denotes the Darcy-Weisbach friction factor and D = 2(A/π)1/2 is the diameter of
the pressure line with A the cross-sectional area. Strictly speaking, this description of pipe
friction is valid only for stationary pipe flow [6]. However, it is frequently used as a good
approximation in transient simulations as well [1, 2]. A description of pipe frictional losses for
non-stationary simulations is given in [5, 6]. In many situations of practical interest, the effect
of pipe frictional losses is very small. In particular, this will apply if fast transient simulations
on a relatively short time-scale are considered. However, in stationary calculations, e.g.,
calculation of optimal stationary operating points of pumped-storage power plants, even small
contributions of pipe frictional losses might be important and thus need to be taken into
account.
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3. Numerical Method

We now show how to apply the spectral element method to the hyperbolic system (2).
To this end, we first restrict ourselves to the case of a single pressure line described by the
parameter functions A, c and fλ given on the computational domain Ω = [0, L].

3.1. Weak formulation

Introducing ε = gA/c2, µ = 1/(gA) and r = µR, system (2) can be written in conservative
form (with source)

∂

∂t

[
εh
µq

]
+

∂

∂z

([
0 1/µ

1/ε 0

] [
εh
µq

])
= −

[
0

rq|q|

]
, (3)

i.e.,
∂U

∂t
+
∂F (U)

∂z
= −f(U), (4)

where

f(U) =

[
0

rµ−1U2|µ−1U2|

]

denotes the friction term as a function of the new variables

U =

[
U1

U2

]
=

[
εh
µq

]

and the flux function is given by

F (U) = BU =

[
0 1/µ

1/ε 0

] [
U1

U2

]
. (5)

Let V denote a suitable space of test functions on the interval [0, L]. The weak formulation
of (4) reads ∫ L

0

[∂U
∂t

+
∂F (U)

∂z
+ f(U)

]
v dz = 0 for all v ∈ V. (6)

Using integration by parts, (6) becomes

∫ L

0

∂U

∂t
v dz + F (U)v

∣∣∣
L

0
−
∫ L

0
F (U)

∂v

∂z
dz +

∫ L

0
f(U)v dz = 0 for all v ∈ V. (7)

Next, we replace the flux at the boundaries by an appropriate numerical approximation. In
order to obtain a numerically stable and convergent scheme, we choose a so-called upwind
flux. In particular, we choose the Lax-Friedrichs flux [20] given as

F ∗(U−,U+) =
1

2

[
F (U−) + F (U+)

]
− 1

2
|λmax(B)|

(
U+ −U−

)
,

where
U−(z) = lim

δ→0+
U(z − δ), U+(z) = lim

δ→0+
U(z + δ)
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Figure 1: Element shape functions on the reference domain Ω̂ for Nm = 4.

and |λmax(B)| denotes the maximum (in absolute value) eigenvalue of the matrix B defined
in (5). Assuming that ε− = ε+ and µ− = µ+ holds true at the boundary points z = 0 and
z = L, we find

F ∗(U−,U+) =
1

2

[
(U−2 + U+

2 )/µ
(U−1 + U+

1 )/ε

]
− c

2

[
U+
1 − U−1

U+
2 − U−2

]
=

1

2

[
q− + q+

h− + h+

]
− c

2

[
εh+ − εh−
µq+ − µq−

]
(8)

and hence, (7) yields

∫ L

0

∂

∂t

[
εh
µq

]
v dz =

∫ L

0

[
q
h

]
∂v

∂z
dz −

∫ L

0

[
0

rq|q|

]
v dz +

[
F ∗1 (0, t)
F ∗2 (0, t)

]
v(0)−

[
F ∗1 (L, t)
F ∗2 (L, t)

]
v(L) (9)

for all v ∈ V. Here, F ∗1 (z, t) and F ∗2 (z, t) denote the components of the numerical flux F ∗

evaluated at the position z and time t.

3.2. Spatial discretization

In the following, we consider a partition of the computational domain into M elements

Ω =
M⋃

m=1

Zm

with Zm = [z̄m−1, z̄m] and 0 = z̄0 < z̄1 < · · · < z̄M−1 < z̄M = L. Moreover, we define the
finite-dimensional space

Vh = {v ∈ C0(Ω) : v|Zm ∈ PNm , m = 1, . . . ,M}.

A precise description of a basis of Vh in the sense of the SEM can be found in the literature,
see, e.g., [20]. As in the case of the classical FEM the definition of the basis functions is
given by means of the element shape functions [20, 28], which in turn are defined in terms
of the Legendre-Gauss-Lobatto (LGL for short) nodes ξ0, . . . , ξNm on the reference domain
Ω̂ = [−1, 1]. The LGL-nodes are the zeros of (1−ξ)2P ′Nm(ξ), where P ′Nm denotes the derivative
of the Legendre polynomial PNm of degree Nm, cf. [11]. Using the LGL nodes the element
shape functions can be written as

`
(m)
i (ξ) =

Nm∏

k=0,k 6=i

(ξ − ξk)
(ξi − ξk)

, ξ ∈ Ω̂, i = 0, . . . , Nm (10)
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0

1

z̄0 z̄1 z̄2 z̄3

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10

Figure 2: Global basis functions corresponding to a computational domain consisting of three elements. Ac-
cording to the polynomial degrees N1 = 2, N2 = 4 and N3 = 3 there are 10 global basis functions φ1, . . . , φ10

representing a basis of the ansatz space Vh.

with
`
(m)
i (ξj) = δi,j , j = 0, . . . , Nm. (11)

As an example, the element shape functions for Nm = 4 are shown in Fig. 1.
By means of the map

Γm(ξ) =
z̄m − z̄m−1

2
ξ +

z̄m + z̄m−1
2

, ξ ∈ Ω̂ (12)

we may define the element basis functions

ϕ
(m)
i (z) = `

(m)
i (Γ−1m (z)), i = 0, . . . , Nm

on each element Zm = (z̄m−1, z̄m) with m = 1, . . . ,M . The element basis functions are
now used to construct the global basis functions φ1, . . . , φJ . To this end, all element basis
functions are extended by zero outside of their domains. Moreover, in order to ensure inter-
element continuity at the nodes z̄1, . . . , z̄M−1, adjacent element basis functions are suitably
combined into one single basis function. Fig. 2 depicts an example with three elements and
the polynomial degrees N1 = 2, N2 = 4 and N3 = 3. In general, we construct

