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Accurate low-order dynamic model of a compact plate heat exchanger

Alexander Michel∗, Andreas Kugi
Automation and Control Institute (ACIN), Vienna University of Technology, Gußhausstraße 27-29 / E376, 1040 Vienna, Austria

Abstract

This paper deals with the derivation of a low-dimensional
mathematical model of a compact plate heat exchanger
capturing the significant nonlinearities and the essential
dynamic behavior in an accurate way. Thereby, the model
is based on the basic laws of thermodynamics and the
similitude theory of Nußelt. It is shown that reasonable
simplifications according to the specific design and the typ-
ical operating conditions of compact plate heat exchangers
together with a semi-discretization of the spatial domain
by means of the finite volume method provides a compact
finite-dimensional approximation of the underlying partial
differential equations (pdes). In this context, two differ-
ent interpolation schemes of the finite volume method are
compared, i.e. a classical upwind scheme and a new con-
cept based on an approximate stationary solution of the
underlying pdes. The latter ensures high accuracy even for
very low-order discretizations, which is shown by means of
simulation and measurement results.
Keywords: low-order dynamic model, compact plate heat exchanger, finite volume method, global power balance

1. Introduction

Compact plate heat exchangers like small sized brazed
plate heat exchangers are increasingly used in the field of
district heating, heat recovery, industrial process cooling
and heating, hydraulic oil cooling or cooling of machine
tools. Their advantages are high heat transfer rates, a
small overall size, a high resistance against fouling, high
working pressures, a simple design and thus low costs in
production. The working principle of all plate heat ex-
changers is the same, namely heat is exchanged between
two fluid circuits divided by plates. Thereby a 1/1 pass
flow arrangement, where the fluid paths of the two circuits
are arranged in an alternating manner, is commonly used
in industry [1], see Figure 1. In order to accurately track
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Figure 1: Design of a 1/1 pass countercurrent plate heat exchanger.

a desired outlet temperature under dynamically changing
operating conditions, a model-based control design, which
exploits the nonlinear structure of the heat exchanger
model, has the potential to outperform the traditionally
used linear control strategies. A prerequisite for the appli-
cation of model-based control strategies is the derivation
of an accurate low-dimensional mathematical model as a
design model. Otherwise the resulting control strategies
may get computationally too expensive to be implemented
in real-time on a standard industrial process control unit.
Therefore, we aim at developing a mathematical model of
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Nomenclature

Ac cross section Ac = BH [m2]
A,B,C,D system matrices of system Eq. (29)
B channel width [m]
CNu correlation parameter
cp specific heat capacity [J/(kg K)]
dh hydraulic diameter dh = 2H [m]
H channel heigth [m]
h heat transfer coefficient [W/(m2 K)]
Hp plate heigth [m]
k thermal conductivity [W/(m K)]
L channel length [m]
M number of volume elements
m mass [kg]
ṁ mass flow rate [kg/s]
Nc number of channels
Np number of plates
nPr correlation parameter
nRe correlation parameter
Nu Nußelt number Nu = hdh/k
Pr Prandtl number Pr = µcp/k
q̇ heat flux density [W/m]
Re Reynolds number Re = |u|%dh/µ
t time [s]
U overall heat transfer coefficient [W/(m2 K)]
u flow velocity [m/s]
w weighting factor
x coordinate [m]

Greek Symbols
α abbreviation (see Eq. (21)) [1/s]
β abbreviation (see Eq. (21)) [1/s]
Γ abbreviation (see Eq. (35))
γ abbreviation (see Eqs. (33) and (34))
δϑ thickness of the thermal boundary layer [m]
µ dynamic viscosity [kg/(m s)]
ϑ temperature [K]
θ temperature mean value of a volume element [K]
θ state vector of system Eq. (29)
ϑin input vector of system Eq. (29)
ϑout output vector of system Eq. (29)
ξ linear constant parameter (see Eq. (39))
% mass density [kg/m3]

Subscripts
1, 2, 3 direction x1, x2 or x3
I side I of the heat exchanger
II side II of the heat exchanger
f fluid
p plate
s stationary solution

Superscripts
c calculated value
in inlet
m measured value
out outlet
– (overbar) average value
∞ core flow

a plate heat exchanger, which is low-dimensional, easy to
parameterize and accurate enough to capture the essential
dynamics and nonlinearities.

Several mathematical models have been reported in the
literature. Usually, these models consider one spatial di-
mension and they differ in the level of detail, especially if
maldistribution of the fluid flow or the heat capacity of the
plates are taken into account. Moreover, different meth-
ods for solving the underlying partial differential equations
(pdes) are proposed. In [2] a mathematical model for arbi-
trary flow patterns is given, where the pdes are solved by
means of the frequency response in the Laplace domain.
Further models utilizing the Laplace transform are pre-
sented in [3, 4, 5]. An alternative approach is suggested in
[6], where Galerkin’s method is employed to solve the pdes.
In addition, [7, 8, 9] provide mathematical models based
on the finite volume method which is commonly used for
numerical heat transfer problems.