J =
M∑

m=1

Nm + 1 (13)

global basis functions φj , j = 1, . . . , J representing a basis for the ansatz space Vh.
Using (12) the LGL nodes of the element shape functions can be mapped to the domains

of the corresponding elements. Subsequently, we collect all nodes in

Z = {z1, . . . , zJ},

where each inter-element node appears only once. An important feature of the SEM is the
nodal interpolation property:

φi(zj) = δi,j , zj ∈ Z, i = 1, . . . , J. (14)

In the next step, we replace h and q in the weak formulation (9) by the approximations

h(z, t) ≈ hh(z, t) =
J∑

j=1

hj(t)φj(z) and q(z, t) ≈ qh(z, t) =
J∑

j=1

qj(t)φj(z). (15)
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Moreover, we temporarily introduce

Qh(z, t) =
J∑

j=1

Qj(t)φj(z), Qj(t) = qj(t)|qj(t)|, j = 1, . . . , J (16)

to approximate the nonlinear expression q(z, t)|q(z, t)| in the second component of (9). In the
sense of a Galerkin method, the space of test functions V is replaced by the space of ansatz
functions Vh. With the help of the mass matrix

(Mχ)i,j =

∫ L

0
χ(z)φiφj dz,

the stiffness matrix

Si,j =

∫ L

0

∂φi
∂z

φj dz,

as well as the vectors

h =
[
h1, . . . , hJ

]>
, q =

[
q1, . . . , qJ

]>
, Q =

[
q1|q1|, . . . , qJ |qJ |

]>

and
e1 =

[
1, 0, . . . , 0

]>
, eJ =

[
0, . . . , 0, 1

]>

we obtain

Mε
dh

dt
= Sq + q∗1e1 − q∗JeJ , (17a)

Mµ
dq

dt
= Sh + h∗1e1 − h∗JeJ −MrQ, (17b)

where
Q = q|q| (17c)

and q|q| denotes a pointwise multiplication of two column vectors. In (17), we have introduced
the notations

q∗1 := F ∗1 (0, t), h∗1 := F ∗2 (0, t), q∗J := F ∗1 (L, t), h∗J := F ∗2 (L, t),

which are motivated by the observation that F ∗1 (z, t) and F ∗2 (z, t) are approximations of
q(z, t) and h(z, t), respectively, cf. (5). The values of q∗1, h

∗
1, q
∗
J and h∗J are used to realize the

boundary conditions and will be specified in the subsequent sections.
Like in the case of classical finite element methods, the assembling process of the mass and

stiffness matrices is realized by means of the corresponding element mass and element stiffness
matrices [29, 28, 30]. In case of the SEM all integrals are approximated by the quadrature
rule ∫ 1

−1
f(ξ) dξ ≈

Nm∑

i=0

wif(ξi) (18a)

using the weights [11]

wi =
2

Nm(Nm + 1)

1

(PNm(ξi))2
, i = 0, . . . , Nm. (18b)
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boundary condition numerical flux component q∗ numerical flux component h∗

h(0, t) = h0(t) q∗1 = q1 − gA(0)
c(0) (h1 − h0(t)) h∗1 = h0(t)

q(0, t) = q0(t) q∗1 = q0(t) h∗1 = h1 − c(0)
gA(0)(q1 − q0(t))

h(L, t) = hL(t) q∗J = qJ − gA(L)
c(L) (hL(t)− hJ) h∗J = hL(t)

q(L, t) = qL(t) q∗J = qL(t) h∗J = hJ − c(L)
gA(L)(qL(t)− qJ)

Table 1: Numerical flux components q∗ and h∗ corresponding to different Dirichlet boundary conditions.

Hence, the assembling process is based on the same nodes ξ0, . . . , ξNm as the definition of
the element shape functions. In fact, it can be easily verified that, as a result of the nodal
interpolation property (14) and the quadrature rule (18), any mass matrix Mχ (irrespective of
the coefficient function χ) is a diagonal matrix [11]. This property allows for the application
of fast explicit time stepping methods to the system of ordinary differential equations (ODEs)
given in (17). The simplicity of the nonlinear pipe frictional loss term Mrq|q| is even more
remarkable. Indeed, the mass matrix Mr has to be computed only once. This is in strong
contrast to classical finite element methods which in the worst case scenario would require
to assemble a new mass matrix in each time step. Finally, we would like to mention that
the expression in (16) coincides with the nonlinear expression qh(z, t)|qh(z, t)| for z = zj ,
j = 1, . . . , J . Therefore, Qh(z, t) and qh(z, t)|qh(z, t)| are equivalent with respect to the
quadrature rule (18) and hence (16) does not introduce an additional disretization error.

3.3. Dirichlet boundary conditions

One of the most frequently used boundary conditions are Dirichlet boundary conditions

h(0, t) = h0(t) or q(0, t) = q0(t) and h(L, t) = hL(t) or q(L, t) = qL(t) (19)

for some given (potentially time dependent) functions h0(t), q0(t), hL(t) and qL(t). In general,
boundary conditions are realized using the values q∗1, h

∗
1 and q∗J , h

∗
J in (17) corresponding to

the components of the numerical flux (8)

q∗ =
1

2
(q− + q+)− gA

2c
(h+ − h−),

h∗ =
1

2
(h− + h+)− c

2gA
(q+ − q−)

(20)

evaluated at the boundary points z = 0 and z = L, respectively.
As an example let us consider the Dirichlet boundary condition h(L, t) = hL(t). A simple

strategy reported in literature of Discontinuous Galerkin methods (cf. [12, 31]) is given by

q+ = q− and h+ = −h− + 2hL(t),

i.e.,

q∗J = q− − gA(L)

c(L)
(hL(t)− h−) and h∗J = hL(t),

where q− and h− have to be replaced by the last nodal values qJ and hJ , respectively. In the
same way, all remaining boundary conditions of (19) can be realized, see Tab. 1.
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3.4. General remarks concerning the numerical simlations

All simulations of this article are realized using the Matlab programming language. In
most examples, reference solutions are provided by the MOC. In this context, it is impor-
tant to note that due to the simple structure of the underlying algorithm, the MOC can be
implemented very efficiently using Matlab-specific vectorization techniques. However, as the
MOC is a low-order numerical method, very small time step sizes (4t)MOC are required. In
its most basic form (without interpolations) the MOC requires the spatial step size (4z)MOC

to satisfy the (strict) CFL condition (4z)MOC/(4t)MOC = c. The situation becomes even
worse in pressure lines consisting of K segments characterized by different wave speeds ck,
k = 1, . . . ,K where the MOC needs to satisfy

(4z)(k)MOC

/
(4t)MOC = ck (21)

simultaneously for all segments k = 1, . . . ,K. As a result, only certain combinations of spatial
mesh sizes and time step sizes are possible.

A crucial step in the implementation of the SEM is the computation of the element
mass and element stiffness matrices, which require the nodes ξ0, . . . , ξNm and the weights
w0, . . . , wNm corresponding to the quadrature rule given in (18). Moreover, the first derivatives

of the element shape functions `
(m)
0 , . . . , `

(m)
Nm

need to be evaluated at ξ0, . . . , ξNm in order to
assemble the stiffness matrix. Computing these numerical values with high precision is a
nontrivial task, especially if the polynomial degree Nm is large. We therefore make use of the
Matlab routines given in [32], which are numerically stable and efficient at the same time.

Using (14) and (15) we immediately find hh(zj , t) = hj and qh(zj , t) = qj for all j =
1, . . . , J . However, in order to compare solutions of the SEM with those of the MOC we
need to evaluate hh and qh at the (densely sampled) grid points associated to the MOC. This
interpolation process is realized using barycentric interpolation [33], which is a fast and stable
variant of Lagrange polynomial interpolation. It is important to note that a direct evaluation
of hh and qh based on formula (10) is numerically unstable and would ruin all numerical
convergence rates reported below.

Finally, we would like to mention that in the graphical representations we always show the
spatial distributions of the pressure p instead of the piezometric head h. However, since the
numerical implementation of the SEM and the MOC are based on (2) which is formulated in
terms of the piezometric head h and the volume flow q, we show numerical errors and relative
differences in terms of the piezometric head h. The numerical differences in terms of q would
look very similar and yield the same convergence rates.

4. Numerical convergence analysis

In the following, we consider several numerical examples of increasing complexity. The
simulations in this section are limited to a single horizontal pressure line. Without loss of
generality, we set x2(z) = 0 for all z ∈ Ω, Ω = [0, L]. The length of the pressure line L and
its diameter D are similar to those used in [19].

4.1. A mathematical benchmark problem

In the first example, we consider constant coefficient functions D, c > 0 and fλ = 0. In
particular, we are interested in computing the time evolution corresponding to the initial
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values

h(z, t = 0) = hs(z), q(z, t = 0) = qs(z)

for z ∈ R and t > 0. Using the characteristic decomposition

∂tw1 + c∂zw1 = 0, w1 =
1

2

[
q +

gA

c
h
]
,

∂tw2 − c∂zw2 = 0, w2 =
1

2

[
q − gA

c
h
]
,

it follows immediately that

h(z, t) =
c

gA

[
w1,s(z − ct)− w2,s(z + ct)

]
and q(z, t) = w1,s(z − ct) + w2,s(z + ct) (22)

solve (2) for all z, t ∈ R. Here, w1,s and w2,s denote the initial values given by w1,s(z) =
[qs(z) + (gA/c)hs(z)]/2 and w2,s(z) = [qs(z)− (gA/c)hs(z)]/2, respectively.

At the boundaries of Ω we implement the following pair of transparent boundary condi-
tions:

q(0, t) = −gA
c
h(0, t) and q(L, t) =

gA

c
h(L, t). (23)

Obviously, these boundary conditions are of different nature compared to those listed in
Tab. 1. However, we may define the functions q0(t) = −(gA/c)h1 and qL(t) = (gA/c)hJ with
the first and last nodal value h1 and hJ , respectively. Subsequent application of the second
and fourth line of Tab. 1 yields

q∗1 = −gA
c
h1, h

∗
1 = − c

gA
q1 and q∗J =

gA

c
hJ , h

∗
J =

c

gA
qJ . (24)

We note that these equations coincide exactly with the Silver-Müller boundary conditions
(reduced to one spatial dimension) presented in [31]. Below we will see that (24) can be
used in combination with explicit time stepping methods and reasonable time step sizes 4t.
However, we found that a simple modification of (24) results in a stable discretization for
even larger time step sizes. To this end, we require (23) to be satisfied for the numerical flux
values q∗ and h∗, i.e. we define q0(t) = −(gA/c)h∗1 and qL(t) = (gA/c)h∗J . Application of the
second and fourth line in Tab. 1 yields

q∗1 =
1

2

(
q1 −

gA

c
h1

)
, h∗1 =

1

2

(
h1 −

c

gA
q1

)
and q∗J =

1

2

(
qJ +

gA

c
hJ

)
, h∗J =

1

2

(
hJ +

c

gA
qJ

)
.

(25)
For the numerical experiment we choose D = 0.01m, c = 1200 m/s and L = 12 m. Fur-

thermore, we consider the initial value distributions

hs(z) = α exp(−β(z − L/2)2), qs(z) = 0

for z ∈ Ω with α = 100 m and β = 1.
In the first numerical simulation, the computational domain is partitioned into only M =

10 elements of equal size and a polynomial degree of Nm = 5 is used for all elements m =
1, . . . ,M . In order to propagate the numerical solution in time we employ the classical Runge-
Kutta method of order 4 [34]. An illustration of the time evolution of p and q for t ∈ [0, T ]
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Figure 3: Time evolution of p and q corresponding to the mathematical benchmark problem considered in
Sec. 4.1.
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Figure 4: Relative errors corresponding to the mathematical benchmark problem evaluated at T = 5 ms. Left
column: During a series of simulations, the polynomial degrees Nm = N are kept constant for all elements
m = 1, . . . ,M while the computational domain is divided into decreasing element sizes 4z. The convergence
rates are of order N + 1 for odd degree and N for even degree. Right column: The computational domain
is partitioned into M = 10 elements of equal size. In each simulation, the polynomial degree Nm = N
is successively increased for all elements m = 1, . . . ,M . The numerical error decreases at a spectral, i.e.,
exponential convergence rate.
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with T = 8 ms is given in Fig. 3. Using the numerical flux components given in (25) we
may utilize a time step size of 4t = 0.2 ms which corresponds to only 40 time steps for the
whole simulation. In contrast, a time step size of 4t = 0.05 ms is needed to ensure numerical
stability if the numerical flux values are chosen according to (24).