Although several mathematical models are available in
the literature, most of them are either high-dimensional
or give a rather inaccurate approximation of the nonlin-

ear dynamic behavior. In this context, the specific design
and the typical operating conditions of compact plate heat
exchangers remain mostly disregarded.

In this paper, an accurate low-order dynamic model
of a 1/1 pass compact plate heat exchanger is derived
in a systematic way. Thereby, the mathematical model
is systematically simplified by exploiting the specific de-
sign and the typical operating conditions of compact plate
heat exchangers. Starting with the basic equations of heat
transfer all assumptions and simplifications being made
are thoroughly explained in order to clarify the validity
range of the resulting low-order dynamic model. The pa-
per is organized as follows: In Section 2, the physical
fundamentals of heat exchanger design are summarized.
Based on the special design and the typical operating con-
ditions of compact plate heat exchangers, in Section 3,
specific simplifications are made to deduce a distributed-
parameter model consisting of three pdes. Furthermore,
a semi-discretization of the spatial domain is performed
by means of the finite volume method which gives rise
to a compact low-order model of only three ordinary dif-
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ferential equations. Thereby, two different interpolation
schemes are used, a classical upwind scheme and a new
concept based on the approximate stationary global power
balance. Finally, simulation and measurement results for
different industrial compact plate heat exchangers demon-
strate the accuracy of the proposed model. The last sec-
tion, Section 5, contains some conclusions.

2. Physics of heat exchanger modeling

Figure 1 shows the basic design of the considered 1/1
pass compact plate heat exchanger. The fluid flow pas-

x1x2

x3

Hq̇

V

L

ϑin, u1

Figure 2: Channel with a simplified geometry.

sages are formed by gaps between two adjacent plates
which have typically a chevron or herringbone corruga-
tion pattern [10]. In the following, typical assumptions in
heat exchanger analysis are supposed [7, 11, 12]:
1. The increase of temperature due to friction is negligi-

ble.
2. The fluid is assumed to be incompressible.
3. There are neither heat sources nor heat sinks inside a

channel.
4. The heat exchange with the environment is negligible.
5. The herringbone corrugation patterns induce high

vorticities and turbulences in the fluids even for low
Reynolds numbers.

6. The fluid velocity in the main flow direction is high
enough to justify that heat conduction along the flow
direction can be neglected compared to heat convec-
tion.

7. No phase changes of the fluid occur inside the heat
exchanger.

In a first step, the impact of the velocity field on the tem-
perature is discussed before the temperature field of one
channel of the plate heat exchanger is derived. In a sec-
ond step, the thermal coupling between the channels will
be determined. For this, a simplified geometry of a chan-
nel is considered, see Figure 2, where L, B and H refer
to the effective values of the channel length, the channel
width and the channel height.

Consider a small volume V inside the channel. If
no phase changes occur and the material parameters
are constant inside the volume V , the temperature field
ϑf (x1, x2, x3, t) inside V can be written as [13]

%cp

(
∂ϑf
∂t

+
3∑

i=1
ui
∂ϑf
∂xi

)
= −

3∑

i=1

∂q̇i
∂xi

, (1)

with the velocity field ui(x1, x2, x3, t), i = 1, . . . , 3 and
suitable boundary and initial conditions. The left hand
side of Eq. (1) describes the convective heat flux density.
Herein % denotes the mass density and cp is the specific
heat capacity of the fluid. Moreover, the right hand side of
Eq. (1) characterizes the heat transport over the boundary
of V .

2.1. Temperature field of a channel

In order to calculate the temperature field
ϑf (x1, x2, x3, t) inside the volume V , the velocity
field ui(x1, x2, x3, t) has to be known. An accurate model
of the velocity field yields a nonlinear system of pdes de-
pending on the exact geometry of the plates. This entails
high-order models which cannot be used for controller
design. However, the assumption of a turbulent fluid flow
justifies the use of a plug flow model which divides the flow
in a core flow with a constant flow velocity in x1-direction
u∞1 (t) and a velocity boundary layer [14]. This plug
flow directly influences the evolving temperature field ϑf ,
which again is assumed to be composed of a thermal core
and a boundary layer, see Figure 3, whereby the thickness
of the thermal boundary layer δϑ is negligible compared
to the thickness of the thermal core. Inside the thermal
core, due to the high turbulences of the fluid flow, the
temperature can be considered homogeneous, that is

ϑf (x1, x2, x3, t) = ϑ∞f (x1, t) (2)

and

∂ϑf
∂x2

= ∂ϑf
∂x3

= 0 . (3)

Thus, integrating Eq. (1) over the cross section Ac = BH
we get

∫ B

0

∫ H

0
%cp

(
∂ϑf
∂t

+
3∑

i=1
ui
∂ϑf
∂xi

)
dx2dx3

= −
∫ B

0

∫ H

0

3∑

i=1

∂q̇i
∂xi

dx2dx3 .
(4)

Because the thickness of the boundary layer δϑ is consid-
erably small compared to the height of the channel H, the
energy stored in the boundary layer will be neglected. Fur-
thermore, the heat fluxes q̇1, q̇2 can also be considered zero
due to the assumptions that the fluid is ideally mixed (cf.
Eqs. (2) and (3)), no heat exchange takes place with the
environment and that there is no heat conduction along
x1-direction. Thus, the mathematical model of the tem-
perature field in a channel of a plate heat exchanger ac-
cording to Eq. (4) simplifies to

Ac%cp

(
∂ϑ

∂t
+ u

∂ϑ

∂x1

)
= −Bq̇3

∣∣∣∣
x3=H

x3=0
(5)
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with the boundary conditions
{
ϑ(0, t) = ϑin for u ≥ 0
ϑ(L, t) = ϑin for u < 0

(6)

and appropriate initial conditions. Note that for the sake
of readability in Eq. (5) and henceforth ϑ∞f is replaced by
ϑ and u∞1 by u, respectively. Moreover, ϑin denotes the
inlet temperature in the channel.

2.2. Thermal coupling of neighboring channels
In order to model the thermal coupling between neigh-

boring channels, a plate of height Hp exposed to two fluids
of different core temperatures ϑI > ϑII and fluid veloci-
ties uI, uII is considered, see Figure 3. As it is shown in

ϑI
ϑI

ϑII
ϑII

uI

uII

ϑp,I

ϑp,m

ϑp,II

1
hI

1
hII

q̇I

q̇II

1
2

Hp

kp

1
2

Hp

kp

x3

Hp

δϑ,I

δϑ,II

ϑ

Figure 3: Schematics of the heat transfer between two adjacent chan-
nels.

Figure 3, heat is transferred from the core flow of fluid I
through the boundary layer to the plate and then to fluid
II. A common way to describe this kind of convective heat
transfer is to introduce a so-called heat transfer coefficient
h, which allows to calculate the transferred heat flux be-
tween fluid I and the plate by means of Newton’s law of
cooling in the form

q̇I = hI (ϑI − ϑp,I) , (7)

where ϑp,I denotes the temperature of the wall in contact
with fluid I. In an analogous way the heat flux q̇II reads
as

q̇II = hII (ϑp,II − ϑII) . (8)

It is well known that an analytical expression for the heat
transfer coefficient h is only available for very simplistic
scenarios. In the general case the calculation of h requires
an accurate knowledge of the fluid velocity field which in
turn leads to high-order models with high computational
effort. Therefore, semi-empirical methods like the simili-
tude theory according to Nußelt are often employed in the
design of heat exchangers. Basically, the latter approach

relies on a suitable approximation of the functional depen-
dence of the Nußelt number Nu, on the Prandtl number
Pr and the Reynolds number Re [14], i.e.,

Nu = fNu(Pr,Re) (9)

with

Nu = hdh
k

, Pr = µcp
k

, Re = |u|%dh
µ

, (10)

where dh = 2H denotes the hydraulic diameter, k is the
fluid thermal conductivity and µ the dynamic viscosity.
In recent years, several relations for the Nußelt correlation
Eq. (9) of plate heat exchangers have been reported in the
literature, see, e.g., [15, 16, 17, 18]. It is common practice
to assume that the Nußelt number Nu is constant along
the flow direction where the material parameters k, µ, cp
and % are evaluated at the average temperature of inlet
ϑin and outlet ϑout. According to [17] the Nußelt number
for compact plate heat exchangers can be expressed in the
form

Nu = CNuPr
nPrRenRe , (11)

with the constant empirical parameters CNu, nPr and nRe
which have to be determined by means of suitable experi-
ments. By combining Eq. (10) and Eq. (11) the heat trans-
fer coefficients hI and hII can be calculated which solely
depend on ϑin

I , ϑout
I , uI and ϑin

II , ϑout
II , uII, respectively.

Analogous to Eq. (1) the temperature field
ϑp(x1, x2, x3, t) of the plate satisfies the pde

%pcp,p
∂ϑp
∂t

= −
3∑

i=1

∂q̇i
∂xi

(12)

with appropriate boundary and initial conditions. Hence-
forth, in x2-direction the plate temperature is assumed to
be homogenous and boundary effects are neglected, i.e.
q̇2 = 0. Moreover, since the height Hp of a typical plate is
rather small and the thermal conductivity kp of metal is
large, the temperature profile in x3-direction can be con-
sidered in a quasi-stationary manner. Utilizing Fourier’s
law of heat conduction in x1-direction, see, e.g., [15]

q̇1 = kp
∂ϑp
∂x1

(13)

and integrating Eq. (12) over the cross section Ac,p = BHp

of the plate yields

%pcp,pB

∫ Hp

0

∂ϑp
∂t

dx3 = −kpB
∫ Hp

0

∂2ϑp
∂x2

1
dx3 −B q̇3|x3=Hp

x3=0 .