As a next step we want to compute numerical convergence rates with respect to the
size of the elements. To this end, we divide the computational domain into M elements
of the same size 4z. Moreover, we employ the same polynomial degree Nm = N for all
m = 1, . . . ,M . During a series of simulations we keep the polynomial degree constant whereas
the computational domain is divided into decreasing element sizes 4z. In order to keep the
time discretization error as low as possible we use the Matlab function ode45 (RelTol = 2.5×
10−14). In this specific example, an exact reference solution is available and can be computed
using (22). The relative errors are evaluated at time T = 5 ms, i.e., exactly when half of
the wave packet has already left the computational domain. In this manner, it is guaranteed
that the effect of the boundary conditions is fully included in the numerical convergence rates
depicted in the left column of Fig. 4. It can clearly be seen that the convergence rates are of
order N + 1 for odd degree and N for even degree. In this context, it is worth noting that
such odd-even phenomena have already been reported in literature of discontinuous Galerkin
methods (DGM) [35, 36] and that the way we implement the boundary conditions is based
on the same principles as in the DGM.

The effect reported above might be interesting from a theoretical point of view, however,
we will now demonstrate that for realistic element sizes 4z it makes hardly any difference
whether one uses odd or even polynomial degrees. For this purpose, we partition the compu-
tational domain into M = 10 elements of the same size. In each simulation, the polynomial
degree Nm = N is successively increased for all elements m = 1, . . . ,M and the relative er-
rors are gathered in the right column of Fig. 4. The resulting graph perfectly agrees with the
anticipated spectral, i.e., exponential convergence rate. Furthermore, there is a significant
improvement of the accuracy irrespective of whether one increases N starting from an even
or an odd polynomial degree.

4.2. Water hammer simulation 1

We consider the same pressure line as in the previous example. However, the boundary
condition at the left boundary point z = 0 is replaced with a nonhomogenous Dirichlet
boundary condition h(0, t) = h0, where h0 = p0/(ρg) for some given pressure p0. At the same
time the boundary condition corresponding to the right boundary point z = L is replaced
with the boundary condition

q(L, t) = αvAv
√

2/ρ sign(p(L, t)− pv)
√
|p(L, t)− pv|u(t),

which describes the turbulent volume flow through a valve. Here, pv denotes the pressure at
the valve outlet, Av is the cross-sectional area, αv is referred to as the contraction coefficient,
and u(t) describes the control input related to the opening of the valve. Assuming that
p(L, t) > pv holds true for all times t, we may write

q(L, t) = Cv
√
h(L, t)− hvu(t) (26)

with Cv = αv
√

2gAv and hv = pv/(ρg).
In a water hammer simulation, the initial values of h and q are given by the stationary

solution of (2) and the control input u is decreased from a positive value u0 at time t = 0
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to uTc = 0 at time t = Tc in a strictly monotonous manner. In order to prevent a distortion
of the convergence rates reported below, the control input needs to be a sufficiently smooth
function. Therefore, we employ

u(t) =





1, if t < 0,

σ(tπ/Tc) if t ∈ [0, Tc],

0, if t > Tc,

(27)

where σ denotes the eighth order sharpened raised cosine filter [11]

σ(θ) = σ40(θ)[35− 84σ0(θ) + 70σ20(θ)− 20σ30(θ)]

with
σ0(θ) = (1 + cos(θ))/2, θ ∈ [0, π].

We note that u is seven times continuously differentiable in R.

0

0.5

1

u
(n

or
m

al
iz

ed
)

0 5 10 15 20 25 30 35 40
time in ms

Tc

Figure 5: Control input u of the valve corresponding to the first and second water hammer simulation.

The first boundary condition at the left boundary point z = 0 can be implemented easily
using the first line of Tab. 1. Similar to the previous example we consider two methods to
realize the second boundary condition in (26). To this end, we consider the components of
the numerical flux

q∗J = qL(t), h∗J = hJ −
c

gA
(qL(t)− qJ) (28)

corresponding to the last line of Tab. 1. In case of the first method, (26) is evaluated using
the last nodal value of h:

qL(t) = Cv
√
hJ − hvu. (29)

In case of the second approach, we require (26) to be satisfied for the numerical flux values
q∗J and h∗J itself. Therefore, qL(t) = q∗J is given implicitly via

q∗J = Cv
√
h∗J − hvu. (30)

In a numerical implementation, h∗J is replaced according to the second expression in (28) and
hence we obtain a quadratic equation in q∗J . However, as we will see below, the numerical
effort caused by solving an additional quadratic equation is negligibly small compared to the
improvements regarding the stability of the resulting numerical scheme.

The following numerical experiments are based on the parameter values p0 = 120 bar,
pv = 100 bar, αv = 0.7 and Av = AL/5, where AL denotes the cross-sectional area at z = L.
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Figure 6: Time evolution of p and q corresponding to the first water hammer problem.

The control input is given according to (27) using a valve closure time of Tc = 5 ms, see Fig. 5.
All other parameters D = 0.01m, c = 1200 m/s, L = 12 m and fλ = 0 remain unchanged.

In the first numerical experiment, we partition the computational domain into M = 10
elements of equal size and a polynomial degree of Nm = 5 is employed on each element
m = 1 . . . , 10. For the implementation of the valve boundary condition, we employ the
numerical flux values according to the implicit formulation (30). The time integration is
realized using the classical Runge Kutta method in combination with a time step size of
4t = 0.2 ms which corresponds to only 200 time steps for the whole time evolution shown in
Fig. 6. In contrast, if the valve boundary condition is realized using (29), a time step size
of 4t = 0.025 ms is needed to ensure numerical stability. Thus, a minor modification of the
discretization scheme improves the computational efficiency by a factor of almost ten.
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0 40 80 120
time in ms

Figure 7: Time evolution of the pressure at z = L corresponding to the first water hammer problem using
different numbers of elements M with fixed polynomial degrees Nm = 3, m = 1, . . . ,M .

Next, we take a look at the water hammer signature, i.e., the time evolution of the pressure
at z = L. In particular, we compare the water hammer signatures obtained by means of the
SEM with those obtained using the MOC. In order to satisfy the CFL condition of the MOC

14

Post-print version of the article: J.-F. Mennemann, L. Marko, J. Schmidt, W. Kemmetmüller, and A. Kugi, “The spectral element method
as an efficient tool for transient simulations of hydraulic systems”, Applied Mathematical Modelling, vol. 54, pp. 627–647, 2018, issn:
0307-904X. doi: 10.1016/j.apm.2017.10.010
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.apm.2017.10.010


(for all considered element sizes), a comparatively small time step size of 4t = 0.025 ms is
used for the time integration. Note that this restriction only applies to the MOC. In fact it
would be possible to use a much larger time step size for the time integration of the SEM. As
before, the time integration of the SEM is based on the classical Runge-Kutta method.

In Fig. 7, we show the results of the SEM using a different number of equally sized
elements M with fixed polynomial degrees Nm = 3 for all m = 1, . . . ,M . While for small M
we observe significant overshoots similar to the Gibbs phenomenon, these overshoots decrease
rapidly with increasing M . In fact, for M = 40 we perfectly recover the water hammer
signature computed by the MOC.

The results of a complementary situation are depicted in Fig. 8. Here, we consider a fixed
number of elements M = 10 but different polynomial degrees Nm = N with m = 1, . . . ,M .
It can clearly be seen that, as the polynomial degree is increased, the solutions corresponding
to the SEM converge quickly towards the solution obtained by the MOC.
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Figure 8: Time evolution of the pressure at z = L corresponding to the first water hammer problem using a
fixed number of elements M = 10 with different polynomial degrees Nm = N , m = 1, . . . ,M .

Considering very similar simulations in [19], the results presented above are quite remark-
able. Using only M = 10 elements in combination with a polynomial degree of N = 5, we
are able to perfectly recover the water hammer signature computed by the MOC. This is in
strong contrast to the Chebyshev super spectral viscosity method [19] which, by means of an
additional viscosity operator, is able to counteract the Gibbs-like phenomenon. However, at
the same time, the viscosity operator leads to a significant smoothing of the original water
hammer signature. In this context, it is important to note that the system sizes of both
discretizations are comparable. Moreover, the water hammer effect considered here is very
similar in terms of the ratio of the valve reflection time (2L/c) to the valve closure time Tc.

Finally, we compute numerical convergence rates corresponding to the SEM as a function
of the element size 4z and the polynomial degree Nm. The time evolution is again based on
the Matlab function ode45 (RelTol = 2.5×10−14) which allows to keep the time discretization
error as low as possible.

Due to the nonlinear valve boundary condition (26), an exact reference solution would be
extremely difficult to obtain. We therefore compute a numerical reference solution using the
MOC. The relative differences will be evaluated at time T = 20 ms. Since the MOC is only
a low order method, an extremely small time step size of (4t)MOC = 0.00025 ms is needed
in order to obtain sufficiently accurate solutions, and as a result of the CFL condition (21),
the number of spatial grid points MMOC = 40 000 is quite large. Thus, computing a reference
solution at time T = 20 ms is a rather time-consuming process.
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Figure 9: Relative differences corresponding to the first water hammer problem evaluated at T = 20 ms. Left
column: In a series of simulations, the computational domain is divided into decreasing element sizes 4z
while the polynomial degrees Nm = N are kept constant for all elements m = 1, . . . ,M . Right column: The
computational domain is partitioned into M = 10 equally sized elements. In each simulation, the polynomial
degree Nm = N is successively increased for all elements m = 1, . . . ,M . It can be clearly seen that the
numerical error decreases at an exponential convergence rate.

The left column of Fig. 9 shows the relative differences as a function of the element size
4z for fixed polynomial degrees Nm = N for all m = 1, . . . ,M . As we can see, we obtain
the same numerical convergence rates as in the mathematical benchmark problem (cf. Fig. 4)
exhibiting the same odd-even phenomenon. However, we will again show that in realistic
scenarios, where the number of elements is much smaller, this odd-even phenomenon is not
an issue. To this end, let us consider a subdivision of the computational domain into M = 10
equally sized elements. While the number of elements is kept constant we compute the relative
differences for increasing polynomial degrees Nm = N with m = 1, . . . ,M . The results are
gathered in the right column of Fig. 9. Like in the mathematical benchmark problem we
observe a nearly perfect spectral convergence rate. Moreover, no staircase effect is visible
and, therefore, the improvement of accuracy is not dependent on whether we increase N
starting from an odd or an even polynomial degree.

4.3. Water hammer simulation 2

So far, we neglected the effect of pipe friction losses. Furthermore, the diameter of the
pressure line considered in the previous sections was assumed to be constant. Here, we will
focus our attention on a more general situation, namely a pressure line which is characterized
by the coefficient functions D, c and fλ as depicted in Fig. 10. All the other parameters are
chosen like in the previous water hammer problem and also the boundary conditions and the
time evolution of the control input u remain the same.

The pressure line consists of three segments (separated by dashed orange lines) as needed
to resolve the abrupt changes in the coefficient functions. In the first numerical simulation, the
segments are subdivided into M1 = 10, M2 = 1 and M3 = 10 elements, see Fig. 10. Moreover,
a polynomial degree of N = 3 is assigned to all elements. Please note that the element sizes
vary slightly from one segment of the pressure line to another. In order to propagate the
numerical solution in time we utilize the classical Runge Kutta method in combination with
a time step size of 4t = 0.2 ms. The corresponding time evolution of p and q is shown in
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Figure 11: Time evolution of p and q corresponding to the second water hammer problem.
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Figure 12: Relative differences between the numerical solutions of the MOC and the SEM corresponding to
the second water hammer problem evaluated at T = 20 ms. For decreasing time step sizes (4t)MOC, the
solutions of the MOC converge towards a reference solution provided by the SEM. The spatial mesh sizes
(4z)(k)MOC corresponding to the MOC are completely determined by (4t)MOC and the wave speeds ck on the
different segments k = 1, 2, 3 via the CFL condition (21). Depending on whether pipe frictional losses are
taken into account (fλ 6= 0) or neglected (fλ = 0), the relative differences decrease at a linear or quadratic
rate, respectively.

Fig. 11 and exhibits much more complicated patterns compared to the first water hammer
problem (cf. Fig. 6).

Taking a closer look at the derivation presented in Sec. 3, it is quite obvious that it makes
hardly any difference whether the SEM is used in combination with constant or piecewise
smooth coefficient functions as long as abrupt changes in D, c, or fλ are taken into account
by a properly adapted spatial mesh. This is in strong contrast to the MOC which in case of a
variable diameter D performs significantly worse. Also a non-zero pipe friction coefficient fλ
deteriorates the accuracy of the MOC. However, since pipe frictional losses are comparatively
small, this effect becomes only visible at very fine spatio-temporal discretizations.