(14)

The stationarity assumption in x3-direction implies (see
Figure 3)

1
Hp

∫ Hp

0
ϑpdx3 = 1

2 (ϑp,I + ϑp,II) := ϑp,m (15)
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and thus Eq. (14) can be written in the form

%pcp,pAc,p
∂ϑp,m
∂t

=−Ac,pkp
∂2ϑp,m
∂x2

1
+B (q̇I − q̇II) , (16)

with the boundary conditions (no heat exchange with the
environment)

∂ϑp,m
∂x1

∣∣∣∣
x1=0

= ∂ϑp,m
∂x1

∣∣∣∣
x1=L

= 0 (17)

and suitable initial conditions. Note that ϑp,m is exactly
the temperature in the middle of the plate, i.e. for x3 =
Hp/2, and the heat fluxes q̇I and q̇II correspond to Eqs. (7)
and (8).

In view of the stationary temperature profile in x3-
direction, the surface plate temperatures ϑp,I and ϑp,II can
be expressed as

ϑp,I = ϑp,m + 1
2
Hp

kp
q̇I , (18a)

ϑp,II = ϑp,m −
1
2
Hp

kp
q̇II . (18b)

Substituting Eq. (18) into Eqs. (7) and (8) and solving
with respect to the heat fluxes results in

q̇I = hp,I (ϑI − ϑp,m) , 1
hp,I

= 1
hI

+ 1
2
Hp

kp
, (19a)

q̇II = hp,II (ϑp,m − ϑII) ,
1

hp,II
= 1
hII

+ 1
2
Hp

kp
. (19b)

The thermal equivalent network of Eq. (19) is depicted on
the left hand side of Figure 3.

3. Compact plate heat exchanger model

The temperature field of every fluid channel can be mod-
eled by Eq. (5) and the temperature field of every plate
by Eq. (16). Furthermore, the heat flux q̇3 characterizing
the thermal coupling of the fluid with a plate is given by
Eq. (19). The resulting model of a plate heat exchanger
with Np plates thus consists of 2Np − 1 nonlinear pdes.
In particular for large number of plates this model is not
suitable for model-based control design. However, in the
derivation of the mathematical model the specific design
and the typical operating conditions of compact plate heat
exchangers have been disregarded so far. As it will be
shown in the sequel, the consideration of these conditions
not only reduces the number of pdes, but also allows for an
accurate low-order approximation of the spatial domain.
In this context the following simplifications are made:

Due to the small volume of the gatherer, (i) the trans-
port time as well as the (ii) pressure drop inside the gath-
erer is negligible. This in turn suggest to assume that (iii)
the inlet temperature and (iv) the fluid velocity of every
channel with the same fluid are equal. The latter implies
that no maldistribution of flow occurs which has already

been shown for typical compact heat exchangers in [17].
In addition, due to the design with equal plates, (v) the
cross section Ac and (vi) the heat transfer coefficients hp of
every channel passed through by the same fluid are equal,
see Eq. (19). Furthermore, the small overall volumes of
both sides (I and II) together with the high flow rates of
the fluids lead to a (vii) low residence time of the fluids in
each channel.

Due to the same inlet temperatures, fluid flows and geo-
metric parameters of each channel of fluid I and II, locally
the same temperature distribution evolves in flow direc-
tion. This suggests to describe the temperature distribu-
tion of each channel of the same fluid by only one aver-
age temperature distribution ϑ̄ and thus reduce the model
from 2Np − 1 pdes to only 3 pdes. Henceforth, the index
I (II) always refers to parameters of a channel with fluid
I (II) and the index p indicates parameters of a plate. In
order to determine the average model, we introduce the ef-
fective heat transfer area BL (Np − 2) for both fluids and
the effective cross section of fluid I and fluid II, given by
Ac,I = Nc,IAc and Ac,II = Nc,IIAc, respectively. Thereby,
Nc,I (Nc,II) denotes the total number of parallel channels
with fluid I (II), with Nc,I + Nc,II = Np − 1. Thus, the
mathematical model of the compact plate heat exchanger
with the local average temperature distribution ϑ̄I and ϑ̄II
of fluid I and II and the local average plate temperature
distribution ϑ̄p results from Eqs. (5), (16) and (19) in the
form

∂ϑ̄I
∂t

= − uI
∂ϑ̄I
∂x1
− αI

(
ϑ̄I − ϑ̄p

)
(20a)

∂ϑ̄p
∂t

= − kp
cp,p%p

∂2ϑ̄p
∂x2

1
− βI

(
ϑ̄p − ϑ̄I

)
− βII

(
ϑ̄p − ϑ̄II

)