For the reasons indicated above, it is basically impossible to obtain a sufficiently accurate
solution by means of the MOC which will then serve as a reference solution to investigate
the numerical convergence rates of the SEM. Instead, we will show that for decreasing step
sizes (4t)MOC the solutions of the MOC converge towards a reference solution provided by the

SEM. Here, it should be noted that the spatial mesh sizes (4z)(k)MOC are completely determined
by the wave speeds on the different segments k = 1, 2, 3 via the CFL condition (21).

In order to compute a reference solution by means of the SEM, the first, second and
third segment is partitioned into 40, 4 and 40 elements, respectively. Moreover, a polynomial
degree of Nm = 8 is used for all elements m = 1, . . . ,M and the time evolution is based on the
Matlab function ode45 (RelTol = 2.5×10−14). It is worth noting that a further refinement of
the spatio-temporal discretization would not change the relative differences shown in Fig. 12.

It can clearly be seen that, for practically relevant time step sizes (4t)MOC, the numer-
ical solutions corresponding to the MOC converge at a rate of approximately 2 towards the
reference solution provided by the SEM. However, for small time step sizes the convergence
rate decreases to a value of approximately 1. This behavior agrees well with the numerical
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approximations underlying the MOC. The derivation of the MOC is based on an integration
of the characteristic equations along the positive and negative characteristics dz/dt = c and
dz/dt = −c, respectively. To this end, variable cross-sectional areas are replaced by average
values corresponding to two consecutive grid points, which causes the second order conver-
gence rate shown in Fig. 12. In order to integrate the nonlinear pipe frictional loss term, the
expression q|q| is approximated by its value at the beginning of each time step. While this
simple approximation is necessary in order to make the MOC an explicit method, it is also
responsible for the first order convergence rate seen in Fig. 12. However, since pipe frictional
losses are very small the effect is only visible at a low level of relative differences. In fact, if
pipe frictional losses are neglected (fλ = 0) we obtain a uniform quadratic convergence rate,
cf. Fig. 12.

By means of the above simulations we have, at least implicitly, demonstrated that the SEM
works as expected also in the case of variable coefficient functions D, c and fλ. Furthermore,
we have investigated the numerical convergence behavior of the MOC. To the best of our
knowledge, and despite the fact that the MOC is the most widely used method in the context
of transient hydraulic simulations, the convergence analysis of the MOC presented above
cannot be found in literature in this form. We would like to emphasize that in the numerical
example, the wave speeds and the lengths of the segments were chosen in such a way that
the CFL conditions in (21) can be easily satisfied. In a real-world example the lengths of the
segments often have to be modified with respect to the original data, and hence, the numerical
solutions of the MOC converge towards the solution of a (slightly) modified problem.

5. Simulation of hydraulic transients in a pumped-storage power plant

Having demonstrated the accuracy and effectiveness of the SEM for the numerical simu-
lation of wave propagation effects on a single pressure line, we will now turn our attention to
a coupled system of several pressure lines. In particular, we want to simulate the transient
behavior of pressure waves in a large-scale pumped-storage power plant. A detailed math-
ematical model of a variable speed pumped-storage power plant including a comprehensive
description of the underlying hydraulic and electrical systems is presented in [37].

The main reason for considering the pumped-storage power plant example is to study
the applicability and the advantage of the SEM for a real-world control problem. For the
application of modern optimization-based control techniques like model predictive control,
appropriate numerical approximations which are computationally very efficient and at the
same time capable of accurately describing the time evolution of the pressure waves are a key
element.

5.1. Model description

The spatial positions of the pressure lines, the bifurcations and the turbines are illustrated
in Fig. 13 using a (x1, x2, x3)-coordinate frame. Here, x2 is oriented in opposite direction to the
gravitational acceleration g. Each of the pressure lines will be parameterized by its arclength
zi ∈ [0, Li], with Li denoting the length of the ith pressure line, i = 1, . . . , 6. Moreover, we
assume that the 1st pressure line is connected to a reservoir at z1(0) and the 6th pressure line
is connected to a reservoir at z6(L6).

Fig. 14 shows the coefficient functions α, D, c and fλ corresponding to the 1st, 2nd, 4th
and 6th pressure line. The coefficient functions of the 3rd and 5th pressure line coincide
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with those of the 2nd and the 4th pressure line, respectively. We note that the inclination αi
determines the height profile

x2,i(zi) = x02,i +

∫ zi

0
sin(αi(z̃)) dz̃, zi ∈ [0, Li]

of the ith pressure line as a function of the local arclength zi. However, these height profiles
are only needed for the conversion of pressure values to piezometric heads (and vice versa),
see (1). The time evolution of the piezometric head hi and the volume flow qi on the ith
pressure line is governed by (2), i.e.

∂

∂t

[
hi
qi

]
+

[
0 c2i /(gAi)
gAi 0

]
∂

∂z

[
hi
qi

]
= −

[
0

Riqi|qi|

]
(31)

for i = 1, . . . , 6. In order to complete the description of the mathematical model, we need to
specify twelve boundary conditions.

Given the relatively short simulation periods considered below, it is reasonable to assume
that the filling levels of the reservoirs are virtually constant for all t ∈ [0, T ]. Therefore, the
piezometric heads at the reservoirs are fixed by Dirichlet boundary conditions

h1(0, t) = hres,t, (32a)

h6(L6, t) = hres,b, (32b)

where

hres,t = pres,t/(ρg) + x2,1(0),

hres,b = pres,b/(ρg) + x2,6(L6)

with pres,t and pres,b being the pressure at the top and bottom reservoir, respectively.
Furthermore, since the lengths of the bifurcations are short in comparison to the lengths

of the pressure lines, it is fair to assume that the bifurcations can be well described by the
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relations
q1(L1, t) = q2(0, t) + q3(0, t),

h2(0, t) = h1(L1, t),

h3(0, t) = h1(L1, t),

h4(L4, t) = h6(0, t),

h5(L5, t) = h6(0, t),

q6(0, t) = q4(L4, t) + q5(L5, t).

(33)

The remaining four boundary conditions are

q2(L2, t) = qI,

q3(L3, t) = qII,

q4(0, t) = qI,

q5(0, t) = qII,

(34)

where the volume flows through the turbines qI and qII are given implicitly by the nonlinear
algebraic equations [37]

0 = WH(χI, ϑI)[qI/qref)
2 + (ωI/ωref)

2]href −
q2I
2g

[(1/A2(L2))
2 − (1/A4(0))2]

− (h2(L2, t)− h4(0, t)),
(35a)

0 = WH(χII, ϑII)[(qII/qref)
2 + (ωII/ωref)

2]href −
q2II
2g

[(1/A3(L3))
2 − (1/A5(0))2]

− (h3(L3, t)− h5(0, t)).
(35b)

Here, ωI and ωII denote angular velocities corresponding to the two turbines and

ϑI = arctan
( qI/qref
ωI/ωref

)
, ϑII = arctan

( qII/qref
ωII/ωref

)

are dimensionless variables which, together with the guide vane positions χI and χII, are used
to evaluate the characteristic map WH shown in Fig. 15. We note that the above equations
describe two Francis turbines which are assumed to be of the same type and, therefore,
identical parameters href , qref and ωref are used both in (35a) and (35b). Moreover, in order
to keep the model as simple as possible, we assume that the angular velocities of the turbines
are held constant at ωI = ωII = ωref by means of a subordinate controller.

5.2. Semi-discretization

According to (17), the semi-discretizations of the systems given in (31) read

Mε,i
dhi
dt

= Siqi + q∗i,1ei,1 − q∗i,Jiei,Ji ,

Mµ,i
dqi
dt

= Sihi + h∗i,1ei,1 − h∗i,Jiei,Ji −Mr,iqi|qi|
(36a)
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for i = 1, . . . , 6. The boundary conditions in (32), (33) and (34) are realized by means of the
numerical flux components (cf. Tab. 1)

q∗1,1 = q1,1 − gA1(0)(h1,1 − hres,t)/c1(0), h∗1,1 = hres,t,

q∗6,J6 = q6,J6 − gA6(L6)(hres,b − h6,J6)/c6(L6), h∗6,J6 = hres,b,

q∗1,J1 = q2,1 + q3,1, h∗1,J1 = h1,J1 − c1(L1)((q2,1 + q3,1)

− q1,J1)/(gA1(L1)),

q∗2,1 = q2,1 + gA2(0)(h1,J1 − h2,1)/c2(0), h∗2,1 = h1,J1 ,

q∗3,1 = q3,1 + gA3(0)(h1,J1 − h3,1)/c3(0), h∗3,1 = h1,J1 ,

q∗4,J4 = q4,J4 − gA4(L4)(h6,1 − h4,J4)/c4(L4), h∗4,J4 = h6,1,

q∗5,J5 = q5,J5 − gA5(L5)(h6,1 − h5,J5)/c5(L5), h∗5,J5 = h6,1,

q∗6,1 = q4,J4 + q5,J5 , h∗6,1 = h6,1 + c6(0)((q4,J4 + q5,J5)

− q6,1)/(gA6(0)),

q∗2,J2 = qI, h∗2,J2 = h2,J2 − c2(L2)(qI − q2,J2)/(gA2(L2)),

q∗4,1 = qI, h∗4,1 = h4,1 + c4(0)(qI − q1,4)/(gA4(0)),

q∗3,J3 = qII, h∗3,J = h3,J3 − c3(L3)(qII − q3,J3)/(gA3(L3)),

q∗5,1 = qII, h∗5,1 = h5,1 + c5(0)(qII − q5,1)/(gA5(0)),
(36b)

where qI and qII are given implicitly by

0 = WH(χI, ϑI)[(qI/qref)
2 + 1]href − q2I [(1/A2(L2))

2 − (1/A4(0))2]/(2g)− (h∗2,J2 − h∗4,1),
0 = WH(χII, ϑII)[(qII/qref)

2 + 1]href − q2II[(1/A3(L3))
2 − (1/A5(0))2]/(2g)− (h∗3,J3 − h∗5,1).

(36c)
Here, it is important to note that h2(L2, t), h4(0, t) in (35a) and h3(L3, t), h5(0, t) in (35b)
have been replaced by h∗2,J2 , h∗4,1 and h∗3,J3 , h∗5,1, respectively. Another possibility would be
to use the nodal values h2,J2 , h4,1 and h3,J3 , h5,1 directly. However, as in the case of the
nonlinear valve boundary condition considered in Sec. 4.2, the latter choice requires a much
smaller time step size 4t in order to ensure numerical stability in combination with explicit
time stepping methods.

5.3. Numerical simulation

We now consider a numerical simulation of the pumped-storage power plant introduced
above. In particular, we want to demonstrate that the SEM is able to reproduce a solution
provided by the MOC using a minimum number of spatial grid points. In this context, it
is important to note that the relative errors reported in Sec. 4 are disproportionally small
when compared to the expected errors of the underlying model. Our long-term objective
is to operate pumped-storage power plants using model predictive control (MPC). In such
applications, it is crucial to have a low-dimensional system representation available, which
describes the dynamic behavior sufficiently well while remaining numerically efficient enough
to be evaluated in real time.

The lengths of the pressure lines shown in Fig. 14 represent realistic values but have
been modified slightly in order to be able to satisfy the CFL conditions (21) required by
the MOC. The largest time step size which satisfies all CFL conditions simultaneously is
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(4t)MOC = 2 × 10−3 s. Since the spatial mesh sizes of the MOC are determined by (21)
it follows that JMOC = 2 × 1036 spatial grid points are needed for the discretization of the
physical quantities h and q. Note that an even finer spatio-temporal discretization would not
change the numerical differences reported below.

In case of the SEM, we employ a single element per segment, see Fig. 14. Thus, in the given
example, segments and elements coincide. While our implementation allows for arbitrary
subdivisions of the segments, it turned out that single elements of comparatively high order
are more efficient when it comes to reaching medium level accuracies using a minimum number
of spatial grid points. The polynomial degrees of the element basis functions corresponding to
the different pressure lines and segments are N1 = (3, 1, 3, 1, 2), N2 = N3 = 1, N4 = N5 = 2
and N6 = (1, 1, 8). Thus, JSEM = 2 × 32 degrees of freedom are used to represent the
approximations of h and q, cf. (13). Since (36) constitutes a semi-explicit system of differential
algebraic equations (DAE) of index 1, there are basically two established approaches to realize
the time integration. The first approach consists of solving the algebraic equations (36c)
locally for the algebraic variables qI and qII. Hence, the remaining system of equations (36a)
and (36b) can be treated using explicit time stepping methods like the classical Runge Kutta
method or ode45 as implemented in the Matlab scripting language. Alternatively, the whole
system is treated as a single DAE system which can be integrated in time using implicit
methods like ode15s which is also an integral part of the Matlab programming environment.