(20b)
∂ϑ̄II
∂t

= − uII
∂ϑ̄II
∂x1

− αII
(
ϑ̄II − ϑ̄p

)
(20c)

with the abbreviations

αi = hp,i
H%icp,i

Np − 2
Nc,i

, βi = 2hp,i
Hp%pcp,p

, i ∈ {I, II} ,

(21)

the boundary conditions
{
ϑ̄I(0, t) = ϑin

I for uI ≥ 0
ϑ̄I(L, t) = ϑin

I for uI < 0
(22a)

{
ϑ̄II(0, t) = ϑin

II for uII ≥ 0
ϑ̄II(L, t) = ϑin

II for uII < 0
(22b)

∂ϑ̄p
∂x1

∣∣∣∣
x1=0

= ∂ϑ̄p
∂x1

∣∣∣∣
x1=L

= 0 (22c)

and the channel velocities

uI = ṁI
%IAc,I

and uII = ṁII
%IIAc,II

. (23)

v
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Here ṁI and ṁII denote the overall mass flow rates of
fluid I and II passing through the heat exchanger. In the
next step the distributed-parameter system of Eq. (20) is
spatially discretized in order to obtain a system of ordi-
nary differential equations (odes). It is common practice
to approximate hyperbolic pdes as Eq. (20) by means of
the finite volume method, see, e.g., [19, 20, 21]. For this,
the particular control volume is partitioned in M equally
spaced volume elements of length L

M . Then Eq. (20) is
integrated over the whole volume, where the integral is di-
vided into a sum of integrals over the partitioned elements,
which results in

M∑

j=1

L

M

dθj,I
dt + ṁI

%IAc,I
ϑ̄I
∣∣x1=j L

M

x1=(j−1) L
M

+ L

M
αI (θj,I − θj,p) = 0

(24a)

M∑

j=1

L

M

dθj,p
dt + kp

cp,p%p

∂ϑ̄p
∂x1

∣∣∣∣
x1=j L

M

x1=(j−1) L
M

+ L

M
βI (θj,p − θj,I) + L

M
βII (θj,p − θj,II) = 0

(24b)

M∑

j=1

L

M

dθj,II
dt + ṁII

%IIAc,II
ϑ̄II
∣∣x1=j L

M

x1=(j−1) L
M

+ L

M
αII (θj,II − θj,p) = 0 .

(24c)

Thereby, the temperature mean values of the different vol-
ume elements

θj,i = M

L

j L
M∫

(j−1) L
M

ϑ̄idx1 i ∈ {I, II, p} (25)

are introduced as new state variables of the mathematical
model. Since not only the three sums in Eqs. (24a), (24b)
and (24c) must vanish, but also its summands, this results
in a finite-dimensional model of 3M ordinary differential
equations (odes). In general, the choice of the number of
volume elementsM has a great impact on the dynamic be-
havior of the resulting finite-dimensional model, especially
on the approximation of the transport phenomena. How-
ever, as will be seen in Section 4, due to typical operating
conditions of compact plate heat exchangers with low resi-
dence time and limited dynamics of the inlet temperatures
the transport phenomena are less dominant. This allows
to model the heat exchanger by means of only three odes.

For M = 1 the diffusion term in Eq. (24b)

∂ϑ̄p
∂x1

∣∣∣∣
x1=j L

M

x1=(j−1) L
M

= 0 (26)

vanishes due to the boundary conditions of Eq. (22c), the
average temperatures at the element border in Eqs. (24a)
and (24c) simplify to

ṁi

%iAc,i
ϑ̄i
∣∣x1=L
x1=0 = |ṁi|

1
%iAc,i

(
ϑout
i − ϑin

i

)
(27)

with i ∈ {I, II} and Eq. (24) takes the form

dθI
dt = −|ṁI|

mI

(
ϑout

I − ϑin
I
)
− αI (θI − θp) (28a)

dθp
dt = −βI (θp − θI)− βII (θp − θII) (28b)

dθII
dt = −|ṁII|

mII

(
ϑout

II − ϑin
II
)
− αII (θII − θp) , (28c)

where mI = %IAc,IL and mII = %IIAc,IIL denote the to-
tal mass inside the heat exchanger of fluid I and fluid II,
respectively. The next step is to determine a relationship
between the outlet temperatures ϑout

I and ϑout
II and the

state variables θI, θII, and θp. It will be shown that the
overall model can be written in the compact form

d
dtθ = A(ṁ)θ + B(ṁ)ϑin (29a)

ϑout = C(ṁ)θ + D(ṁ)ϑin (29b)

with the state vector θ = [θI, θp, θII]T , the input vectors
ṁ = [ṁI, ṁII]T and ϑin =

[
ϑin

I , ϑ
in
II
]T , the output vector

ϑout = [ϑout
I , ϑout

II ]T and appropriate initial conditions.