The numerical simulation is based on the following set of physical parameters: pres,t =
5 bar, pres,b = 2 bar, href = 313.4 m, qref = 44.7 m3/s, and ωref = 42.1 rad/s. Moreover, we
assume that the initial state of the system is given by a stationary solution of (36) correspond-
ing to the initial guide vane positions χI(t = 0) and χII(t = 0). The guide vane positions χI

and χII will be varied as shown in the last row of Fig. 16 for the simulation period [0, T ] with
T = 20 s.

Due to the restrictions imposed by the CFL conditions, the MOC requires 10 000 time steps
in order to compute the complete time evolution. The elapsed calculation time amounts to
approximately 4.4 seconds. In contrast, if the time evolution is computed by means of the SEM
and ode45 (RelTol = 2.5 × 10−6) the required calculation time amounts to approximately
1.1 seconds. Using ode15s (RelTol = 2.5 × 10−6), the computing time can be even further
reduced to roughly 0.75 seconds.

The first row of Fig. 16 illustrates the time evolution of the pressure at the upstream side
of the first and second turbine, respectively. Due to the short lengths of the 2nd, 3rd, 4th
and 5th pressure line the differences of both graphs are comparatively small. The second row
shows the time evolution of the volume flows through the turbines. It can be clearly seen that
even within time intervals where the guide vane positions are held constant the volume flows
in the turbines are far from being constant as well. In fact, it would take much longer time
intervals (≈ 20 s) until the system becomes (approximately) stationary again. Additionally,
the third and fourth row of Fig. 16 demonstrate that the corresponding (absolute) differences
between the solutions of the SEM and the MOC are well below 5×10−3 for all times t ∈ [0, T ].

So far, we have only considered the differences of the numerical solutions corresponding
to the SEM and the MOC at or in the two Francis turbines. However, in many applications
the numerical solutions are required to be accurate along the whole pipeline system. For this
reason, the relative differences between the numerical solutions corresponding to the SEM
and the MOC are given in Fig. 17. More precisely, the relative differences of the piezometric
heads and the volume flows are shown as a function of time and separately for all six pressure
lines. Quite obviously, the relative differences of the piezometric heads h1, . . . , h6 and the
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Figure 16: Numerical simulation of the pumped-storage power plant considered in Sec. 5.3. The guide vane
positions χI and χII are varied as illustrated in the last row. The time evolution of the pressure at the
upstream side of the first and second turbine is shown in the first row and the time evolution of the volume
flows through the turbines is depicted in the second row. As can be seen from the third and fourth row, the
(absolute) differences between the solutions of the SEM and the MOC are well below 5 × 10−3 for all times
t ∈ [0, T ].
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Figure 17: Relative differences between the solutions corresponding to the SEM and the MOC for the numerical
simulation of the pumped-storage power plant considered in Sec. 5.3. The relative differences of the piezometric
heads and the volume flows are shown as a function of time and separately for all six pressure lines.

volume flows q1, . . . , q6 are well below 1 × 10−2 for all times t ∈ [0, T ] and hence the given
level of accuracy is significantly smaller than the expected overall modeling error. We note
that, in the present case, the time evolution corresponding to the SEM was calculated using
the Matlab function ode45. However, the second approach based on ode15s yields practically
the same results.

Of course, one could object that faster variations of the guide vane positions would cause
stronger pressure fluctuations which could not be resolved by the low-dimensional discretiza-
tion of the SEM outlined above. However, it turns out that the variations of χI and χII

already represent a possible worst case scenario. To make this clear, we consider the time
evolution of the pressure on the 6th pressure line as illustrated in Fig. 18. Due to its length
the 6th pressure line shows the most pronounced variations of the pressure. Moreover, due
to its spatial position, the pressure on the 6th pressure line is most likely to approach zero,
which, with respect to cavitation, is a critical scenario. In fact, we find that the time evolution
of p and q is comparatively smooth. However, Fig. 19 unveils that at t = 10 s the pressure
becomes very close to zero (locally). In a real system, the pressure should never fall below
1 bar (lower dashed line) and due to model inaccuracies even larger lower bounds are realistic.
At the same time, the pressure along the pressure lines is required to remain below a rea-
sonable upper bound, which is defined in terms of the pressure distribution of the stationary
state (orange dashed line). However, Fig. 19 shows that even a generously dimensioned upper
bound (upper dashed line) is dramatically exceeded at t = 16 s.

In optimal or model predictive control applications, these lower and upper bounds for the
pressure distributions must be systematically taken into account. In this context, the most
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Figure 18: Time evolution of p6 and q6 corresponding to a numerical simulation of the pumped-storage power
plant depicted in Fig. 13.
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Figure 19: Snapshots of the pressure distribution along the 6th pressure line of the pumped-storage power
plant considered in the numerical simulation of Sec. 5.

rigorous approach is based on direct transcription methods [26, 27]. However, in order to keep
the numerical effort as low as possible, direct transcription methods are dependent on a low
dimensional system representation. Comparing the system size of the MOC (JMOC = 2×1036)
with the system size of the SEM (JSEM = 2 × 32), it is obvious that the SEM will give a
significant advantage in this field of applications.

6. Conclusions and outlook

In summary, this paper shows that the spectral element method (SEM) represents an
efficient and flexible method for transient simulations of hydraulic systems, in particular also
for the use in optimization-based control applications. By means of the SEM it is possible
to compute highly accurate numerical solutions of the water hammer problem using modest
computational resources. As a high order method, the SEM requires a minimum number of
dynamical states in order to yield excellent approximations of sufficiently smooth pressure
and volume flow fluctuations. In fact, we demonstrated that the hydraulic system of a large

27

Post-print version of the article: J.-F. Mennemann, L. Marko, J. Schmidt, W. Kemmetmüller, and A. Kugi, “The spectral element method
as an efficient tool for transient simulations of hydraulic systems”, Applied Mathematical Modelling, vol. 54, pp. 627–647, 2018, issn:
0307-904X. doi: 10.1016/j.apm.2017.10.010
The content of this post-print version is identical to the published paper but without the publisher’s final layout or copy editing.

http://dx.doi.org/10.1016/j.apm.2017.10.010


scale pumped-storage power plant can be well approximated using a low-dimensional sys-
tem representation which consists of only a few dozen dynamical states. The corresponding
semi-discretization can be integrated in time using standard time stepping strategies and is
therefore well suited for optimal and model predictive control applications. In particular,
model predictive control of pumped-storage power plants, while respecting lower and upper
pressure bounds, is within reach and will be presented in a subsequent publication.
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