3.1. Upwind scheme
One of the simplest approximation schemes in the finite

volume method is the so-called upwind scheme, where the
outlet temperatures are interpolated in the form [20]

ϑout
i = θi , i ∈ {I, II} . (30)

Applying the upwind scheme to Eq. (28) the system ma-
trices of Eq. (29) read as

A =



− |ṁI|

mI
− αI αI 0

βI − (βI + βII) βII
0 αII − |ṁII|

mII
− αII


 ,

B =



|ṁI|
mI

0
0 0
0 |ṁII|

mII


 , C =

[
1 0 0
0 0 1

]
,

D =
[
0 0
0 0

]
.

(31)

Note that αi and βi, i ∈ {I, II}, depend on the mass flow
rates in a nonlinear manner, cf. Eqs. (10), (11), (21) and
(23). The upwind scheme is quite simple and leads to
a compact mathematical model but has the drawback of
rather high approximation errors, as will be seen in Sec-
tion 4. Of course, the accuracy of the model could be im-
proved by increasing the number of volume elements M .
However, this contradicts the desire to derive low-order
models which serve as a basis for optimization and real-
time nonlinear control. Therefore, an alternative approach
for the interpolation of the outlet temperatures based on
considerations of the stationary behavior of the heat ex-
changer will be applied in the following.
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3.2. Power balance scheme
For the subsequent derivation of the stationary tem-

perature profiles the heat conduction of the plates in x1-
direction will be neglected, i.e. kp = 0 in Eq. (20). In
fact numerical calculations have shown that this term only
marginally influences the results and only with this sim-
plification an analytical solution is made possible.

Assuming countercurrent flow with ṁI > 0 and ṁII < 0
the boundary conditions are given by ϑ̄I,s(0) = ϑin

I,s and
ϑ̄II,s(L) = ϑin

II,s and the stationary solution of Eq. (20),
subsequently referred to with the index s, for kp = 0 reads
as

ϑ̄I,s(x1) = ϑin
I,s −

(
ϑin

I,s − ϑin
II,s
) 1− exp

(
−Γ x1

L

)

1 + γII
γI
exp(−Γ ) (32a)

ϑ̄II,s(x1) = ϑin
I,s −

(
ϑin

I,s − ϑin
II,s
) 1 + γII

γI
exp
(
−Γ x1

L

)

1 + γII
γI
exp(−Γ ) ,

(32b)

with the abbreviations

γI = U (Np − 2)BL
cp,IṁI

, (33)

γII = U (Np − 2)BL
cp,IIṁII

, (34)

Γ = γI + γII (35)

and the overall heat transfer coefficient
1
U

= 1
hp,I

+ 1
hp,II

. (36)

Thus, the stationary outlet temperatures can be directly
inferred from Eq. (32) in the form ϑout

I,s = ϑ̄I,s(L) and
ϑout

II,s = ϑ̄II,s(0). It can be easily seen that the stationary
temperature mean values (cf. Eq. (25) for M = 1)

θi,s = 1
L

L∫

0

ϑ̄i,sdx1 , i ∈ {I, II} (37)

are bounded from below and above, for instance for ϑin
I,s >

ϑin
II,s we have

ϑin
I,s ≥ θI,s ≥ ϑout

I,s , (38a)
ϑin

II,s ≤ θII,s ≤ ϑout
II,s . (38b)

The latter guarantees the existence of constant parameters
ξI, ξII ∈ [0, 1] such that the following relations

θI,s = ϑin
I,s + ξI

(
ϑout

I,s − ϑin
I,s
)
, (39a)

θII,s = ϑin
II,s + ξII

(
ϑout

II,s − ϑin
II,s
)

(39b)

are satisfied. Inserting Eq. (32) into Eq. (37) and then into
Eq. (39), ξI and ξII can be calculated in the form

ξI = exp(Γ ) (Γ − 1) + 1
Γ (exp(Γ )− 1) , ξII = 1− ξI . (40)

Remark: For cocurrent flow with ṁI > 0 and ṁII > 0,
ϑ̄I,s(0) = ϑin

I,s and ϑ̄II,s(0) = ϑin
II,s similar expressions can

be derived for the stationary solution

ϑ̄I,s(x1) = ϑin
I,s − γI

(
ϑin

I,s − ϑin
II,s
) 1− exp

(
−Γ x1

L

)

Γ
,
(41a)

ϑ̄II,s(x1) = ϑin
II,s + γII

(
ϑin

I,s − ϑin
II,s
) 1− exp

(
−Γ x1

L

)

Γ
(41b)

and for

ξI = exp(Γ ) (Γ − 1) + 1
Γ (exp(Γ )− 1) , ξII = ξI . (42)

The idea of the power balance scheme is now to approx-
imate the dynamic outlet temperatures ϑout

I and ϑout
II by

θI, θII, ϑin
I and ϑin

II according to the stationary relationship
of Eq. (39), i.e.

ϑout
I = 1

ξI
θI + ξI − 1

ξI
ϑin

I (43a)

ϑout
II = 1

ξII
θII + ξII − 1

ξII
ϑin

II . (43b)

Utilizing Eq. (43) the system matrices of Eq. (29) read as

A =



− |ṁI|
mIξI

− αI αI 0
βI − (βI + βII) βII
0 αII − |ṁII|

mIIξII
− αII


 ,

B =



|ṁI|
mIξI

0
0 0
0 |ṁII|

mIIξII


 , C =

[ 1
ξI

0 0
0 0 1

ξII

]
,

D =
[1− 1

ξI
0

0 1− 1
ξII

]
.

(44)

Contrary to the upwind scheme, the power balance scheme
ensures that the outlet temperatures stationary match the
solution of the pde of Eq. (20) for kp = 0.

Remark: Note that the power balance model Eq. (29),
Eq. (44) is a finite-dimensional approximation of the
distributed-parameter model Eqs. (20) – (22). The ap-
proximation scheme was designed in such a way that the
resulting mathematical model exhibits a high stationary
accuracy even for only M = 1 volume element. However,
in case of very fast changes of the inlet temperatures the
transient accuracy is limited due to the insufficient approx-
imation of the transport phenomenon. In order to counter-
act this shortcoming, the number M of volume elements
and thus the dimension of the power balance model has
to be increased. As a rule of thumb, the residence time of
the fluid inside a volume element should be smaller than
the minimum rise time of the inlet temperatures.
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Figure 4: Photo of the test bed.

4. Validation of the proposed model

4.1. Experimental setup
In order to validate the presented mathematical models,

a test bed was set up wherein two fluid circuits, one with
a heater and one with a cooling system, are thermally
coupled by a 1/1 pass countercurrent brazed plate heat
exchanger in U-form. A picture of the test bed is shown in
Figure 4 and the schematics are depicted in Figure 5. For

MM

ϑin
I , ṁI

ϑin
II , ṁII

ϑout
I

ϑout
II

heater

pump

coolant
supply

tank

plate heat
exchanger

Figure 5: Schematic design of the test bed.

the experiments, two different designs of industrial plate
heat exchangers have been used, see Figure 6, with the
parameters listed in Table 1. The fluid I is a water-
glycol mixture with 44% concentration. As coolant, water
is used in experiment A and a water-glycol mixture with
40% concentration in experiment B. All fluid parameters

A

B

Figure 6: Examined plate heat exchangers.

Description Symbol A B Unit
channel length L 46 25 cm
channel width B 10.6 10.6 cm
channel height H 2 1.8 mm
plate thickness Hp 0.5 0.5 mm
number of plates Np 20 40
correlation parameter CNu 0.5 0.38
correlation parameter nPr 0.26 0.26
correlation parameter nRe 0.67 0.68
density (plate) ̺p 8000 8000 kg/m3

specific heat capacity (plate) cp,p 500 500 J/kg/K
thermal conductivity (plate) kp 15 15 W/m/K

Table 1: Parameter of the analyzed plate heat exchangers.

with their temperature dependencies can be found in the
relevant literature, see, e.g., [10]. Each flow is driven by
a pump where the mass flow rates can be controlled by
proportional valves. The inlet and outlet temperatures
are measured by resistance thermometers (RTDs) and the
two volume flow rates by means of turbine meters. The
empirical parameters CNu, nPr and nRe of Eq. (11) were
identified by means of manufacturer’s steady state data
with the procedure explained in the following section.

4.2. Identification of the thermal coupling

As mentioned in Section 2, the parameters CNu, nPr and
nRe of Eq. (11) have to be determined by means of suit-
able experiments. Manufacturer often provide measure-
ments of stationary outlet temperatures ϑout,m

I,s , ϑout,m
II,s for

different but constant mass flow rates ṁm
I,s, ṁm

II,s and inlet
temperatures ϑin,m

I,s , ϑin,m
II,s . These steady state data can

be used in order to adapt the calculated stationary out-
let temperatures ϑout,c

I,s , ϑout,c
II,s to the measurements. Note

that henceforth the added superscript m and c refer to
measured and calculated variables, respectively.

Assuming countercurrent flow with ṁI > 0 and ṁII < 0,
cf. Eq. (32), the stationary outlet temperatures can be
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calculated as,

ϑout,c
I,s = ϑin,m

I,s −
(
ϑin,m

I,s − ϑ
in,m
II,s

) 1− exp(−Γ c)
1 + γc

II
γc

I
exp(−Γ c)

(45a)

ϑout,c
II,s = ϑin,m

I,s −
(
ϑin,m

I,s − ϑ
in,m
II,s

) 1 + γc
II
γc

I

1 + γc
II
γc

I
exp(−Γ c)

,

(45b)

where the overall heat transfer coefficient U c in γcI , γcII and
Γ c according to Eqs. (36), (19), (10) and (11) reads as

1
U c

= 2H
kICNuPr

nPr

I RenRe

I
+ 2H
kIICNuPr

nPr

II RenRe

II
+ Hp

kp
.

(46)

For all stationary measurements the error between the
measured and the calculated outlet temperatures ϑout,m

I,s −
ϑout,c

I,s and ϑout,m
II,s − ϑout,c

II,s are combined in the error vec-
tors eI and eII, respectively. Then the parameters CNu,
nPr and nRe are determined by solving the nonlinear opti-
mization problem

min
CNu,nPr,nRe

wIeTI eI + wIIeTIIeII (47)

for suitable weighting factors wI, wII > 0. In our case an
interior-point method was employed utilizing the Matlab
function fmincon.

4.3. Measurement Results
For the experiments, the inputs, i.e. the two inlet tem-

peratures ϑin
I and ϑin

II and the two mass flow rates ṁI and
ṁII, are varied over the operating range and are depicted
in the left pictures of Figure 7 and Figure 8 for the two
experiments A and B, respectively. These measured time
evolutions also serve as inputs for the different mathemat-
ical models. The model accuracy is then assessed by com-
paring the resulting measured outlet temperatures ϑout

I
and ϑout

II with the simulated ones. Thereby, two low-order
mathematical models, each only with M = 1 volume ele-
ment, based on the upwind and the power balance scheme
according to Section 3.1 and Section 3.2, and two further
higher order models employing the upwind scheme with
M = 10 and M = 100 volume elements are used for com-
parison purposes. The time evolutions of the simulated
and measured outlet temperatures ϑout

I and ϑout
II as well

as the relative errors eI and eII of the simulation results
are given in the right pictures of Figure 7 and Figure 8.

As expected, the errors of the upwind scheme mod-
els decrease for an increasing number of volume elements
M . The mathematical model based on the power balance
scheme already shows very good results for only one vol-
ume element (M = 1) and is comparable to the upwind
scheme model with M = 100. Here the resulting station-
ary simulation error is less than 3% for experiment B and

even less than 1% for experiment A. Larger deviations only
occur for fast changing mass flow rates. At this point it
is worth mentioning that already small errors in the pa-
rameters of the Nußelt correlation (given in Eq. (11)) or
in the mass flow rates result in relative errors of the outlet
temperatures in the percentage range. Thus, the quality
of the low-order mathematical model with the power bal-
ance scheme can be rated very high, in particular if we
take into account that the dynamics of the sensors was
disregarded in the evaluation. The nearly perfect match-
ing between the upwind scheme model with M = 100 and
the power balance scheme model with M = 1 confirms
the assumption that for compact plate heat exchangers
the residence time of the fluid can be neglected. The only
need for higher approximations within the upwind scheme
is up to the nonlinear quasi-stationary behavior, which is
inherently accounted for by the power balance scheme due
to its specific construction.

5. Conclusion

Starting with a detailed modeling based on the funda-
mentals of heat transfer and the similitude theory accord-
ing to Nußelt, a temperature mean value model consisting
of three partial differential equations (pdes) was derived
for a class of compact plate heat exchangers. A semi-
discretization by means of the finite volume method was
performed in order to obtain a model of ordinary differen-
tial equations. Due to the small fluid residence time and
the limited dynamics of the inlet temperatures a discretiza-
tion by only one single volume element was possible. The
relation between the outlet temperatures and the states
of the reduced model was established by the classical up-
wind and a newly developed power balance scheme. The
latter was derived utilizing an approximate stationary so-
lution of the underlying pdes. Finally, the models were
validated by means of experimental results. It was shown
that the mathematical model based on the power balance
scheme with only one volume element exhibits similar high
accuracy as the upwind scheme model with 100 volume el-
ements. Since this low-order model succeeds in capturing
the essential nonlinearities and the dynamic behavior in
the considered operating range it serves as a suitable ba-
sis for model-based (nonlinear) control and optimization.
Apart from the advantages of low complexity and high ac-
curacy the model has the nice feature that the states are di-
rectly measurable and thus nonlinear state controllers may
be directly applied without the need for a state observer.
Note that this kind of low-order models can be applied to
any kind of heat exchanger fulfilling the assumption of low
fluid residence time compared to the dynamics of the inlet
temperatures.

The stationary accuracy of the power balance scheme
directly depends on the quality of the heat transfer model
and thus on the identified correlation parameters. Because
these parameters also appear as exponents in the Nußelt
correlation, already small differences lead to high errors
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Figure 7: Measurement and simulation results for experiment A.

of the overall heat transfer coefficient and consequently
to errors in the outlet temperatures. But this is not a
drawback of the power balance scheme but will appear in
every finite volume scheme based on the proposed Nußelt
correlation. Moreover, the proposed power balance model
with only one discretization element has its limitation. If
the dynamics of the inlet temperatures are higher than
the corresponding residence time of the fluid inside a dis-
cretization element, the transport phenomenon gets more
dominant and a higher order finite volume model is indis-
pensable. However, the power balance scheme is also ap-
plicable in this case, but the number of volume elements
and hence the dimension of the resulting model has to be
increased.
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